首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Magnetic DEAE-GMA-EDMA microspheres were prepared via suspension polymerization and used for the immobilization of Candida rugosa lipase by ion exchange. The effect of pH values on the immobilization of lipase was investigated. Resolution of (+/-)-menthol in the hydrophobic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate was performed by immobilized lipase-catalyzed enantioselective esterification with propionic anhydride as acyl donor. The effects of pH condition at lipase immobilization on the conversion and enantioselectivity were investigated. As a result, pH memory of the immobilized lipase for catalyzing (+/-)-menthol resolution in the ionic liquid was observed. Better conversion and the best enantioselectivity were obtained with the immobilized lipase prepared at pH 5.0. Under the condition, (-)-menthyl propionate with enantiomeric excess of >90% was obtained. Moreover, the enantioselectivity of the immobilized lipase decreased gradually with increasing pH value.  相似文献   

2.
Sterols (sitosterol, cholesterol, stigmasterol, ergosterol, and 7-dehydrocholesterol) and sitostanol have been converted in high to near-quantitative yields to the corresponding long-chain acyl esters via esterification with fatty acids or transesterification with methyl esters of fatty acids or triacylglycerols using lipase from Candida rugosa as biocatalyst in vacuo (20-40 mbar) at 40 degrees C. Neither organic solvent nor water is added in these reactions. Under similar conditions, cholesterol has been converted to cholesteryl butyrate and steroids (5alpha-pregnan-3beta-ol-20-one or 5-pregnen-3beta-ol-20-one) have been converted to their propionic acid esters, both in moderate to high yields, via transesterification with tributyrin and tripropionin, respectively. Reaction parameters studied in esterification include the temperature and the molar ratio of the substrates as well as the amount and reuse properties of the C. rugosa lipase. Lipases from porcine pancreas, Rhizopus arrhizus, and Chromobacterium viscosum are quite ineffective as biocatalysts for the esterification of cholesterol with oleic acid under the above conditions.  相似文献   

3.
The esterification and hydrolytic activities of free and immobilized Candida rugosa lipase isoform 1 (LIP1) were investigated. Esterification activity was determined by reacting caprylic acid with glycerol in the presence of molecular sieves (30%, w/w), and the volume of 1.0 M NaOH consumed by the reaction products upon titration was used to calculate esterification activity. Caprylic acid was also reacted with cottonseed oil, and the amount of caprylic acid incorporated after 12 h of reaction was determined. Results indicated that LIP1 had little esterification activity, which was not significantly improved upon immobilization. Hydrolytic activity was determined by incubating tricaprylin emulsion (15%, w/w) with the respective lipases for 60 min, and the reaction products were titrated against 0.5 M NaOH. LIP1 showed hydrolytic activity comparable to Lipozyme RM IM. The hydrolytic activity improved significantly upon immobilization. Immobilization on Celite 545 produced the highest increase in hydrolytic activity.  相似文献   

4.
Structured lipids (SLs) containing palmitic and oleic acids were synthesized by transesterification of tripalmitin with either oleic acid or methyl oleate as acyl donor. This SL with palmitic acid at the sn-2 position and oleic acid at sn-1,3 positions is similar in structure to human milk fat triacylglycerol. LIP1, an isoform of Candida rugosa lipase (CRL), was used as biocatalyst. The effects of reaction temperature, substrate molar ratio, and time on incorporation of oleic acid were investigated. Reaction time and temperature were set at 6, 12, and 24 h, and 35, 45, and 55 degrees C, respectively. Substrate molar ratio was varied from 1:1 to 1:4. The highest incorporation of oleic acid (37.7%) was at 45 degrees C with methyl oleate as acyl donor. Oleic acid resulted in slightly lesser (26.3%) incorporation. Generally, higher percentage incorporation of oleic acid was observed with methyl oleate (transesterification) than with oleic acid (acidolysis). In both cases percentage incorporation increased with reaction time. Incorporation decreased with increase in temperature above 45 degrees C. Initially, oleic acid incorporation increased with increase in substrate molar ratio up to 1:3. LIP1 was also compared with Lipozyme RM IM as biocatalysts. The tested reaction parameters were selected on the basis of maximum incorporation of C18:1 obtained during optimization of LIP1 reaction conditions. Reaction temperature was maintained at 45, 55, and 65 degrees C. Lipozyme RM IM gave highest oleic acid incorporation (49.4%) at 65 degrees C with methyl oleate as acyl donor. Statistically significant (P < 0.05) differences were observed for both enzymes. SL prepared using Lipozyme RM IM may be more suitable for possible use in human milk fat substitutes.  相似文献   

5.
Fatty acid (FA) selectivity of immobilized Candida antarctica B lipase was assessed as influenced by various cosubstrate systems for ester synthesis. Reaction mixtures contained a homologous series of even-chain n-acyl donor (C(4)(-)(16)) substrates (FA or their methyl esters, FAME) and a single alcohol cosubstrate (propanol, 2-propanol, or their acetate derivatives) in hexane. Multiple FA optima were often observed, with preferences for C(6) (or C(4)) followed by C(14) and sometimes C(10). The degree of selectivity among acyl donors was modest (up to 1.28-2.60, based on ratios of selectivity constants) and was dependent on the choice of cosubstrate system. Acyl group selectivity ranged up to 1.31-1.36 for [FA + alcohol], 1. 48-2.60 for [FAME + alcohol], 1.30-1.72 for [FA + alcohol acetate], and 1.28-1.88 [FAME + alcohol acetate] reaction systems. General shifts in selectivity were observed between short-chain (C(4)(-)(8)) and long-chain (C(10)(-)(16)) FA as groups with propanol cosubstrate, whereas shifts in reaction selectivity were observed toward specific FA(s) for 2-propanol cosubstrate. Selectivity among a series of alcohol cosubstrates ranged up to 13-fold in esterification reactions with C(6) FA.  相似文献   

6.
Lipophilization is the esterification of a lipophilic moiety (fatty acid or fatty alcohol) on different substrates (phenolic acid, sugar, protein, ...), resulting in new molecules with modified hydrophilic/lipophilic balance. This reaction can be obtained chemically or enzymatically using different enzymes. Phenolic acids possess interesting biological properties (antioxidant, chelator, free radical scavenger, UV filter, antimicrobial, ...), but because of their relatively low solubility in aprotic media, their application in oil-based products is limited. Therefore, the esterification of their carboxylic acid function with a fatty alcohol enhances their hydrophobicity and results in a multifunctional amphiphilic molecule. Enzymatic lipophilization of phenolic acids is nowadays studied for potential industrial applications. Different systems have been proposed to perform the reaction yield [free or immobilized enzymes (lipase, feruloyl esterase, tannase, etc.), free or added organic solvent, addition of surfactant, microemulsion system, etc.]. Some of the functional properties of these esters have been demonstrated. This review presents a panorama of the advances in this field.  相似文献   

7.
6-O-decanoyl, 6-O-dodecanoyl, or 6-O-tetradecanoyl L-ascorbate was continuously produced at 50 degrees C using a continuous stirred tank reactor (CSTR) with an immobilized lipase, Chirazyme L-2 C2, from Candida antarctica. Acetone was used as the reaction medium. For each saturated acyl L-ascorbate, the productivity of ca. 60 g/L reactor/day was achieved for at least 11 days. The solubility of the saturated acyl L-ascorbate in the soybean oil or water was measured at various temperatures. The solubilities in both the soybean oil and the water were higher for L-ascorbate with a shorter acyl chain. The acyl chain dependence of the solubility in water was stronger than that of the solubility in soybean oil. The temperature dependences of the solubility in both soybean oil and water could be expressed by the van't Hoff equation, and the dissolution enthalpy (DeltaH) values for the soybean oil and water were about 20 and 90 kJ/mol, respectively, irrespective of the acyl chain length. The radical scavenging activities of L-ascorbic acid and the saturated acyl L-ascorbates against 1,1-diphenyl-2-picrylhydrazyl free radical were ca. 95% for all of the compounds, and the introduction of a saturated acyl group to the L-ascorbic acid did not affect the activity.  相似文献   

8.
Rutin was acylated with stearic acid in the esterification reaction catalyzed by immobilized Candida antarctica lipase B (Novozym 435) in tert-amyl alcohol with and without molecular sieves. The lipophilic rutin stearate was synthesized by this method, which had a potential use in food, cosmetics, and pharmacy. The structure of rutin stearate was characterized by spectral methods of 1H NMR and 13C NMR, Fourier transform infrared, and UV-vis. The results suggested that the regioselectivity of the lipase-catalyzed esterification of rutin was specific at the C(4')-position of the rhamnose moiety. It was found that the addition of molecular sieves increased both the reaction rate and the yield. The time effect of adding molecular sieves in the reaction system on the conversion of rutin stearate was further examined. Instead of adding molecular sieves at the beginning of the reaction, the addition of molecular sieves at 5, 18, 24, 31, and 44 h after the beginning of the reaction was also applied. The final conversion for the case to add molecular sieves at 24 h after the beginning of reaction was the highest, with the conversion yield about 46%.  相似文献   

9.
A medium-chain ester, hexyl laurate, with fruity flavor is primarily used in personal care formulations as an important emollient for cosmetic applications. To conform to the "natural" interests of consumers, the ability of immobilized lipase from Rhizomucor miehei (Lipozyme IM-77) to catalyze the direct esterification of hexanol and lauric acid by using a solvent-free system was investigated in this study. Response surface methodology (RSM) and four-factor-five-level central composite rotatable design (CCRD) were employed to evaluate the effects of synthesis parameters, such as reaction time (10-50 min), temperature (45-85 degrees C), lipase amount (10-30 mg/volume; 0.077-0.231 batch acidolysis units of Novo (BAUN), and pH memory (5-9), on percentage molar conversion of hexyl laurate by lipase-catalyzed direct esterification. Reaction time, temperature, and enzyme amount had significant effects on percent molar conversion. On the basis of ridge maximum analysis, the optimum synthesis conditions for hexyl laurate were a reaction time of 40.6 min, a temperature of 58.2 degrees C, an enzyme amount of 25.4 mg/volume (0.196 BAUN), and a pH memory of 5.9. The predicted percentage molar conversion of hexyl laurate was 69.7 +/- 1.4%.  相似文献   

10.
Incorporation of stearic acid into canola oil to produce trans-free structured lipid (SL) as a healthy alternative to partially hydrogenated fats for margarine formulation was investigated. Response surface methodology was used to study the effects of lipozyme RM IM from Rhizomucor miehei and Candida rugosa lipase isoform 1 (LIP1) and two acyl donors, stearic acid and ethyl stearate, on the incorporation. Lipozyme RM IM and ethyl stearate gave the best result. Gram quantities of SLs were synthesized using lipozyme RM IM, and the products were compared to SL made by chemical catalysis and fat from commercial margarines. After short-path distillation, the products were characterized by GC and RPHPLC-MS to obtain fatty acid and triacylglycerol profiles, 13C NMR spectrometry for regiospecific analysis, X-ray diffraction for crystal forms, and DSC for melting profile. Stearic acid was incorporated into canola oil, mainly at the sn-1,3 positions, for the lipase reaction, and no new trans fatty acids formed. Most SL products did not have adequate solid fat content or beta' crystal forms for tub margarine, although these may be suitable for light margarine formulation.  相似文献   

11.
Solvent-free lipase-catalyzed preparation of diacylglycerols   总被引:6,自引:0,他引:6  
Various methods have been applied for the enzymatic preparation of diacylglycerols that are used as dietary oils for weight reduction in obesity and related disorders. Interesterification of rapeseed oil triacylglycerols with commercial preparations of monoacylglycerols, such as Monomuls 90-O18, Mulgaprime 90, and Nutrisoft 55, catalyzed by immobilized lipase from Rhizomucor miehei (Lipozyme RM IM) in vacuo at 60 degrees C led to extensive (from 60 to 75%) formation of diacylglycerols. Esterification of rapeseed oil fatty acids with Nutrisoft, catalyzed by Lipozyme RM in vacuo at 60 degrees C, also led to extensive (from 60 to 70%) formation of diacylglycerols. Esterification of rapeseed oil fatty acids with glycerol in vacuo at 60 degrees C, catalyzed by Lipozyme RM and lipases from Thermomyces lanuginosus (Lipozyme TL IM) and Candida antarctica (lipase B, Novozym 435), also provided diacylglycerols, however, to a lower extent (40-45%). Glycerolysis of rapeseed oil triacylglycerols with glycerol in vacuo at 60 degrees C, catalyzed by Lipozyme TL and Novozym 435, led to diacylglycerols to the extent of 相似文献   

12.
Five lipases, namely, Candida antarctica (Novozyme-435), Mucor miehei (Lipozyme-IM), Pseudomonas sp. (PS-30), Aspergillus niger (AP-12), and Candida rugosa (AY-30), were screened for their effect on catalyzing the acidolysis of tristearin with selected long-chain fatty acids. Among the lipases tested C. antarctica lipase catalyzed the highest incorporation of oleic acid (OA, 58.2%), gamma-linolenic acid (GLA, 55.9%), eicosapentaenoic acid (EPA, 81.6%), and docosahexaenoic acid (DHA, 47.7%) into tristearin. In comparison with other lipases examined, C. rugosa lipase catalyzed the highest incorporation of linoleic acid (LA, 75.8%), alpha-linolenic acid (ALA, 74.8%), and conjugated linoleic acid (CLA, 53.5%) into tristearin. Thus, these two lipases might be considered promising biocatalysts for acidolysis of tristearin with selected long-chain fatty acids. EPA was better incorporated into tristearin than DHA using the fifth enzymes. LA incorporation was better than CLA. ALA was more reactive than GLA during acidolysis, except for the reaction catalyzed by Pseudomonas sp., possibly due to structural differences (location and geometry of double bonds) between the two fatty acids. In another set of experiments, a combination of equimolar quantities of unsaturated C18 fatty acids (OA + LA + CLA + GLA + ALA) was used for acidolysis of tristearin to C18 fatty acids at ratios of 1:1, 1:2, and 1:3. All lipases tested catalyzed incorporation of OA and LA into tristearin except for M. miehei, which incorportaed only OA. C. rugosa lipase better catalyzed incorporation of OA and LA into tristearin than other lipases tested, whereas the lowest incorporation was obtained using Pseudomonas sp. As the mole ratio of substrates increased from 1 to 3, incorporation of OA and LA increased except for the reaction catalyzed by A. niger and C. rugosa. All lipases tested failed to allow GLA or CLA to participate in the acidolysis reaction, and ALA was only slightly incoporated into tristearin when M. miehei was used.  相似文献   

13.
中国共产党的优秀党员、我国杰出的农学家、农业工程学家、教育家、我国农业工程学科创始人之一,原中国农业工程研究设计院副院长张季高先生因病医治无效,于2007年1月14日在北京逝世,享年90岁。张季高先生1917年2月18日出生于江苏苏州。1940年获金陵大学农学学士学位,1944年获金陵大学农学硕士学位。1945年赴美国衣阿华州立大学研究生院学习,并于1947年获农业工程硕士学位。1948年满怀兴农报国之愿,欣然回国。[第一段]  相似文献   

14.
生物柴油催化合成技术研究进展   总被引:12,自引:0,他引:12  
生物柴油作为一种可再生能源,可以由动植物油脂通过酯交换反应来制备。该文综述了近年来生物柴油的合成方法,重点阐述了制备过程中的酸催化、碱催化、酶催化和超临界催化等催化方法,探讨了各自的特点、缺陷及其解决措施,并提出了相应建议。  相似文献   

15.
Sitostanol has been converted in high to near-quantitative extent to the corresponding long-chain acyl esters via esterification with oleic acid or transesterification with methyl oleate or trioleoylglycerol using immobilized lipases from Rhizomucor miehei (Lipozyme IM) and Candida antarctica (lipase B, Novozym 435) as biocatalysts in vacuo (20-40 mbar) at 80 degrees C, whereas the conversion was markedly lower at 60 and 40 degrees C. Corresponding conversions observed with papaya (Carica papaya) latex lipase were generally lower. High conversion rates observed in transesterification of sitostanol with methyl oleate at 80 degrees C using Lipozyme IM were retained even after 10 repeated uses of the biocatalyst. Saturated sterols such as sitostanol and 5alpha-cholestan-3beta-ol were the preferred substrates as compared to Delta(5)-unsaturated cholesterol in transesterification reactions with methyl oleate using Lipozyme IM. Transesterification of cholesterol with dimethyl 1,8-octanedioate using Lipozyme IM in vacuo yielded methylcholesteryl 1,8-octanedioate (75%) and dicholesteryl 1,8-octanedioate (5%). However, transesterification of cholesterol with diethyl carbonate and that of oleyl alcohol with ethylcholesteryl carbonate, both catalyzed by Lipozyme IM, gave ethylcholesteryl carbonate and oleylcholesteryl carbonate, respectively, in low yield (20%). Moreover, cholesterol was transesterified with ethyl dihydrocinnamate using Lipozyme IM to give cholesteryl dihydrocinnamate in moderate yield (56%), whereas the corresponding reaction of lanosterol gave lanosteryl oleate in low yield (14%).  相似文献   

16.
Recombinant Candida rugosa lipase 5 (LIP5) has been functionally expressed along with other isoforms in our laboratory. However, the characterization and codon optimization of LIP5 have not been done. In this work, we characterized, codon-optimized and compared LIP5 with commercial lipase. LIP5 activity on hydrolysis of p-nitrophenyl (p-NP) butyrate was optimal at 55 °C as compared with 37 °C of the commercial lipase. Several assays were also performed to determine the substrate specificity of LIP5. p-NP butyrate (C(4)), butyryl-CoA (C(4)), cholesteryl laurate (C(12)), and N-carbobenzoxy-l-tyrosine-p-nitrophenyl ester (l-NBTNPE) were found as preferred substrates of LIP5. Interestingly, LIP5 specificity on hydrolysis of amino acid-derivative substrates was shown to be the highest among any lipase isoforms, but it had very weak preference on hydrolyzing triacylglycerol substrates. LIP5 also displays a pH-dependent maximum activity of a lipase but an esterase substrate preference in general. The characterization of LIP5 along with that of LIP1-LIP4 previously identified shows that each lipase isoform has a distinct substrate preference and catalytic activity.  相似文献   

17.
Tripalmitin-enriched triacylglycerols were concentrated from palm stearin by acetone fractionation and as the substrate reacted with a mixture of equimolar quantities of fatty acids (C8:0-C18:3). The incorporation degree and acyl migration level of the fatty acids and acylglycerols composition were investigated, providing helpful information for the production of human milk fat substitutes. Higher incorporation degrees of the fatty acids were obtained with lipase PS IM, Lipozyme TL IM, and Lipozyme RM IM followed by porcine pancreatic lipase and Novozym 435-catalyzed acidolysis. During reactions catalyzed by Lipozyme TL IM, Lipozyme RM IM, and lipase PS IM, incorporation degrees of C12:0, C14:0, C18:1, and C18:2 were higher than those of other fatty acids at operated variables (molar ratio, temperature, and time), and the triacylglycerols content reached the highest (82.09%) via Lipozyme RM IM-catalyzed acidolysis. On the basis of significantly different levels of acyl migration to the sn-2 position, lipases were in the order of lipase PS IM < Lipozyme TL IM < Lipozyme RM IM.  相似文献   

18.
The ability of immobilized lipase Candida antarctica (Novozyme 435) to catalyze the direct esterification of hydroxyphenylpropionic acid and octanol in a solvent-free system was investigated in this study. Response surface methodology (RSM) and five-level-four-factor central composite rotatable design (CCRD) were employed to evaluate the effects of synthesis parameters, such as reaction time, temperature, enzyme amount, and pH memory, on percentage molar conversion of phenolic acid esters. Reaction time, temperature, and enzyme amount were the most important variables. On the basis of canonical analysis and ridge max analysis, the optimum synthesis conditions with 95.9% molar conversion were reaction time of 58.2 h, temperature of 52.9 degrees C, enzyme amount of 37.8% (w/w), and pH memory of pH 7.  相似文献   

19.
A surfactant-coated lipase (SCL) prepared by mixing Candida rugosa lipase with emulsifier in ethanol was used to hydrolyze tuna oil in a two-phase aqueous-organic system. Both enzyme (SCL) and substrate (tuna oil) were soluble in the organic phase, and the hydrolysis could occur with water molecules from the aqueous phase. This hydrolysis could promptly proceed compared to that catalyzed by native lipases which only occurred at the interface between the two phases. Michaelis-Menten kinetics in the two-phase reactions showed that the K(m) value of the SCL was half that of the native lipase, while the maximum velocity (V(max)) was 11.5 times higher. The hydrolysis method resulted in enrichment of n-3 polyunsaturated fatty acid (n-3 PUFA) content in glyceride mixtures from 26.4% to 49.8% and DHA from 19.1% to 38.9%. The SCL acted as an efficient hydrolytic catalyst for tuna oil.  相似文献   

20.
Lipid acyl hydrolase (LAH; patatin) was purified from potato tubers by ammonium sulfate fractionation followed by anion-exchange and affinity chromatography. The major protein band of 40-43 kDa on SDS-PAGE appeared to be patatin, and it stained positive for lipase activity on native PAGE. Selectivity of a Celite-immobilized potato LAH in esterification reactions with n-acyl fatty acids (FA; C4, C6, C8, C10, C12, C14, C16, and C18) and alcohol acceptors (n-propanol, 2-propanol, 1,3-propanediol, and glycerol; 1,2-propanediol was not sufficiently reactive) was studied in isooctane. Immobilized LAH was highly selective for medium chain FAs (C8/C10) with a secondary optimum for chain lengths of C14/16. Water activity (a(w)) influenced activity and FA selectivity of the enzyme. Initial rates of ester synthesis were greatest at a(w) of 0.90 for all alcohol acceptors except for glycerol, where greatest initial rates were observed at a(w) of 0.19. Immobilized LAH preparations exhibited a bell-shape pH profile with optimum activity at pH 6-7 for ester synthesis, and no effect of pH on FA selectivity was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号