首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Legumes have been shown to increase P uptake of the following cereal, but the underlying mechanisms are unclear. The aim of this study was to compare the effect of legume pre-crops and their residues on the growth, P uptake and size of soil P pools in the rhizosphere of the following wheat. Three grain legumes (faba bean, chickpea and white lupin) were grown until maturity in loamy sand soil with low P availability to which 80?mg P kg?1 was supplied. This pre-crop soil was then amended with legume residues or left un-amended and planted with wheat. The growth, P uptake and concentrations of P pools in the rhizosphere of the following wheat were measured 6?weeks after sowing. In a separate experiment, residue decomposition was measured over 42?days by determining soil CO2 release as well as available N and P. Decomposition rates were highest for chickpea residues and lowest for wheat residues. P release was greatest from white lupin residues and N release was greatest from faba bean residues, while wheat residues resulted in net N and P immobilisation. The growth of the following wheat was greater in legume pre-crop soil without residue than in soils with residue addition, while the reverse was true for plant P concentration. Among the legumes, faba bean had the strongest effect on growth, P uptake and concentrations of the rhizosphere P pools of the following wheat. Regardless of the pre-crop and residue treatment, wheat depleted the less labile pools residual P as well as NaOH-Pi and Po, with a stronger depletion of the organic pool. We conclude that although P in the added residues may become available during decomposition, the presence of the residues in the soil had a negative effect on the growth of the following wheat. Further, pre-crops or their residues had little effect on the size of P pools in the rhizosphere of wheat.  相似文献   

2.
With the emphasis on sustainable agriculture, attention has been increasingly turning to recycling of crop residues as a component of fertility management strategies for tropical soils. We assessed the effects of soybean residue (SR) and wheat residue (WR) applied either alone or in combination with fertilizer P (FP) on dynamics of labile P, distribution of P fractions, and P sorption in a semiarid tropical Alfisol by conducting a 16 w long incubation experiment. The amount of P added through crop residues, FP or their combinations was kept constant at 10 mg P (kg soil)–1. Addition of SR or WR resulted in net increase of labile inorganic (Pi) and organic P (Po) and microbial P throughout the incubation period, except that the WR decreased labile Pi during first 2 w due to Pi immobilization. The P immobilization associated with WR addition was, however, offset when fertilizer P was combined with WR. Generally, the increases in labile‐P fractions were larger with the SR and SR+FP than with the WR and WR+FP. The sequential fractionation of soil P at the end of 16 w indicated that a major part of added fertilizer P transformed into moderately labile and stable P fractions as evident from the increased NaOH‐Pi and HCl‐P in the FP treatment. In contrast, the addition of SR and WR alone or in combination with FP favored a build‐up in NaHCO3‐Pi and ‐Po and NaOH‐Po fractions while causing a decrease in NaOH‐Pi and HCl‐P fractions. The addition of these crop residues also effectively decreased the P‐sorption capacity and hence reduced the standard P requirement of the soil (i.e., the amount of P required to maintain optimum solution P concentration of 0.2 mg P l–1) by 24%–43%. Results of the study, thus, imply that soybean and wheat crop residues have the potential to improve P fertility of Alfisols by decreasing P‐sorption capacity and by redistributing soil P in favor of labile‐P fractions and promoting accretion of organic P.  相似文献   

3.
Legumes have been shown to increase growth and P uptake of the following cereal. This could, in part, be due to nutrients released by the decomposing legume residues. To investigate the effect of P added with legume residues on wheat growth, P uptake and arbuscular mycorrhizal (AM) colonisation, a number of experiments were conducted with different legume residues added to a soil with low P availability under conditions in which N was not limiting. Young and mature faba bean shoots (FYS, FMS) and mature chickpea shoots (CP) were added to soil at different rates (0.5–2%, w/w) with the P concentration being the greatest in the young faba bean shoots and least in the mature chickpea residues. Other treatments included addition of inorganic P at different rates (0–80 mg P kg−1). Available P, growth and P uptake and AM colonisation of wheat were measured after 6 weeks. As expected, inorganic P addition increased growth and P uptake but decreased AM colonisation. The effect of the residues was more complex. AM colonisation was not correlated with available P in the soil amended with residues, whereas there was significant negative correlation between available P and AM colonisation in the treatments with inorganic P. Addition of FYS increased wheat shoot growth and P uptake and decreased AM colonisation. However, FMS and CP addition not only decreased wheat growth and P uptake but also AM colonisation despite low soil P availability. It is concluded that addition of some legume residues can improve the growth of subsequent cereals, but others have a negative effect on wheat growth and AM colonisation which cannot be explained solely by soil P availability.  相似文献   

4.
Abstract

This study investigated whether arbuscular mycorrhizal fungi (AMF) could take up phosphorus (P) from pools that are normally considered unavailable to plants. An aluminum (Al) resistant maize variety, inoculated with three species of Glomus or uninoculated, supplied with nutrient solution without P, was cultivated (90 days) in the A and B horizons of a P‐fixing Oxisol. Plant uptake of P was calculated by assessing P content of shoots and roots and correcting for seed P. Soil P fractionation was done prior to and at the end of the experiment. Phosphorus in the A and B soil horizons (~270 mg soil kg?1) was differently distributed among the pools. Nonmycorrhizal plants did not acquire any P from the soil, and all P found in the plants was from the seeds. Mycorrhizal plants depleted the inorganic Resin‐P and NaHCO3‐P, used part of the inorganic NaOH‐P, and used neither the recalcitrant inorganic P nor the organic P fractions. Changes in plant P content matched changes in the soil P pools. Mechanisms by which maize through the mycorrhizal association acquires P are discussed. In the cultivar used, the mechanisms to cope with P deficiency and Al excess are different.  相似文献   

5.
Phosphorus deficiency is wide-spread due to the poor solubility of soil P and the rapid formation of poorly available P after P addition. Microbes play a key role in soil P dynamics by P uptake, solubilisation and mineralisation. Therefore a better understanding of the relationship between type of P amendment, microbial activity and changes in soil P pools is important for a better management of soil P. A P deficient soil was amended with two composts (low P or high P), two crop residues (low P or high P), and inorganic P (KH2PO4) at low and high P, and incubated for 56 days. Composts were added at 20 g kg−1 resulting in a total P addition of 4.1 mg kg−1 soil with the low P compost and 33.2 mg kg−1 soil with the high P compost. The same amount of P was added with the other amendments (residues and inorganic P). All amendments increased cumulative respiration, but microbial biomass and the abundance of bacteria and fungi (assessed by phospholipid fatty acid analysis) increased significantly only in soils with organic amendments, with greater increases with residues. The concentration of the inorganic P pools NaHCO3-Pi, NaOH-Pi and HCl-P increased significantly within 5 h after amendment, particularly with high P amendments. Over the following 56 days, labile inorganic P was converted mainly into non-labile inorganic P with inorganic P addition whereas labile and non-labile organic P was formed with organic amendments. It is concluded that organic P sources, particularly those with high P concentration can stimulate the formation of organic P forms in soils which may provide a long-term slow release P source for plants and soil organisms.  相似文献   

6.
In soils with low P availability, several legumes have been shown to mobilise less labile P pools and a greater capacity to take up P than cereals. But there is little information about the size of various soil P pools in the rhizosphere of legumes in soil fertilised with P although P fertiliser is often added to legumes to improve N2 fixation. The aim of this study was to compare the growth, P uptake and the changes in rhizosphere soil P pools in five grain legumes in a soil with added P. Nodulated chickpea (Cicer arietinum L.), faba bean (Vicia faba L.), white lupin (Lupinus albus L.), yellow lupin (Lupinus luteus L.) and narrow-leafed lupin (Lupinus angustifolius L.) were grown in a loamy sand soil low in available P to which 80 mg P kg−1 was added and harvested at flowering and maturity. At maturity, growth and P uptake decreased in the following order: faba bean > chickpea > narrow-leafed lupin > yellow lupin > white lupin. Compared to the unplanted soil, the depletion of labile P pools (resin P and NaHCO3-P inorganic) was greatest in the rhizosphere of faba bean (54% and 39%). Of the less labile P pools, NaOH-P inorganic was depleted in the rhizosphere of faba bean while NaOH-P organic and residual P were most strongly depleted in the rhizosphere of white lupin. The results suggest that even in the presence of labile P, less labile P pools may be depleted in the rhizosphere of some legumes.  相似文献   

7.
Emissions of N2O were measured following addition of 15N‐labelled residues of tropical plant species [Vigna unguiculata (cowpea), Mucuna pruriens and Leucaena leucocephala] to a Ferric Luvisol from Ghana at a rate of 100 mg N/kg soil under controlled environment conditions. Residues were also applied in different ratio combinations with inorganic N fertilizer, at a total rate of 100 mg N/kg soil. N2O emissions were increased after addition of residues, and further increased with combined (ratio) applications of residues and inorganic N fertilizer. However, 15N‐N2O production was low and short‐lived in all treatments, suggesting that most of the measured N2O‐N was derived from the applied fertilizer or native soil mineral N pools. There was no consistent trend in magnitude of emissions with increasing proportion of inorganic fertilizer in the application. The positive interactive effect between residue‐ and fertilizer‐N sources was most pronounced in the 25:75 Leucaena:fertilizer and cowpea:fertilizer treatments where 1082 and 1130 mg N2O‐N/g residue were emitted over 30 days. N2O (loge) emission from all residue amended treatments was positively correlated with the residue C:N ratio, and negatively correlated with residue polyphenol content, polyphenol:N ratio and (lignin + polyphenol):N ratio, indicating the role of residue chemical composition in regulating emissions even when combined with inorganic fertilizer. The positive interactive effect in our treatments suggests that it is unlikely that combined applications of residues and inorganic fertilizer can lower N2O emissions unless the residue is of very low quality promoting strong immobilisation of soil mineral N.  相似文献   

8.
Phosphorus (P) deficiency is one of the most yield limiting factors for dry bean (Phaseolus vulgaris) production in tropical acid soils. Dry beans are invariably grown as mono-crops or as inter-crops under the perennial tropical crops. Information is limited regarding the influence of phosphorus fertilization on dry bean yield and yield components and P use efficiency in tropical acid soils. A greenhouse experiment was conducted to evaluate the influence of phosphorus fertilization on dry bean growth, yield and yield components and P uptake parameters. Phosphorus rates used were 0, 50, 100, 150, 200, and 250 mg P kg?1 of soil. Soil used in the experiment was an acidic Inceptisol. Grain yield, shoot dry weight, number of pods, and 100 grain weight were significantly (P < 0.01) increased with phosphorus fertilization. Maximum grain yield, shoot dry matter, number of pods, and 100 grain weight were obtained with the application of 165, 216, 162, and 160 mg P kg?1 of soil, respectively, as calculated by regression equations. Grain yield was significantly and positively associated with shoot dry weight, number of pods, P concentration in grain and total uptake of P in shoot and grain. Phosphorus use efficiency defined in several ways, decreased with increasing P rates from 50 to 250 mg P kg?1 of soil. Maximum grain yield was obtained at 82 mg kg?1 of Mehlich 1 extractable soil P. Results suggest that dry bean yield in Brazilian Inceptisols could be significantly increased with the use of adequate rates of phosphorus fertilization.  相似文献   

9.
An incubation and a pot experiment were conducted to evaluate the dissolution and agronomic effectiveness of a less reactive phosphate rock, Busumbu soft ore (BPR), in an Oxisol in Kenya. Resin (anion and anion + cation)‐extractable P and sequentially extracted P with 0.5 M NaHCO3, 0.1 M NaOH, and 1 M HCl were analyzed. Dissolution was determined from the increase in anion resin (AER)–, NaHCO3‐, and NaOH‐extractable P in soil amended with PR compared with the control soil. Where P was applied, resin P significantly increased above the no‐P treatment. Busumbu‐PR solubility was low and did not increase significantly in 16 weeks. Anion + cation (ACER)‐extractable P was generally greater than AER‐P. The difference was greater for PR than for triple superphosphate (TSP). The ACER extraction may be a better estimate of plant P availability, particularly when poorly soluble P sources are used. Addition of P fertilizers alone or in combination with Tithonia diversifolia (TSP, BPR, TSP + Tithonia, and BPR + Tithonia) increased the concentration of labile inorganic P pools (NaHCO3‐ and NaOH‐Pi). Cumulative evolved CO2 was significantly correlated with cumulative N mineralized from Tithonia (r, 0.51, p < 0.05). Decrease in pH caused NH ‐N accumulation while NO ‐N remained low where Tithonia was incorporated at all sampling times. However, when pH was increased, NH ‐N declined with a corresponding rise in NO ‐N. Tithonia significantly depressed soil exchangeable acidity relative to control with time. A significant increase (p < 0.05) was observed for P uptake but not dry‐mass production in maize where BPR was applied. The variations in yield and P uptake due to source and rates of application were statistically significant. At any given P rate, highest yields were obtained with Tithonia alone. Combination of Busumbu PR with TSP or Tithonia did not enhance the effectiveness of the PR. The poor dissolution and plant P uptake of BPR may be related to the high Fe content in the PR material.  相似文献   

10.
Invasions by alien plants can alter biogeochemical cycles in recipient ecosystems. We test if Early Goldenrod (Solidago gigantea) alters P fractions. To that end, we compare invaded plots and adjacent, uninvaded resident vegetation for specific fractions of organic and inorganic P, phosphomonoesterase (PME) activity in topsoil, and immobilization of P in above‐ and belowground organs and in soil microbial biomass. Invaded plots had lower soil pH and 20%–30% higher labile P fractions (resin‐Pi, bicarb‐Pi, NaOH‐Pi), and the difference was consistent across seasons. There was no difference in microbial P. Alkaline‐PME activity was 30% lower in topsoil of invaded plots. Annual P uptake in aboveground phytomass was not markedly higher in Solidago. In contrast, P in belowground organs steadily increased in autumn in invaded plots, due to both increased biomass and increased P concentrations. This indicated higher net P immobilization in Solidago, far in excess of both resorption from senescing shoots and P requirements for aboveground biomass in subsequent year. Higher turnover rates of P in belowground organs and mobilization of sparingly soluble P forms through rhizosphere acidification may be involved in the observed differences in soil P status between invaded and uninvaded plots.  相似文献   

11.
Phosphorus (P) is a limited resource, and its efficient use is a main task in sustainable agriculture. In a 6‐year field experiment on a loamy‐sand soil poor in P, the effects of organic, inorganic, and combined organic‐inorganic fertilization on crop yield, P uptake into grain, and soil properties (organic matter [OM] content, pH, water‐extractable P [Pw], double lactate–extractable P [Pdl], oxalate‐extractable P [Pox], P‐sorption capacity [PSC], and degree of P saturation [DPS]) were investigated for the maritime climate in northeast Germany. Nine treatments were compared: a control treatment without fertilizer application, two organic fertilizers (cattle manure [CM] and biowaste compost [BC]; applied at a rate of 30 t ha–1 in autumn 1998 and 2001), application of triple‐superphosphate (TSP; applied once a year either in autumn or in spring to evaluate the effects of application date), and combinations of organic and inorganic fertilizations. Several winter and spring crops (oilseed rape, barley, wheat) were cultivated according to good agricultural practice. The 6 year–average yield and P uptake were significantly higher for fertilized plots than for nonfertilized plots. Although the combination of organic × inorganic fertilizers resulted in higher soil P contents, significant yield increases were only found when organic fertilization was combined with TSP in spring. Small effects of P supply on yield in some years indicate that plant‐available soil P (despite of low Pdl values) was sufficient for crop growth. Phosphorus supply affected soil Pdl and Pw more than the parameters measured in the oxalate extract (Pox, PSC, DPS). In general, periodically applied cattle manure and biowaste compost had the same effect on yield, P uptake, and soil P status as annually applied soluble mineral P.  相似文献   

12.
Organic amendments could be used as alternative to inorganic P fertilisers, but a clear understanding of the relationship among type of P amendment, microbial activity and changes in soil P fractions is required to optimise their use. Two P-deficient soils were amended with farmyard manure (FYM), poultry litter (PL) and biogenic waste compost (BWC) at 10 g?dw?kg?1 soil and incubated for 72 days. Soil samples were collected at days 0, 14, 28, 56 and 72 and analysed for microbial biomass C, N and P, 0.5 M NaHCO3 extractable P and activity of dehydrogenase and alkaline phosphomonoesterase. Soil P fractions were sequentially extracted in soil samples collected at days 0 and 72. All three amendments increased cumulative CO2 release, microbial biomass C, N and P and activity of dehydrogenase and alkaline phosphomonoesterase compared to unamended soils. The increase in microbial biomass C and N was highest with PL, whereas the greatest increase in microbial biomass P was induced with FYM. All three biomass indices showed the same temporal pattern, with the highest values on day 14 and the lowest on day 72. All amendments increased 0.5 M NaHCO3 extractable P concentrations with the smallest increase with BWC and the greatest with FYM, although more P was added with PL than with FYM. Available P concentrations decreased over time in the amended soils. Organic amendments increased the concentration of the labile P pools (resin and NaHCO3-P) and of NaOH-P, but had little effect on the concentrations of acid-soluble P pools and residual P except for increasing the concentration of organic P in the concentrated HCl pool. Resin P and NaHCO3-Pi pools decreased over time whereas NaOH-Pi and all organic P pools increased. It is concluded that organic amendments can provide P to plants and can stimulate the build-up of organic P forms in soils which may provide a long-term slow-release P source for plants and soil organisms.  相似文献   

13.
‘Phosphate solubilizing bacteria' (PSBs) are able to release unavailable P from native and applied P sources into plant‐available soil pool through their solubilizing and acidifying effects. The effects of three indigenous and one exotic PSBs on P solubilization from different P sources, plant biomass production, and P‐uptake efficiency of maize (Zea mays L.) were examined in an incubation and greenhouse study. For incubation study, surface (0–15 cm) soil was collected from an arable field (Inceptisols) and amended with rock phosphate (RP), single superphosphate (SSP), poultry manure (PM), and RP+PM with and without PSBs. The amended soil was incubated in the control environment at 25 ± 2°C for a total of a 100‐d period to establish relative potential rate of P solubilization of added P sources. A complementary greenhouse experiment was conducted in pots by growing maize as a test crop. Growth characteristics, P‐uptake, and P‐utilization efficiency (PUE) were determined. Phosphate solubilizing bacteria generated a solubilization effect on different P sources by releasing more P into plant‐available soil pool, i.e., 14.0–18.3 µg g?1 in RP, 5.0–9.9 µg g?1 in SSP, 1.4–4.4 µg g?1 in PM, and 4.5–7.8 µg g?1 in RP+PM compared to their sole application without PSBs. The available P from inorganic SSP declined continuously from the mineral pool (after day 30) and at the end 40% of applied P was unaccounted for. However, P losses were reduced to 28 and 27% when PSBs (PSB1 and PSB3) were applied with superphosphate treatments. In the absence of PSBs, the recoveries of applied P (in soil) from RP, SSP, PM and RP+PM were 4, 25, 9, and 12%, respectively, those had been increased to 14, 30, 12 and 15% in the presence of PSBs. Similarly, the plant biomass in RP+PSBs treatments compared to the RP without PSBs increased between 12–30% in first sampling (30 DAG) and 13–30% in the second sampling (60 DAG). The P utilization efficiency (PUE) in plants supplemented with PSBs was 20–73% higher compared to those without PSBs. The detection of oxalic and gluconic acids in culture medium treated with PSBs (7.8–25.0 and 25–90 mg L?1, respectively) confirmed the production of organic acids by the indigenous bacterial isolates. This study indicate that low P recovery both in plant and soil can likely be improved by using indigenous PSBs and organic amendment poultry manure, which allowed a more efficient capture of P released due to P solubilization.  相似文献   

14.
 The capability of the NCSOIL computer model to simulate the effects of residue fractions on mineralisation-immobilisation turnover was evaluated. Heterogeneous organic substrates were represented in the model by three Van Soest pools, decomposing at different rates. Dried and ground wheat straw, sunflower stalks, wheat stubble and sheep manure (5.22 g kg–1 soil) were respectively added to a Chromic Calcixerert and aerobically incubated for 224 days at 22±2  °C and 75% field capacity. The CO2 evolution rates peaked shortly after the C amendments were added, with the highest rate in the sunflower- stalk-amended soils. The addition of organic substrates induced rapid N immobilisation. Net mineralisation was detected earliest in the sunflower-stalk treatment (day 14), while soils with the other amendments showed no net N mineralisation until day 52. The NCSOIL model was calibrated for this soil with CO2 and inorganic N data from the control soil, yielding a χ2 value of 0.011. The overestimation by the model of the C mineralisation data in the case of C-amended soils clearly showed that the concept of three Van Soest pools, decomposing independently at a specific rate constant, is not valid. A retardation factor, that was related to the lignin content of the decomposing material, was introduced into the model. After its introduction the model satisfactorily simulated the C mineralisation rates. However, for all plant residues, N mineralisation was underestimated towards the end of the incubation period. In the case of the soil amended with sheep manure, there was a large discrepancy between simulated and experimental N mineralisation-immobilisation kinetics, suggesting a different allocation of N in animal manure to N-containing fractions compared to that of plant residues. The results indicated that a N fractionation procedure for organic residues should be tested and incorporated into the model. Received: 9 January 1998  相似文献   

15.
 The fate of 15N-labeled plant residues from different cover-cropping systems and labeled inorganic N fertilizer in the organic, soil mineral, microbial biomass and soil organic matter (SOM) particle-size fractions was investigated in a sandy Lixisol. Plant residues were from mucuna (legume), lablab (legume), imperata (grass), maize (cereal) and mixtures of mucuna or lablab with imperata or maize, applied as a surface mulch. Inorganic N fertilizer was applied as 15N-(NH4)2SO4 at two rates (21 and 42 mg N kg–1 soil). Total N release from mucuna or lablab residues was 2–3 times higher than from the other residues, whereas imperata immobilized N throughout the study period. In contrast, 15N was mineralized from all the plant residues irrespective of the mineralization–immobilization pattern observed for total N. After 168 days, 69% of soil mineral N in mucuna- or lablab-mulched soils was derived from the added residues, representing 4–8% of residue N, whereas 9–30% of inorganic N was derived from imperata, maize and the mixed residues. At the end of the study, 4–19% of microbial biomass N was derived from the added residue/fertilizer-N, accounting for 1–3% of added residue-N. Averaged across treatments, particulate SOM fractions accounted for less than 1% of the total soil by weight but contained 20% of total soil C and 8% of soil N. Soils amended with mucuna or lablab incorporated more N in the 250–2000 μm SOM pool, whereas soil amended with imperata or the mixed residues incorporated similar proportions of labeled N in the 250–2000 μm and 53–250 μm fractions. In contrast, in soils receiving the maize or inorganic fertilizer-N treatments, higher proportions of labeled N were incorporated into the 53–250 μm than the 250–2000 μm fractions. The relationship between these differences in residue/fertilizer-N partitioning into different SOM particle-size fractions and soil productivity is discussed. Received: 12 March 1999  相似文献   

16.
The secretion of O2 by rice roots results in aerobic conditions in the rhizoshere compared to the bulk flooded soil. The effect of this phenomenon on the adsorption/desorption behavior and on the availability of phosphorus (P) in a flooded soil was investigated in a model experiment. An experimental set‐up was developed that imitates both O2 release and P uptake by the rice root. The results showed that O2 secretion significantly reduced P adsorption/retention and increased P desorption/release in the “rhizosphere” soil, compared to the anaerobic bulk soil. The P uptake by an anion exchange resin from both unfertilized and P‐amended soil was significantly increased. The results confirm that the O2 secretion is an important mechanism to enhance P availability and P uptake of rice under flooded conditions, where the “physico‐chemical” availability of P in the anaerobic bulk soil is strongly reduced. The decrease of P availability in the P‐amended flooded bulk soil was mainly associated with the almost complete transformation of the precedingly enriched Al‐P fraction into Fe‐bound P with extremely low desorption/release characteristics during the subsequent flooding.  相似文献   

17.
A major challenge in sustainable crop management is to ensure adequate P supply for crops, while minimizing losses of P that could negatively impact water quality. The objective of the present study was to investigate the effects of long‐term applications of different levels of mineral fertilizers and farmyard manure on (1) the availability of P, (2) the relationship between soil C, N, and P, and (3) the distribution of inorganic and organic P in size fractions obtained by wet sieving. Soil samples were taken from the top 20 cm of a long‐term (29 y) fertilization trial on a sandy Cambisol near Darmstadt, SW Germany. Plant‐available P, determined with the CAL method, was little affected by fertilization treatment (p < 0.05) and was low to optimal. The concentration of inorganic and organic P extracted with a NaOH‐EDTA solution (PNaOH‐EDTA) averaged about 350 mg (kg dry soil)–1, with 42% being in the organic form (Po). Manure application tended to increase soil C, N, and Po concentrations by 8%, 9%, and 5.6%, respectively. Across all treatments, the C : N : Po ratio was 100 : 9.5 : 2 and was not significantly affected by the fertilization treatments. Aggregate formation was weak due to the low clay and organic‐matter content of the soil, and the fractions > 53 μm consisted predominantly of sand grains. The different fertilization treatments had little effect on the distribution of size fractions and their C, N, and P contents. In the fractions > 53 μm, PNaOH‐EDTA ranged between 200 and 300 mg kg–1, while it reached 1260 mg kg–1 in the fraction < 53 μm. Less than one third of PNaOH‐EDTA was present as Po in the fractions > 53 μm, while Po accounted for 70% of PNaOH‐EDTA in the smallest fraction (< 53 μm). Therefore, 16% and 28% of PNaOH‐EDTA and Po, respectively, were associated with the smallest fraction, even though this fraction accounted for < 5% of the soil mass. Therefore, runoff may cause higher P losses than the soil P content suggests in this sandy soil with a weak aggregate formation. Overall, the results indicate that manure and mineral fertilizer had similar effects on soil P fractions.  相似文献   

18.
Availability, fixation, and transformation of added P were studied in a 16-week incubation experiment with a Vertisol amended with farmyard manure in pots with 500 g soil each. P availability, as measured by Olsen P, decreased for up to 8 weeks with various rates of added P, when no manure was applied. In the presence of farmyard manure, P availability decreased during the first 6 weeks and then showed a considerable increase from the 8th week onwards. P fixation increased for up to 8 weeks with the rates of P in the absence of manure. With manure application, P fixation increased only during the first 6 weeks and thereafter decreased continuously. Thus the presence of farmyard manure shortened the period of P fixation and promoted its availability. After 16 weeks of incubation, when manure and fertilizer P were applied together, P was transformed into labile organic (NaHCO3–P), moderately labile organic P (NaOH-P), and calcium-bound inorganic P (HCl-P). When manure was not applied. P accumulated predominantly as labile inorganic (NaHCO3–P), moderately labile inorganic (NaOH-P), and inorganic HCl-P. The application of farmyard manure enriched long-term P fertility through NaHCO3–P and NaOH–P and a shortterm P supply as HCl-P. All fractions except inorganic NaOH-P showed good relationships with Olsen P.  相似文献   

19.
Abstract

Laboratory and greenhouse studies were conducted on a moderately fertile Taloka (fine, mixed, thermic mollic Albaqualf) silt loam and a low fertility Leadvale (fine‐silty, siliceous, thermic typic Fragiudult) silt loam to evaluate nutrient release and fertilizer value of soybean [Glycine max (L.) Herr.] and corn (Zea mays L.) residues as compared to the inorganic fertilizer 13–13–13–13 (N‐P2O5‐K2O‐S). Residues and the inorganic fertilizer were applied at 50 mg N/kg in a incubation study and at 25 and 50 mg N/kg in a greenhouse study. The incubation study indicted that carbon dioxide (CO2) evolution and nitrogen (N) mineralization followed a identical sequence: soybean > corn residues, similar to residue N concentration and carbon/nitrogen (C/N) ratio sequence. Application of corn residues produced N immobilization in both soils (‐20 mg N/kg soil), whereas soybean increased inorganic soil N in the Leadvale soil (3 mg N/kg soil) and particularly in the Taloka soil (17 mg N/kg soil). The greenhouse study showed the superiority of the inorganic fertilizer over corn and soybean residues for sorghum‐sudan yield, and N, phosphorus (P), potassium (K), and sulfur (S) total uptake. No significant differences were found among the residues and between residues and the control with the exception of the higher soybean rate for total N uptake in the Taloka soil, and the higher corn and soybean residue rate in the Leadvale soil for total K uptake. It also appeared that soybean residues provided a substantial amount of N and S to sorghum‐sudan. Higher rates of both soybean and corn residues constituted a prime source of K, particularly in the Landvale soil which had a low exchangeable soil K level.  相似文献   

20.
Legume pre-crops may increase P uptake of the following wheat, but the mechanisms behind this effect are unclear. A rotation study was carried out to assess the concentrations of rhizosphere P pools of three grain legumes and wheat (phase 1) and their effects on P uptake and P pools in the rhizosphere of the following wheat (phase 2). Faba bean, chickpea, white lupin and wheat were grown for 10 weeks in a loamy sand soil with low P availability. The following wheat was grown in the pre-crop soil with and without addition of pre-crop residues. Among the pre-crops, white lupin had the strongest effect on the P pools; it depleted the labile P pools, resin P and NaHCO3-Pi and also the less labile P pools, NaOH-Pi and residual P; whereas the concentration of NaHCO3-Po was higher than that in the rhizosphere of the other pre-crops. White lupin had a smaller biomass compared to faba bean which depleted the P pools to a lesser extent. Phosphorus uptake of the following wheat was greatest in white lupin pre-crop soil. Chickpea increased P uptake of the following wheat when residues were added. In the presence of residues, wheat after legumes depleted labile P pools to a greater extent than wheat after wheat, but this coincided with greater P uptake only in wheat after chickpea and white lupin, which may be explained by the small root biomass of wheat after faba bean. The results show that the greater P uptake of the following wheat induced by pre-crops may be due to two mechanisms: P mobilisation (white lupin) or P addition with legume residues (chickpea). This study further showed that P uptake by a crop is only partly a function of the depletion of P in the rhizosphere; another important factor is the ability to exploit a large soil volume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号