首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Measuring and mapping apparent soil electrical conductivity (ECa) is a potentially useful tool for delineating soil variability. The “Old Rotation,” the world's oldest continuous cotton (Gossypium hirsutum L.) experiment (ca. 1896), provides a valuable resource for evaluating soil spatial variability. The objectives of this study were to determine the relationship between soil chemical and physical properties and ECa in the Old Rotation, to determine spatial differences in these properties, and to relate differences in these properties to long‐term management effects. Soils at the site classified as fine, kaolinitic, thermic Typic Kanhapludults. Soil ECa was measured at 0–30‐ and 0–90‐cm depths (ECa‐30 and ECa‐90) using a Veris® 3100 direct contact sensor with georeferencing. Soils were grid sampled (288 points) at close intervals (1.5×3.0 m) for chemical properties and grid sampled (65 cells, 7.5×6.9 m) for soil texture. Soil organic carbon (SOC) and total nitrogen (N), extractable phosphorus (P), potassium (K), calcium (Ca), pH, buffer pH, and estimated cation exchange capacity (CECest) were measured at two depths (0–5‐ and 5–15‐cm). Soil ECa was highly spatially correlated. The ECa‐30 was more highly correlated with clay content (r=0.58, P≤0.01) and P(r=0.43, P≤0.01) than other soil properties. Total nitrogen and SOC had little or no relationship with ECa‐30. Cropping systems affected chemical properties in the Old Rotation, indicating crop rotation and cover crops are beneficial for soil productivity. The relatively poor relationship between soil chemical parameters and ECa suggest that mapping plant nutrients and SOC using ECa is problematic because of strong dependence on clay content.  相似文献   

2.
The site‐specific cultivation as part of the precision‐agriculture concept is more and more introduced into practical farming. However, soil information is often not available in a spatial resolution intrinsically needed for precision farming or other site‐specific soil use and management purposes. One approach to obtain spatially high‐resolution soil data is the non‐invasive measurement of the apparent electrical conductivity (ECa). In this study, we recorded the ECa on three fields with an EM38 (Geonics, Canada). The ECa data were compared with (1) ground truth data obtained by conventional drilling, (2) traditional soil maps (large scale, ≤1:5,000), (3) the growth and yield of corn. The temporal variability of the ECa due to varying soil moisture and temperature was taken into account by repeated measurements of the same fields and subsequent averaging of the ECa values. Significant correlations (r² = 0.76) were found between the mean weighted clay content (0–1.5 m) and the ECa. Furthermore, in soils with differently textured layers, ECa was used to estimate the thickness of the uppermost loess layer. A comparison of ECa and large‐scale soil maps reveals some pros and cons of ECa measurements. The main advantages of ECa recordings are the high spatial resolution in combination with low efforts. Yet, the ECa signal is no direct measure for a soil type or unit. Depending on the variability of substrates and layering, the ECa pattern can be a precise indicator for the spatial distribution of different soils. A strong conformity of the spatial variability of plant growth (derived from orthophotos and yield maps) and ECa patterns within a field indicates that the ECa signal per se—without conversion to traditional soil parameters—integrates the effects of various soil variables that govern soil fertility. Altogether, ECa surveys can be a powerful tool to facilitate and improve conventional soil mapping.  相似文献   

3.
A key characteristic of flooded paddy fields is the plough pan. This is a sub‐soil layer of greater compaction and bulk density, which restricts water losses through percolation. However, the thickness of this compacted layer can be inconsistent, with consequences such as variable percolation and leaching losses of nutrients, which therefore requires precision management of soil water. Our objective was to evaluate a methodology to model the thickness of the compacted soil layer using a non‐invasive electromagnetic induction sensor (EM38‐MK2). A 2.7 ha alluvial non‐saline paddy rice field was measured with a proximal soil sensing system using the EM38‐MK2 and the apparent electrical conductivity (ECa) of the wet paddy soil was recorded at a high‐resolution (1.0 × 0.5 m). Soil bulk density (= 10) was measured using undisturbed soil cores, which covered locations with large and small ECa values. At the same locations (within 1 m2) the depth of the different soil layers was determined by penetrometer. Then a fitting procedure was used to model the ECa – depth response functions of the EM38‐MK2, which involved solving a system of non‐linear equations and a R2 value of 0.89 was found. These predictions were evaluated using independent observations (= 18) where a Pearson correlation coefficient of 0.87 with an RMSEE value of 0.03 m was found. The ECa measurements allowed the detail estimation of the compacted layer thickness. The link between water percolation losses and thickness of the compacted layer was confirmed by independent observations with an inverse relationship having a Pearson correlation coefficient of 0.89. This rapid, non‐invasive and cost‐effective technique offers new opportunities to measure differences in the thickness of compacted layers in water‐saturated soils. This has potential for site‐specific soil management in paddy rice fields.  相似文献   

4.
[目的]研究苏南丘陵区毛竹林涵养水源机制,降低由于毛竹集约经营而导致水土流失的影响。[方法]选取南京市铜山林场的毛竹林,采用ECH2O土壤含水率检测系统于2012年6月5号至2013年8月28号以每0.5h监测1次的频率在坡面土壤深度为10,15,40,60cm的4个深度层次进行土壤水分定位监测,分析了不同降雨强度条件下苏南丘陵区毛竹林地各土壤层次水分变异过程,得到各土壤层次体积含水率变化过程对降雨强度的响应曲线,并提出侧向流以及分析其对不同雨强的响应特征。[结果]10,15cm层次土壤含水率变化趋势与降雨量变化趋势具有一致性,40,60cm层次土壤含水率的峰值相对延迟0.5~1.5h;小雨条件下,土壤含水率的变化幅度自表层到40cm土层呈现逐渐减小的趋势,中雨和大雨条件下,15—60cm层次土壤含水率的变化幅度表现出随深度增加而增大的趋势,大雨条件下此趋势更加明显;小雨、中雨和大雨条件下最大侧向流分别为10.17,60.26和95.92mm。[结论]随着深度的增加,土壤含水率与降雨量的同步性呈现下降趋势;不同雨强条件下各层土壤含水率的变化幅度存在明显差异;降雨入渗表现为非饱和入渗,每场降雨垂直面上都有不同程度的侧向流存在,主要集中在40—60cm层次,其主要受土壤结构和降雨强度的影响。  相似文献   

5.
The electrical conductivity of the water within the soil pores (ECp) measured with the WET sensor, appears to be a reliable estimate of soil salinity. A methodology combining the use of the WET sensor along with geostatistics was developed to delimit and evaluate soil salinity within an irrigated area under arid to semiarid Mediterranean climate in SE Spain. A systematic random sampling of 104 points was carried out. The association between ECp and the saturation‐extract electrical conductivity (ECse) was assessed by means of correlation analysis. The semivariograms for ECp were obtained at three different soil depths. Interpolation techniques, such as ordinary kriging and cokriging, were applied to obtain ECp levels in the unknown places. For each one of the soil depths, a model able to predict ECse from ECp was developed by means of ordinary least squares regression analysis. A good correlation (r = 0.818, p < 0.001) between ECp and ECse was found. Spherical spatial distribution was the best model to fit to experimental semivariograms of ECp at 10, 30, and 50 cm soil depths. Nevertheless, cokriging using the ECp of an adjacent soil depth as an auxiliary variable provided the best results, compared to ordinary kriging. An analytical propagation‐error methodology was found to be useful to ascertain the contribution of the spatial interpolation and ordinary least squares analysis to the uncertainty of the ECse mapping. This methodology allowed us to identify 98% of the study area as affected by salinity problems within a rooting depth of 50 cm, with the threshold of ECse value at 2 dS m–1. However, considering the crops actually grown and 10% potential reduction yield, the soil‐salinity‐affected area decreased to 83%. The use of sensors to measure soil salinity in combination with geostatistics is a cost‐effective way to draw maps of soil salinity at regional scale. This methodology is applicable to other agricultural irrigated areas under risk of salinization.  相似文献   

6.
Natural desalting in saline land with shallow groundwater and high evaporation is proceeding slowly. The main objective of the study was to evaluate the efficiency of straw mulching on desalinization by rainfall in saline land. Two sites of Solonchaks with different electrical conductivity (EC1:5) were selected to compare topsoil (0–40 cm) EC1:5 dynamics between bare land and straw mulching treatment. Soil samples were taken from May 2014 to April 2015 for determination of EC and pH, initial and termination samples were also used to measure Na+, Ca2+ and Mg2+ for calculating sodium adsorption ratio. The results demonstrated that supplementing salt leaching with straw mulch significantly decreased the EC1:5 of the soil profile (0–80 cm) when compared with no mulch. The both of topsoil (0–40 cm) EC1:5 and ECa/ECi decreased exponentially with the increase of cumulative rainfall and Dw/Ds under straw mulching, respectively. 178.6 and 351.9 mm of averaging rainfall were needed for removing 80% of salts in the 0–20 and 0–40 cm soil profile layers, respectively across all the cases of straw mulching and various EC1:5. These findings suggested that rainfall combined with straw mulching could be popularized as effective measures to ameliorate saline soil for agriculture and forestry utilization.  相似文献   

7.
Little is known how contrasting tillage (deep ploughing, top- and sub-soil loosening with straight or bent leg cultivator [BLC], direct drilling [DD]) affect important soil physical properties (total porosity [TP], pore size distribution [PSD], water release characteristics [WRC]) and CO2 emissions from a Luvisol. The study was aimed to alleviate compaction on land that had been under reduced tillage for 4 successive years. Undisturbed core samples were collected from 5–10, 15–20 and 25–30 cm depths for soil WRCs, TP and pore-size distribution determination. A closed chamber method was used to quantify the CO2 emissions from the soil. Soil loosening with straight or BLC produced the highest total soil porosity (on average 0.48 m3 m?3) within 5–30 cm soil layer, while conventional tillage (CT) gave 6%, DD up to 25% reduction. Sub-surface loosening with a BLC was the most effective tool to increase the amount of macro- and mesopores in the top- and sub-soil layers. It produced 21% more macro- and mesopores within 25–30 cm soil layer as compared to the soil loosened with a straight leg cultivator. Plant available water content under CT and DD was lower as compared to that under deep loosening with straight or BLC (23% and 18%, respectively). DD produced 12% lower soil surface net carbon dioxide exchange rate than CT and by 25–28% lower than deep soil loosening with straight or BLC. The increase in micropores within 25–30 cm soil layer caused net carbon dioxide exchange rate reduction. The amount of mesopores within the whole 5–30 cm soil layer acted as a direct dominant factor influencing net CO2 exchange rate (NCER) (Pxy = ?3.063; r = 0.86).  相似文献   

8.
Potential for carbon dioxide (CO2) biosequestration was determined during the reclamation of highly saline–sodic soils (Aridisols) after rice (2003) and wheat (2003–2004) crops at two sites in District Faisalabad, Pakistan. Two treatments were assessed: T1, tube-well brackish water only; and T2, soil-applied gypsum at 25% soil gypsum requirement?+?tube-well brackish water. The irrigation water used at both sites had different levels of salinity (EC 3.9–4.5 dS m?1), sodicity (SAR 21.7–28.8), and residual sodium carbonate (14.9 mmolc L?1). Composite soil samples were collected from soil depths of 0–15 and 15–30 cm at presowing and postharvest stages and analyzed for pH, ECe, and sodium adsorption ratio (SAR). After rice harvest, there was no significant effect of gypsum application on ECe, pH, and SAR at both sites, except pH at 0–15 cm depth decreased significantly with gypsum at site 1. After wheat harvest, ECe, pH, and SAR decreased significantly with gypsum at site 1, whereas the effect of gypsum on these parameters was not significant at site 2. Compared to initial soil, ECe and SAR in soil decreased considerably after rice or wheat cultivation, particularly at site 1, whereas pH increased slightly due to cultivation of these crops. For rice, the total CO2 sequestration was significantly increased with gypsum application at both sites and ranged from 1499 to 2801 kg ha?1. The total sequestration of CO2 was also significantly increased with gypsum application in wheat at both sites and ranged from 2230 to 3646 kg ha?1. The amounts of CO2 sequestered by crops due to gypsum application were related to seed and straw yield responses of rice and wheat to gypsum, which were greater at site 1 than site 2. Also, the yield response to applied gypsum was greater for rice than wheat at site 1, whereas the opposite was true at site 2. Overall, the combined application of gypsum with brackish water reduced soil ECe and SAR compared to brackish water alone, particularly at site 1. Our findings also suggest that the reclamation strategies should be site specific, depending on soil type and quality of brackish water used for irrigation of crops. In conclusion, the use of gypsum is recommended on brackish water–irrigated salt-prone soils to improve their quality, and for enhancing C biosequestration and crop production for efficient resource management.  相似文献   

9.
In the Far West Texas region in the USA, long‐term irrigation of fine‐textured valley soils with saline Rio Grande River water has led to soil salinity and sodicity problems. Soil salinity [measured by saturated paste electrical conductivity (ECe)] and sodicity [measured by sodium adsorption ratio (SAR)] in the irrigated areas have resulted in poor growing conditions, reduced crop yields, and declining farm profitability. Understanding the spatial distribution of ECe and SAR within the affected areas is necessary for developing management practices. Conventional methods of assessing ECe and SAR distribution at a high spatial resolution are expensive and time consuming. This study evaluated the accuracy of electromagnetic induction (EMI), which measures apparent electrical conductivity (ECa), to delineate ECe and SAR distribution in two cotton fields located in the Hudspeth and El Paso Counties of Texas, USA. Calibration equations for converting ECa into ECe and SAR were derived using the multiple linear regression (MLR) model included in the ECe Sampling Assessment and Prediction program package developed by the US Salinity Laboratory. Correlations between ECa and soil variables (clay content, ECe, SAR) were highly significant (p ≤ 0·05). This was further confirmed by significant (p ≤ 0·05) MLRs used for estimating ECe and SAR. The ECe and SAR determined by ECa closely matched the measured ECe and SAR values of the study site soils, which ranged from 0·47 to 9·87 dS m−1 and 2·27 to 27·4 mmol1/2 L−1/2, respectively. High R2 values between estimated and measured soil ECe and SAR values validated the MLR model results. Results of this study indicated that the EMI method can be used for rapid and accurate delineation of salinity and sodicity distribution within the affected area. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
To understand the limitations of saline soil and determine best management practices, simple methods need to be developed to determine the salinity distribution in a soil profile and map this variation across the landscape. Using a field study in southwestern Australia, we describe a method to map this distribution in three dimensions using a DUALEM‐1 instrument and the EM4Soil inversion software. We identified suitable parameters to invert the apparent electrical conductivity (ECa – mS/m) data acquired with a DUALEM‐1, by comparing the estimates of true electrical conductivity (σ – mS/m) derived from electromagnetic conductivity images (EMCI) to values of soil electrical conductivity of a soil‐paste extract (ECe) which exhibited large ranges at 0–0.25 (32.4 dS/m), 0.25–0.50 (18.6 dS/m) and 0.50–0.75 m (17.6 dS/m). We developed EMCI using EM4Soil and the quasi‐3d (q‐3d), cumulative function (CF) forward modelling and S2 inversion algorithm with a damping factor (λ) of 0.07. Using a cross‐validation approach, where we removed one in 15 of the calibration locations and predicted ECe, the prediction was shown to have high accuracy (RMSE = 2.24 dS/m), small bias (ME = ?0.03 dS/m) and large Lin's concordance (0.94). The results were similar to those from linear regression models between ECa and ECe for each depth of interest but were slightly less accurate (2.26 dS/m). We conclude that the q‐3d inversion was more efficient and allowed for estimates of ECe to be made at any depth. The method can be applied elsewhere to map soil salinity in three dimensions.  相似文献   

11.
厌氧土壤灭菌(ASD)作为替代化学农药熏蒸灭菌技术在各地逐渐推广,但不同土壤类型、不同添加物厌氧土壤灭菌效果具有较大差异,田间条件下明确当地不同添加物厌氧灭菌对土壤性质及微生物群落效应,为日光温室绿色环保的土壤灭菌方法提供科学依据。结果表明:(1)除添加碳酸氢铵(AB)处理外,其他处理均可以显著降低0—20 cm土层电导率(EC),但仅灌水不添加物料(CK)处理20—40 cm土层NO_3~--N和EC显著增加,且AB处理显著增加0—20 cm土层NH_4~+-N及20—40 cm土层NO_3~--N;添加鸡粪(CM)处理0—20 cm土层NH_4~+-N极显著增加,NO_3~--N极显著降低,EC显著降低,土壤有机质、全氮和有效养分亦显著增加。(2)添加鸡粪(CM)显著降低细菌丰富度和均匀度,但土壤中植物促生菌(PGPR)芽孢杆菌属(Bacillus)及假单胞菌属(Pseudomonas)的相对丰度极显著增加。对真菌群落,不同处理真菌丰富度和均匀度与处理前差异均不显著,但添加碳酸氢铵(AB)、木醋液(PS)和鸡粪(CM)处理病原菌-镰刀菌属(Fusarium)的相对丰度均显著降低;同时,鸡粪(CM)处理有益属曲霉属(Aspergillus)丰度显著增加。(3)综合土壤理化性质、细菌和真菌群落变化,鸡粪作为有机碳源添加厌氧土壤灭菌效果较好,既可以厌氧灭菌同时也腐熟鸡粪,且各地原料来源方便,可同时实现化肥农药双减。  相似文献   

12.
Due to increased population and urbanization, freshwater demand for domestic purposes has increased resulting in a smaller proportion for irrigation of crops. We carried out a 3‐year field experiment in the Indus Plains of Pakistan on salt‐affected soil (ECe 15·67–23·96 dS m−1, pHs 8·35–8·93, SAR 70–120, infiltration rate 0·72–0·78 cm h−1, ρ b 1·70–1·80 Mg m−3) having tile drainage in place. The 3‐year cropping sequence consisted of rice (Oryza sativa L.) and wheat (Triticum aestivum L.) crops in rotation. These crops were irrigated with groundwater having electrical conductivity (EC) 2·7 dS m−1, sodium adsorption ratio (SAR) 8·0 (mmol L−1)1/2 and residual sodium carbonate (RSC) 1·3 mmolc L−1. Treatments were: (1) irrigation with brackish water without amendment (control); (2) Sesbania (Sesbania aculeata) green manure each year before rice (SM); (3) applied gypsum at 100 per cent soil gypsum requirement (SGR) and (4) applied gypsum as in treatment 3 plus sesbania green manure each year (GSM). A decrease in soil salinity and sodicity and favourable infiltration rate and bulk density over pre‐experiment levels are recorded. GSM resulted in the largest decrease in soil salinity and sodicity. There was a positive relationship between crop yield and economic benefits and improvement in soil physical and chemical properties. On the basis of six crops, the greatest net benefit was obtained from GSM. Based on this long‐term study, combined use of gypsum at 100 per cent soil gypsum requirement along with sesbania each year is recommended for soil amelioration and crop production. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
A field experiment was conducted at ICAR-Indian Institute of Sugarcane Research, Lucknow, with three tillage practices (T1: Control- two times ploughing with harrow and cultivator, each followed by planking before sugarcane planting; T2: Deep tillage with disc plough (depth 25–30 cm) before planting followed by harrowing, cultivator, and planking; and T3: Subsoiling at 45–50 cm and deep tillage with disc plough/moldboard plough (depth 25–30 cm) followed by harrowing, cultivator, and planking before planting, two soil moisture regimes (M1: 0.5 irrigation water (IW)/cumulative pan evaporation (?CPE) ratio and M2: 0.75 IW/CPE ratio) at 7.5 cm depth of IW, and four N levels (N1- 0, N2- 75, N3- 150, and N4-225 kg N ha?1) in sugarcane plant crop. Deep tillage and subsoiling increased porosity and reduced bulk density in surface/subsurface soil. Further, these physical changes also improved soil biological and chemical properties responsible for higher crop growth and yield. Deep tillage and subsoiling reduced the compaction by 6.12% in 0–15 cm depth in sugarcane plant crop at maximum tillering stage. The highest N uptake (158.5 kg ha?1) was analyzed with deep tillage and subsoiling compared to all other tillage practices. Maintaining suboptimal moisture regime with deep tillage and subsoiling showed the highest IW use efficiency (157.16 kg cane kg?1 N applied). Mean soil microbial biomass carbon (SMBC) in ratoon crop was higher compared to plant crop. During initial tillering stage, ratoon crop showed higher SMBC with application of deep tillage and subsoiling (1209 mg CO2-C g?1 soil day?1) at 0–15 cm depth and 1082.9 mg CO2-C g?1 soil day?1 at 15–30 cm depth. Thus, it could be concluded that besides improving sugarcane yield, soil health could be sustained by adopting subsoiling (45–50 cm depth) and deep tillage (20–25 cm depth), with soil moisture regime of 0.75 IW/CPE and application of 150 kg N ha?1 in sugarcane (plant crop).  相似文献   

14.
When fertilizing with compost, the fate of the nitrogen applied via compost (mineralization, plant uptake, leaching, soil accumulation) is relevant both from a plant‐production and an environmental point of view. In a 10‐year crop‐rotation field experiment with biowaste‐compost application rates of 9, 16, and 23 t ha–1 y–1 (f. m.), the N recovery by crops was 7%, 4%, and 3% of the total N applied via compost. Due to the high inherent fertility of the site, N recovery from mineral fertilizer was also low. In the minerally fertilized treatments, which received 25, 40, and 56 kg N ha–1 y–1 on average, N recovery from mineral fertilizer was 15%, 13%, and 11%, respectively. Although total N loads in the compost treatments were much higher than the N loads applied with mineral fertilizer (89–225 kg Ntot ha–1 y–1 vs. 25–56 kg Ntot ha–1 y–1; both on a 10‐year mean) and the N recovery was lower than in the treatments receiving mineral N fertilizer, soil NO ‐N contents measured three times a year (spring, post‐harvest, autumn) showed no higher increase through compost fertilization than through mineral fertilization at the rates applied in the experiment. Soil contents of Norg and Corg in the plowed layer (0–30 cm depth) increased significantly with compost fertilization, while with mineral fertilization, Norg contents were not significantly higher. Taking into account the decrease in soil Norg contents in the unfertilized control during the 10 years of the experiment, 16 t compost (f. m.) ha–1 y–1 just sufficed to keep the Norg content of the soil at the initial level.  相似文献   

15.
The production and composition of leaf litter, soil acidity, exchangeable nutrients, and the amount and distribution of soil organic matter were analyzed in a broad‐leaved mixed forest on loess over limestone in Central Germany. The study aimed at determining the current variability of surface‐soil acidification and nutrient status, and at identifying and evaluating the main factors that contributed to the variability of these soil properties along a gradient of decreasing predominance of European beech (Fagus sylvatica L.) and increasing tree‐species diversity. Analyses were carried out in (1) mature monospecific stands with a predominance of beech (DL 1), (2) mature stands dominated by three deciduous‐tree species (DL 2: beech, ash [Fraxinus excelsior L.], lime [Tilia cordata Mill. and/or T. platyphyllos Scop.]), and (3) mature stands dominated by five deciduous‐tree species (DL 3: beech, ash, lime, hornbeam [Carpinus betulus L.], maple [Acer pseudoplatanus L. and/or A. platanoides L.]). The production of leaf litter was similar in all stands (3.2 to 3.9 Mg dry matter ha–1 y–1) but the total quantity of Ca and Mg deposited on the soil surface by leaf litter increased with increasing tree‐species diversity and decreasing abundance of beech (47 to 88 kg Ca ha–1 y–1; 3.8 to 7.9 kg Mg ha–1 y–1). The soil pH(H2O) and base saturation (BS) measured at three soil depths down to 30 cm (0–10 cm, 10–20 cm, 20–30 cm) were lower in stands dominated by beech (pH = 4.2 to 4.4, BS = 15% to 20%) than in mixed stands (pH = 5.1 to 6.5, BS = 80% to 100%). The quantities of exchangeable Al and Mn increased with decreasing pH and were highest beneath beech. Total stocks of exchangeable Ca (0–30 cm) were 12 to 15 times larger in mixed stands (6660 to 9650 kg ha–1) than in beech stands (620 kg ha–1). Similar results were found for stocks of exchangeable Mg that were 4 to 13 times larger in mixed stands (270 to 864 kg ha–1) than in beech stands (66 kg ha–1). Subsoil clay content and differences in litter composition were identified as important factors that contributed to the observed variability of soil acidification and stocks of exchangeable Ca and Mg. Organic‐C accumulation in the humus layer was highest in beech stands (0.81 kg m–2) and lowest in stands with the highest level of tree‐species diversity and the lowest abundance of beech (0.27 kg m–2). The results suggest that redistribution of nutrients via leaf litter has a high potential to increase BS in these loess‐derived surface soils that are underlain by limestone. Species‐related differences of the intensity of soil–tree cation cycling can thus influence the rate of soil acidification and the stocks and distribution of nutrients.  相似文献   

16.
Abstract. Diagnosis of soil salinity and its spatial variability is required to establish control measures in irrigated agriculture. This article shows the usefulness of electromagnetic (EM) and soil sampling techniques to map salinity. We analysed the salinity of a 1‐ha plot of surface‐irrigated olive plantation in Aragon, NE Spain, by measuring the electrical conductivity of the saturation extract (ECe) of soil samples taken at 22 points, and by reading the Geonics EM38 sensor at 141 points in the horizontal (EMH) and vertical (EMV) dipole positions. EMH and EMV values had asymmetrical bimodal distributions, with most readings in the non‐saline range and a sharp transition to relatively high readings. Most salinity profiles were uniform (i.e. EMH=EMV), except in areas with high salinity and concurrent shallow water tables, where the profiles were inverted as shown by EMH > EMV, and by ECe being greater in shallow than in deeper layers. The regressions of ECe on EM readings predicted ECe with R2 > 84% for the 0–100 to 0–150 cm soil depths. We then produced salinity contour maps from the 141 ECe values estimated from the electromagnetic readings and the 22 measured values of ECe. Owing to the high soil sampling density, the maps were similar (i.e. mean surface‐weighted ECe values between 3.9 dS m?1 and 4.2 dS m?1), although the electromagnetically estimated ECe improved the mapping of details. Whereas soil sampling is preferred for analysing the vertical distribution of soil salinity, the electromagnetic sensor is ideal for mapping the lateral variability of soil salinity.  相似文献   

17.
Crop yields and yield potentials on Danish coarse sandy soils are strongly limited due to restricted root growth and poor water and nutrient retention. We investigated if biochar amendment to subsoil can improve root development in barley and significantly increase soil water retention. Spring barley (Hordeum vulgare cv. Anakin) was grown in soil columns (diameter: 30 cm) prepared with 25 cm topsoil, 75 cm biochar‐amended subsoil, and 30 cm un‐amended subsoil lowermost placed on an impervious surface. Low‐temperature gasification straw‐biochar (at 0, 0.50, 1.0, 2.0, and 4.0 wt%) and slow pyrolysis hardwood‐biochar (at 2 wt%) were investigated. One wt% can be scaled up to 102 Mg/ha of char. After full irrigation and drainage, the in‐situ moisture content at 30‐80 cm depth increased linearly (R2 = 0.99) with straw‐biochar content at a rate corresponding to 0.029 m3/m3/%. The lab determined wilting point also increased linearly with char content (R2 = 0.99) but at a much lower rate (0.003 m3/m3/%). Biochar at concentrations up to 2% significantly increased the density of roots in the 40–80 cm depth interval. Addition of 1% straw‐biochar had the most positive effect on root penetration resulting in the highest average root density (54% coverage compared to 33% without biochar). This treatment also resulted in the greatest spring barley grain yield increase (22%). Improving the quality of sandy subsoils has global potentials, and incorporation of the right amount of correctly treated residues from bioenergy technologies such as straw‐biochar is a promising option.  相似文献   

18.
To evaluate the effect of three phosphorus (P) fertilization regimes (no P, P input equivalent to P off‐take by crops, P input higher than P off‐take) on crop yield, P uptake, and soil P availability, seven field experiments (six in crop rotations, one under permanent grassland) were conducted in Switzerland during nine years (six trials) or 27 years (one trial). Soil total P (Pt), inorganic P (Pi), organic P (Po), and the amount of isotopically exchangeable soil P were measured in the 0–20 cm and 30–50 cm layers of the arable soils and in the 0–10 cm layer of the permanent grassland soil. Omitting P fertilization resulted in significant yield decreases only in one field crop trial as the amount of P isotopically exchangeable within one minute (E1min) reached values lower than 5 mg P (kg soil)–1. In the absence of P fertilization Pi decreased on average from 470 to 410 mg P (kg soil)–1 in the upper horizon of 6 sites while Po decreased only at two sites (from 510 to 466 mg P (kg soil)–1 on average). In all the treatments of the trials started in 1989 the E1min values of the upper horizon decreased on average from 15.6 to 7.4 mg P (kg soil)–1 between 1989 and 1998. These decreases were also observed when P inputs were higher than crops needs, showing that in these soils the highest P inputs were not sufficient to maintain the high initial available P levels. Finally for the six arable trials the values of the isotopic exchange kinetics parameters (R/r1, n, CP) and P exchangeable within 1 minute (E1min) at the end of the experiment could be estimated from the values measured at the beginning of trial and the cumulated P balance.  相似文献   

19.
Improving manure management to benefit both agricultural production and the environment requires a thorough understanding of the long‐term effects of applied manure on soil properties. This paper examines the effect of 25 annual solid cattle manure applications on soil organic carbon (OC), total N (TN), and KCl‐extractable NO3‐N and NH4‐N under both non‐irrigated and irrigated conditions. After 25 annual manure applications, OC and TN contents increased significantly with the rate of manure application at the top two sampling depths (0–15 cm and 15–30 cm), and the increases were not affected by the irrigation treatment. The NO3 content increased at all sampling depths with greater increases observed under non‐irrigated conditions, while NH4 content was not affected by manure application rates or the irrigation treatment. The changes in OC and TN at the surface (0–15 cm) and 15–30 cm depth were dependent on the cumulative weight of manure added over the years. The relationships between cumulative manure OC added and soil OC content and between cumulative manure TN added and soil TN content were linear and not affected by the irrigation treatment. For every ton of manure OC added, soil OC increased by 0.181 g kg–1 in the topsoil (0–15 cm). Similarly, for every ton of manure TN added, surface soil TN increased by 0.192 g kg–1. The linear relationship between manure C added and soil C content suggests that the soil had a high capacity for short‐term C sequestration. However, the total amount of NO3‐N in the soil profile (0–150 cm) was affected by both the manure application rates and the irrigation treatment. A large amount of NO3 accumulated in the soil, especially under non‐irrigated conditions. The extremely high level of NO3 in the soil increases the potential risk of surface and groundwater pollution and losses to atmosphere as N2O.  相似文献   

20.
Optimal potassium (K) fertilization is beneficial for oilseed‐rape (Brassica napus L.) yield and quality. However, the discrepancy between the high K demand of winter oilseed rape and low soil fertility and insufficient potassium input has limited the sustainable development of oilseed‐rape production. A series of on‐farm experiments in the key winter oilseed‐rape domains of China was conducted from 2004 to 2010 to evaluate K‐fertilizer management for winter oilseed rape. Currently, the average NH4OAc‐extractable K content in the 0–20 cm soil layer is 89.1 mg kg–1 indicative of “slight deficiency”. In addition, farmers in China usually fail to use sufficient K fertilizer in oilseed‐rape production, the average mineral‐potassium‐fertilizer input in 2010 being only 35 kg K ha–1, far lower than the recommended rate of potassium for winter oilseed rape. Adequate potassium fertilization significantly raises seed yield. The average yield‐increase rate for the major production regions due to K‐fertilizer application was 18.5%, and the average K fertilizer–use efficiency 36.1%. Based on the negative correlation between yield response to potassium fertilization and available soil K content, a soil‐K‐test index was established for winter oilseed rape with a threshold value for NH4OAc‐extractable soil K of 135 mg kg–1. When available soil K‐content is below this threshold value, more K fertilizer should be applied to achieve high seed yield and to increase soil fertility. The major challenge for K‐fertilizer management in winter oilseed‐rape production in China will be to guide farmers in the different regions in making reasonable use of K fertilizer through soil K‐testing technology in order to maintain both seed yield and soil fertility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号