首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optimal potassium (K) fertilization is beneficial for oilseed‐rape (Brassica napus L.) yield and quality. However, the discrepancy between the high K demand of winter oilseed rape and low soil fertility and insufficient potassium input has limited the sustainable development of oilseed‐rape production. A series of on‐farm experiments in the key winter oilseed‐rape domains of China was conducted from 2004 to 2010 to evaluate K‐fertilizer management for winter oilseed rape. Currently, the average NH4OAc‐extractable K content in the 0–20 cm soil layer is 89.1 mg kg–1 indicative of “slight deficiency”. In addition, farmers in China usually fail to use sufficient K fertilizer in oilseed‐rape production, the average mineral‐potassium‐fertilizer input in 2010 being only 35 kg K ha–1, far lower than the recommended rate of potassium for winter oilseed rape. Adequate potassium fertilization significantly raises seed yield. The average yield‐increase rate for the major production regions due to K‐fertilizer application was 18.5%, and the average K fertilizer–use efficiency 36.1%. Based on the negative correlation between yield response to potassium fertilization and available soil K content, a soil‐K‐test index was established for winter oilseed rape with a threshold value for NH4OAc‐extractable soil K of 135 mg kg–1. When available soil K‐content is below this threshold value, more K fertilizer should be applied to achieve high seed yield and to increase soil fertility. The major challenge for K‐fertilizer management in winter oilseed‐rape production in China will be to guide farmers in the different regions in making reasonable use of K fertilizer through soil K‐testing technology in order to maintain both seed yield and soil fertility.  相似文献   

2.
Irrigated rice (Oryza sativa L.) in West Africa covers about 12 % of the regional rice‐growing area, and is produced all along the agro‐ecological gradient from the forest zone to the Sahara desert margins. Spatial and temporal variability of yield gaps (i.e., difference between actual and potential yield) were determined to set priorities for research and target technologies. On‐farm trials were conducted on 191 irrigated lowland fields in the humid forest, the savanna and the Sahel. Farmers' yields were compared with those of super‐imposed treatments of improved fertilization and weed management. Farmers' yields varied between 0.2 and 8.7 Mg ha‐1, with average yields of 3.4 Mg ha‐1 (Guinea savanna), 3.6 Mg ha‐1 (humid forest), 3.9 Mg ha‐1 (Sahel), and 5.1 Mg ha‐1 (Sudan savanna). Simulated potential yields increased from 7 Mg ha‐1 in the forest to about 10 Mg ha‐1 in the Sahel. Accordingly, yield gaps were large, ranging from 3.2 to 5.9 Mg ha‐1. Researcher weed control in the Sahel gave grain yield increases of about 1.0 Mg ha‐1. Improved weed and N fertilization management increased yields by 1 to 2 Mg ha‐1 in the forest and Guinea savanna sites. A share of 57‐80 % of the yield gap could not be accounted for. Improving weed control is likely to have the highest pay‐off in the Sahel while improved management of fertilizer N will be most beneficial in the forest and savanna environments.  相似文献   

3.
A long‐term fertilization experiment with monoculture corn (Zea mays L.) was established in 1980 on a clay‐loam soil (Black Soil in Chinese Soil Classification and Typic Halpudoll in USDA Soil Taxonomy) at Gongzhuling, Jilin Province, China. The experiment aimed to study the sustainability of grain‐corn production on this soil type with eight different nitrogen (N)‐, phosphorus (P)‐, and potassium (K)–mineral fertilizer combinations and three levels (0, 30, and 60 Mg ha–1 y–1) of farmyard manure (FYM). On average, FYM additions produced higher grain yields (7.78 and 8.03 Mg ha–1) compared to the FYM0 (no farmyard application) treatments (5.67 Mg ha–1). The application of N fertilizer (solely or in various combinations with P and K) in the FYM0 treatment resulted in substantial grain‐yield increases compared to the FYM0 control treatment (3.56 Mg ha–1). However, the use of NP or NK did not yield in any significant additional effect on the corn yield compared to the use of N alone. The treatments involving P, K, and PK fertilizers resulted in an average 24% increase in yield over the FYM0 control. Over all FYM treatments, the effect of fertilization on corn yield was NPK > NP = NK = N > PK = P > K = control. Farmyard‐manure additions for 25 y increased soil organic‐matter (SOM) content by 3.8 g kg–1 (13.6%) in the FYM1 treatments and by 7.8 g kg–1 (27.8%) in the FYM2 treatments, compared to a 3.2 g kg–1 decrease (11.4%) in the FYM0 treatments. Overall, the results suggest that mineral fertilizers can maintain high yields, but a combination of mineral fertilizers plus farmyard manure are needed to enhance soil organic‐matter levels in this soil type.  相似文献   

4.
Response of sugar beet ( Beta vulgaris var. altissima ) to potassium fertilization—a 20‐year field experiment A long‐term fertilizer experiment was performed to develop a K fertilization strategy to achieve highest extractable sugar yields (BZE). Sugar beet was grown in a crop rotation with wheat and barley on an alluvial soil (clayic silt) in Lower Saxony with annual recycling of straw and beet tops, respectively. Since 1983, the treatments were as follows: 1) K fertilization with 0, 29, 58, 87,174, and 524 kg K ha–1 a–1 corresponding to 0, 0.5, 1, 1.5, 3, and 9 times the average annual K removal by the marketable products of the crop rotation—since 1995, the two highest treatments (3 and 9 times the removal) received only 174 kg ha–1 every third year; 2) K fertilization according to the average K removal, given each year (58 kg K ha–1) or every third year (174 kg ha–1) to sugar beet; 3) annual K fertilization of 87 kg K ha–1 (1.5 times the removal) applied in autumn or spring, respectively; 4) annual K fertilization, applied as mineral fertilizer or as organic material (recycling of grain and straw or root and leaves); 5) application of 29 kg NaCl ha–1 to sugar beet supplemental to a yearly application of 58 kg K ha–1. Both root yield and soil concentration of lactate‐soluble K increased with K fertilization up to the highest K treatment. The extractable sugar content reached a maximum at a yearly application of 174 kg K ha–1. Averaged over years, the extractable sugar yield (BZE) increased up to the highest K application. The time of K application (autumn or spring) and the source of K (mineral fertilizer or organic material) had no effect on BZE. An additional fertilization with NaCl increased BZE only slightly in single years. Low‐grade muriate of potash containing 33% K and 3% Na can thus be used. The economically optimal K‐fertilization rate was 174 kg K ha–1 given once in the crop rotation to sugar beet. A soil K concentration of about 110 mg (kg soil)–1 (lactate‐extractable K) is sufficient in this soil to achieve a high BZE.  相似文献   

5.
Soil fertility problems resulting in low maize yields in smallholder farms are common in the West African moist savanna. The effectiveness of commercial foliar fertilizers in improving maize growth and yield was evaluated in three savanna agro‐ecological zones of Nigeria in two steps. In step one, eight commercial foliar fertilizers were assessed in a greenhouse study with two soil types using maize (Zea mays L. cv. 2004 TZE‐Y POPDT STR C4). The treatments included a control and a reference that received the optimum concentrations of nutrients. In step 2, three promising products from the greenhouse study (Turbotop, Agroleaf General, and Agroleaf high‐P) were evaluated under field conditions to validate the efficacy of products to enhance crop growth and yield. The foliar products were applied at the rate of 5 kg ha?1. The treatments also included three rates of P application (0, 30, and 60 kg P ha?1) as triple super phosphate (TSP) with or without foliar fertilizers. In the greenhouse study, differences in maize shoot dry matter yield and N and P concentrations, attributable to the spraying of the commercial foliar fertilizers, were observed for both soils. Spraying Turbotop, Agroleaf General, and Agroleaf high‐P gave the highest shoot dry biomass and N and P uptake compared to other products. Under field conditions, foliar spraying of Agroleaf high‐P significantly increased the shoot dry biomass of maize compared with the 0 P treatment in all locations. The grain yield of maize ranged from 1 to 4 t ha?1 with significant differences across sites. Products with high concentrations of P and N in their formulation improved maize yield suggesting that appropriate management of P and N resources is a prerequisite for a sustainable maize intensification in the savanna agro‐ecologies.  相似文献   

6.
The intensive winter wheat (Triticum aestivum L.)–summer maize (Zea mays L.) cropping systems in the North China Plain (NCP) rely on the heavy use of mineral nitrogen (N) fertilizers. As the fertigated area of wheat and maize in the NCP has grown rapidly during recent years, developing N management strategies is required for sustainable wheat and maize production. Field experiments were conducted in Hebei Province during three consecutive growth seasons in 2012–2015 to assess the influence of different N fertigation rates on N uptake, yield, and nitrogen use efficiency [NUE: recovery efficiency (REN) and agronomic efficiency (AEN)]. Five levels of N application, 0 (FN0), 40 (FN40%), 70 (FN70%), 100 (FN100%), and 130% (FN130%) of the farmer practice rate (FP: 250 kg N ha?1 and 205.5 kg N ha?1 for wheat and maize, respectively), corresponding to 0, 182.2, 318.9, 455.5, and 592.2 kg N ha?1 y?1, respectively, were tested. Nitrogen in the form of urea was dissolved in irrigation water and split into six and four applications for wheat and maize, respectively. In addition, the treatment “drip irrigation + 100% N conventional broadcasting” (DN100%) was also conducted. All treatments were arranged in a randomized complete block design with three replications. The results revealed the significant influence of both N fertigation rate and N application method on grain yield and NUE. Compared to DN100%, FN100% significantly increased the 3‐year averaged N recovery efficiency (REN) by 0.09 kg kg?1 and 0.04 kg kg?1, and the 3‐year averaged N agronomic efficiency (AEN) by 2.43 kg kg?1 and 1.62 kg kg?1 for wheat and maize, respectively. Among N fertigation rates, there was no significant increase in grain yield in response to N applied at a greater rate than 70% of FP due to excess N accumulation in vegetative tissues. Compared to FN70%, FN100%, and FN130%, FN40% increased the REN by 0.17–0.57 kg kg?1 and 0.03–0.34 kg kg?1and the AEN by 4.60–27.56 kg kg?1 and 2.40–10.62 kg kg?1 for wheat and maize, respectively. Based on a linear‐response relationship between the N fertigation rate and grain yield over three rotational periods it can be concluded that recommended N rates under drip fertigation with optimum split applications can be reduced to 46% (114.6 kg N ha?1) and 58% (116.6 kg N ha?1) of FP for wheat and maize, respectively, without negatively affecting grain yield, thereby increasing NUE.  相似文献   

7.
Phosphorous (P) and zinc (Zn) are plant nutrients that interact with each other in soil–plant systems. Such interactions may cause deficiency of one of the nutrients interacting with each other if interactions are antagonistic. In the present trial, a field experiment was conducted to investigate the interactive effect of Zn (0 and 16 kg ha?1) and P (0 and 60 kg ha?1) on growth, yield and grain Zn concentration of two maize (Zea mays L.) genotypes, i.e., Neelam (local) and DK‐6142 (hybrid). Growth and yield of both maize genotypes were increased by the application of Zn and P treatments compared with control, but Zn+P was more effective than their sole application. When compared to control, combined application of Zn+P increased grain Zn and P concentrations by 52% and 32%, respectively, averaged for the two genotypes. Single application of P decreased grain Zn concentration by 10% over control. Application of P and Zn particularly in combination decreased the grain [phytate] : [Zn] ratio and increased the estimated human Zn bioavailability in grains based on a trivariate model of Zn absorption in both maize genotypes. Conclusively, combined Zn+P application appeared more suitable for enhancing grain yield and agronomic Zn biofortification in maize grains. However, Zn fertilization aiming at increasing grain yield and grain Zn concentration should consider the genotypic variations and P rate.  相似文献   

8.
Addressing concerns about mitigating greenhouse gas (GHG) emissions while maintaining high grain yield requires improved management practices that achieve sustainable intensification of cereal production systems. In the North China Plain, a field experiment was conducted to measure nitrous oxide (N2O) and methane (CH4) fluxes during the maize (Zea mays L.) season under various agricultural management regimes including conventional treatment (CONT) with high N fertilizer application at a rate of 300 kg N ha-1 and overuse of groundwater by flood irrigation, optimal fertilization 1 treatment (OPTIT), optimal fertilization 2 treatment (OPT2T), and controlled-release urea treatment (CRUT) with reduced N fertilizer application and irrigation, and a control (CK) with no N fertilizer. In contrast to CONT, balanced N fertilization treatments (OPT1T, OPT2T, and CRUT) and CK demonstrated a significant drop in cumulative N20 emission (1.70 v.s. 0.43-1.07 kg N ha-l), indicating that balanced N fertilization substantially reduced N20 emission. The vMues of the N20 emission factor were 0.42%, 0.29%, 0.32%, and 0.27% for CONT, OPTIT, OPT2T, and CRUT, respectively. Global warming potentials, which were predominantly determined by N20 emission, were estimated to be 188 kg CO2-eq ha-1 for CK and 419-765 kg CO2-eq ha-1 for the N fertilization treatments. Global warming potential intensity calculated by considering maize yield was significantly lower for OPT1T, OPT2T, CRUT, and CK than for CONT. Therefore, OPTIT, OPT2T, and CRUT were recommended as promising management practices for sustaining maize yield and reducing GHG emissions in the North China Plain.  相似文献   

9.
A long‐term fertilizer experiment, over 27 years, studied the effect of mineral fertilizers and organic manures on potassium (K) balances and K release properties in maize‐wheat‐cowpea (fodder) cropping system on a Typic Ustochrept. The treatments consisted of control, 100% nitrogen (100% N), 100% nitrogen and phosphorus (100% NP), 50% nitrogen, phosphorus, and potassium (50% NPK), 100% nitrogen, phosphorus, and potassium (100% NPK), 150% nitrogen, phosphorus, and potassium (150% NPK), and 100% NPK+farmyard manure (100% NPK+FYM). Nutrients N, P, and K in 100% NPK treatment were applied at N: 120 kg ha—1, P: 26 kg ha—1, and K: 33 kg ha—1 each to maize and wheat crops and N: 20 kg ha—1, P: 17 kg ha—1, and K: 17 kg ha—1 to cowpea (fodder). In all the fertilizer and manure treatments removal of K in the crop exceeded K additions and the total soil K balance was negative. The neutral 1 N ammonium acetate‐extractable K in the surface soil (0—15 cm) ranged from 0.19 to 0.39 cmol kg—1 in various treatments after 27 crop cycles. The highest and lowest values were obtained in 100% NPK+FYM and 100% NP treatments, respectively. Non‐exchangeable K was also depleted more in the treatments without K fertilization (control, 100% N, and 100% NP). Parabolic diffusion equation could describe the reaction rates in CaCl2 solutions. Release rate constants (b) of non‐exchangeable K for different depth of soil profile showed the variations among the treatments indicating that long‐term cropping with different rates of fertilizers and manures influenced the rate of K release from non‐exchangeable fraction of soil. The b values were lowest in 100% NP and highest in 100% NPK+FYM treatment in the surface soil. In the sub‐surface soil layers (15—30 and 30—45 cm) also the higher release rates were obtained in the treatments supplied with K than without K fertilization indicating that the sub‐soils were also stressed for K in these treatments.  相似文献   

10.
Controlled‐release urea (CRU) is a new type of urea, which may increase crop nitrogen (N)‐use efficiency compared with conventional urea (CU), but the conditions where it outperforms urea are not well defined. A field experiment assessing responses of plant growth and grain yield of maize to CRU and irrigation was conducted on a typical agricultural farm in Shandong, China. Five treatments of the two types of urea (75, 150 kg N ha–1, 0 kg N ha–1) were applied as basal fertilizer when sowing maize, and two water treatments (W0 and W1) were used 23 d after anthesis. Net photosynthetic rate (PN) and chlorophyll concentration as well as leaf‐area index (LAI) increased significantly by both CRU and CU application, with the increases being larger in CRU‐treated plants than in CU‐treated plants at grain filling and maturing stages. CRU significantly enhanced the maximum photochemical efficiency (Fv / Fm), PSII coefficient of photochemical fluorescence quenching (qP), and actual quantum yield of PSII electron transformation (ΦPSII) but decreased the nonphotochemical quenching (NPQ). Cob‐leaf N concentration of CRU‐treated plants was significantly higher than that of CU‐treated plants under no irrigation, but not in the irrigation treatment 30 d after anthesis. Significant positive correlations were found between cob‐leaf N concentration and PN both with and without irrigation. Grain yield of maize was significantly higher in the CRU treatment than in the CU treatment under both irrigation conditions. In conclusion, CRU as a basal application appeared to increase the N‐use efficiency for maize relative to CU especially by maintaining N supply after anthesis.  相似文献   

11.
This study reports and analyzes nutrient balances in experimental vegetable production systems of the two West African cities of Tamale (Ghana) and Ouagadougou (Burkina Faso) over a two‐year period comprising thirteen and eleven crops, respectively. Nutrient‐use efficiency was also calculated. In Tamale and Ouagadougou, up to 2% (8 and 80 kg N ha?1) of annually applied fertilizer nitrogen were leached. While biochar application or wastewater irrigation on fertilized plots did not influence N leaching in both cities, P and K leaching, as determined with ion‐absorbing resin cartridges, were reduced on biochar‐amended plots in Tamale. Annual nutrient balances amounted to +362 kg N ha?1, +217 kg P ha?1, and –125 kg K ha?1 in Tamale, while Ouagadougou had balances of up to +692 kg N ha?1, +166 kg P ha?1, and –175 kg K ha?1 y?1. Under farmers' practice of fertilization, agronomic nutrient‐use efficiencies were generally higher in Tamale than in Ouagadougou, but declined in both cities during the last season. This was the result of the higher nutrient inputs in Ouagadougou compared to Tamale and relatively lower outputs. The high N and P surpluses and K deficits call for adjustments in local fertilization practices to enhance nutrient‐use efficiency and prevent risks of eutrophication.  相似文献   

12.
Field experiments over a 3 y period were conducted in a winter wheat‐maize double‐cropping system at the Dongbeiwang Experimental Station, Beijing, China. Three different treatments of irrigation (sprinkler “suboptimal” and “optimized”; conventional flood irrigation) and N fertilization (none, according to Nmin soil tests, conventional) were studied with respect to effects on soil water balance, nitrate leaching, and grain yield. Under sprinkler irrigation, evaporation losses were higher due to a more frequent water application. On the other hand, in this treatment nitrate leaching was smaller as compared to flood irrigation, where abundant seepage fluxes >10 mm d–1 along preferential flow paths occurred. For quantifying nitrate leaching, passive samplers filled with ion‐exchange resins appeared to be better suited than a method which combined measurements of suction‐cup concentrations with model‐based soil water fluxes. As a result of the more balanced percolation regime (compared to that under conventional flood irrigation), there was a tendency of higher salt load of the soil solution in the rooting zone. Given a seepage rate of 50 mm, a winter wheat grain production of 5–6 t ha–1 required a total water addition of about 430 mm. Fertilizer treatments >100 kg N ha–1 did not result in any additional yield increase. An even balance between withdrawing and recharge of groundwater cannot be achieved with “optimized” irrigation, but with a reduction of evapotranspiration losses, adapted cropping systems, and/or by tapping water resources from reservoirs in more distant areas with surpluses.  相似文献   

13.
Nitrate leaching, overall N balance, and organic‐C build‐up in a semi‐arid agro‐ecosystem in NW India was estimated from the results of a long‐term manurial trial with farmyard manure (FYM) and mineral‐N fertilizer in operation since 1967 at the Research Farm of CCS Haryana Agricultural University, Hisar, India. The model LEACHN was calibrated for the wheat‐growing period November 2000 to April 2001 and the leaching of nitrate during this period was predicted to 48 kg N ha–1 without mineral‐N fertilization and 59 kg N ha–1 with addition of 120 kg mineral‐N fertilizer, both with the addition of 15 t ha–1 FYM. The N balance for the simulation period showed that the 120 kg N ha–1–mineral N fertilization compared to zero mineral N, both plus FYM, resulted in only slightly higher crop uptake, leaching losses, and NH3 volatilization, and a negligible increase of N in organic matter. The largest amount remains as an additional build‐up of mineral N in the profile (84.3 kg N ha–1) which is prone to losses as ammonia or nitrate. The model was used to simulate organic‐C build‐up with FYM and a decrease of organic C without FYM for a period of 33 y (1967–2000). The simulated C build‐up to about 0.1 g kg–1 agreed very well with the measured values and showed that additional mineral‐N fertilization will not have any significant effect on organic‐C content. Simulations with the assumption of no FYM application showed a gradual decrease of organic C from its starting value of 0.046 g kg–1 in 1967 down to almost half of this. This agreed well with the observed organic‐C values of 0.028 g kg–1 as measured for unmanured plots.  相似文献   

14.
Abstract

Groundnut (Arachis hypogae L.) is the most important oilseed crop of India and it is abundantly grown under rainfed conditions in vertisols of Western India. The objective of this work was to study the effect of potassium (K) basal and foliar fertilization on yield, nutrient concentration in tissue and quality parameters of groundnut. Two varieties, GAUG‐1 (bunch type) and GAUG‐10 (spreading type) were grown during Kharif (rainfed) and Rabi (irrigated) seasons at Junagadh, Gujarat. The experiment compared two foliarapplied K fertilizers (KCl and K2SO4) at two different doses (0.5 and 1.0%) with basal KCl application (0 and 50 kg K2O ha?1). Field soil was highly calcareous (pH 8.2, NH4OAc extractable K 188 kg ha?1 with 40% lime reserve) Vertic ustochrept. The results showed a significant response in pod yield with foliar and soil‐applied potassium as compared to the control treatment. Pod yields were significantly higher when basal and foliar applications were combined. The best results were achieved with foliar application of 1% KCl together with a basal fertilization with 50 kg K2O ha?1. Response to foliar‐applied K was higher in rainfed kharif crop than in irrigated rabi crop. Groundnut variety GAUG‐10 out yielded GAUG‐1. Foliar K application increased plant tissue concentration of K. Foliar fertilization with KCl and K2SO4 did not cause leaf burn. Potassium application improved the crop harvest index and grain quality parameters of boldness, protein and oil contents. Response to K in quality parameters of protein and oil contents of seed was more consistent with foliar applied K2SO4 . The results confirmed that the practice of foliar K nutrition when used as a supplement and not a substitute for standard soil fertilization, is beneficial for groundnut crop in Western India.  相似文献   

15.
In Hungary, maize is grown on 1 million ha and occupies more than 20% of the arable land. The rich assortment of maize cultivars of different vegetation periods and different responses to nutritional effects, water supply etc. gives the growers the possibility to choose the cultivars suiting best the site characteristics (Jolânkai et al. 1999). Among the cereals maize has the highest genetical potential. To utilize its yield and quality potential, soil types of high nutrient content and regular nutrient supply are required (Gyõrffy, 1979). Both over‐ and under‐fertilization have an unfavourable effect on the yield and quality of maize (Debreczeni, 1985). Crops can be supplied with the appropriate nutrient amounts only with the knowledge of soil characteristics in the different agro‐ecological regions (nutrient content, water supply, soil compactness, pH, nutrient supplying capacity etc.). In Hungary, a network of long‐term field fertilization trials with uniform fertilizer treatments has been maintained at nine experimental sites representing different agro‐ecological regions of the country. This experimental network gives a basis to test the nutrient responses of our main crops and calibrate their optimal nutrient supply (Kismányoky, 1991).  相似文献   

16.
Abstract

Maize (Zea mays L.) plays an important role in the global food security, but its production is threatened by climate change, especially drought stress. Potassium (K) and zinc (Zn) are considered useful to mitigate the negative consequences of drought stress in plants. Therefore, the objective of this two-year study was to identify the best combination of K and Zn application to improve the water relations, photosynthetic pigments, yield, irrigation water use efficiency (IWUE) and grain quality of maize sown under mild and severe drought stress conditions. The consisted of three drought stress levels viz. 1) well-watered as control (WW), 2) mild drought (MD) with 25?mm of potential soil moisture deficit (PSMD), 3) severe drought (SD) with 50?mm of PSMD and six K-Zn treatments: i.e. 125, 100 and 150?kg ha?1 K with 0 and 12?kg ha?1 Zn. The results indicated that K-Zn application improved the water relations and chlorophyll contents, biological yield and grain quality, irrespective of water stress treatment. The combined application of K-Zn under mild drought stress produced statistically same biological yield and grain quality as under well-irrigated without K-Zn fertilization and also produced compratively higher IWUE, biological yield and grain quality under sverer drought stress. Hence, the application of K at 150?kg ha?1 in combination with Zn at 12?kg ha?1 might be useful to improve the maize production and grain quality under drought stress. As IWUE was low in WW conditions, therefore, irrigation scheduling must be re-evaluated for optimum water use efficiency.  相似文献   

17.
The silk industry is important for south China's rural economy. Leaves of mulberry (Morus spp.) are used for silkworm production. Hubei province is one of the main silk‐producing provinces in China. The objectives of this research were to survey the fertilization practices in the mulberry‐producing regions in the province and to determine the best nutrition‐management practice for mulberry plantations. A survey and a series of field experiments with N, P, K, and micronutrients were conducted from 2001 to 2002. In addition, a silkworm‐growth experiment was also conducted by feeding leaves harvested from various fertilization treatments. The results indicate that poor soil fertility and unbalanced fertilization were the main factors limiting mulberry‐leaf yield and quality in Hubei province. Nitrogen fertilization of mulberry has reached a high level (454 kg ha–1 y–1) in Hubei province, but P‐ and K‐fertilization rates have not been matched with N‐fertilization rates as farmers are not aware of the significance of P and K. Balanced fertilization showed positive nutrient interactions with respect to mulberry yield and quality. Potassium application increased yield and quality (protein and sugar concentration) of mulberry leaves. Silkworm growth and cocoon quality were improved when silkworms were fed with the leaves derived from K‐fertilized plants in comparison with those taken from control plots. Application of Mg, S, and B also significantly improved leaf sugar, essential and total amino acid concentrations, but did not increase leaf yield significantly. It is concluded that a fertilizer dose of 375 kg N ha–1, 66 kg P ha–1, and 125 kg K ha–1 is suitable for the cultivation of mulberry in the Hubei province along with Mg, S, and B, wherever necessary, for the improvement of yield and quality of mulberry leaves.  相似文献   

18.
Seeds enriched with zinc (Zn) are ususally associated with better germination, more vigorous seedlings and higher yields. However, agronomic benefits of high‐Zn seeds were not studied under diverse agro‐climatic field conditions. This study investigated effects of low‐Zn and high‐Zn seeds (biofortified by foliar Zn fertilization of maternal plants under field conditions) of wheat (Tritcum aestivum L.), rice (Oryza sativa L.), and common bean (Phaseolus vulgaris L.) on seedling density, grain yield and grain Zn concentration in 31 field locations over two years in six countries. Experimental treatments were: (1) low‐Zn seeds and no soil Zn fertilization (control treatment), (2) low‐Zn seeds + soil Zn fertilization, and (3) Zn‐biofortified seeds and no soil Zn fertilization. The wheat experiments were established in China, India, Pakistan, and Zambia, the rice experiments in China, India and Thailand, and the common bean experiment in Brazil. When compared to the control treatment, soil Zn fertilization increased wheat grain yield in all six locations in India, two locations in Pakistan and one location in China. Zinc‐biofortified seeds also increased wheat grain yield in all four locations in Pakistan and four locations in India compared to the control treatment. Across all countries over 2 years, Zn‐biofortified wheat seeds increased plant population by 26.8% and grain yield by 5.37%. In rice, soil Zn fertilization increased paddy yield in all four locations in India and one location in Thailand. Across all countries, paddy yield increase was 8.2% by soil Zn fertilization and 5.3% by Zn‐biofortified seeds when compared to the control treatment. In common bean, soil Zn application as well as Zn‐biofortified seed increased grain yield in one location in Brazil. Effects of soil Zn fertilization and high‐Zn seed on grain Zn density were generally low. This study, at 31 field locations in six countries over two years, revealed that the seeds biofortfied with Zn enhanced crop productivity at many locations with different soil and environmental conditions. As high‐Zn grains are a by‐product of Zn biofortification, use of Zn‐enriched grains as seed in the next cropping season can contribute to enhance crop productivity in a cost‐effective manner.  相似文献   

19.
A long-term experiment has been conducted between 2001 and 2008 at Balcarce, Argentina, to determine the effect of sulfur (S) fertilization on S concentration in grains, crop yield, and residual S in soil. Two treatments were evaluated: annual S application to crops (15 kg ha?1; S1) and a control with no S fertilization (S0). Sulfur fertilization only increased wheat yield (22% of the crops in the experiment). However, S application increased S concentration in grains in wheat, soybean, and maize (56% of the crops). Although, for all years, the S mass balance was positive for S1 and negative for S0, no differences in soil S extracted as sulfate (S-SO4 ?2) content previous to the crop sown were determined. The absence of differences in S accumulation in aboveground vegetative biomass and grain of the maize used as a check also suggest that long-term S fertilization did not affect the soil S availability for crops.  相似文献   

20.
In view of widespread deficiencies, a long-term experiment was started at the International Crops Research Institute for the Semi-Arid Tropics, Patancheru, India in 2007 to identify economically efficient application strategy (full or 50% dose every or every second year) of sulphur (S) (30 kg ha?1), boron (B) (0.5 kg ha?1) and zinc (Zn) (10 kg ha?1). During the fourth year in 2010, balanced fertilization through adding S, B and Zn increased maize grain yield by 13–52% and soybean yield by 16–28% compared to nitrogen (N) and phosphorus (P) fertilization alone. Balanced nutrition increased N and P uptake, utilization and use efficiency for grain yield and harvest index indicating improved grain nutritional quality. The N, P plus 50% of S, B and Zn application every year recorded highest crop yields and N and P efficiencies indices and increased rainwater use efficiency with a benefit:cost ratio of 11.9 for maize and 4.14 for soybean. This study showed the importance of a deficient secondary nutrient S and micronutrients B, Zn in improving N and P use efficiency while enhancing economic food production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号