首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Intracellular current and voltage clamp techniques were used to investigate the mode of action of the anthelmintics, morantel, pyrantel and levamisole applied to the bag region of Ascaris suum muscle cells. Microperfusion of the anthelmintics and of O-acetylcholine (ACh) increased the input conductance and depolarised the membrane potential of the muscle bags. The relative potencies of these drugs were determined from dose–conductance relationships and found to be: morantel = pyrantel > levamisole > ACh. High doses (>10μM) of morantel caused antagonism of ACh responses. ACh-induced currents were measured under voltage clamp (over the range ?80 to +10mV). At membrane potentials between ?80 and 0 mV, microperfusion of ACh induced a voltage-dependent inward current. The current–voltage relationship was linear for membrane potentials in the range ?30 to +10mV. The reversal potential was measured directly and found to be about +10mV. The relationship became non-linear at membrane potentials more negative than ?30 mV, and the degree of non-linearity was dependent upon the concentration of ACh. The current–voltage relationships for morantel, pyrantel and levamisole also possessed both linear (?30 to 0mV) and non-linear components. The reversal potential for each agonist, determined by extrapolation of the linear component of the current–voltage relationship, was approximately +10mV, indicating the same cation channels were activated both by ACh and the anthelmintics. Evidence for competition between ACh and pyrantel for the same membrane receptor was obtained using iontophoretic delivery of each agonist from a double-barrelled micropipette. It is concluded that the anthelmintics, morantel, pyrantel and levamisole act as potent agonists at ACh receptors on muscle bag membranes of A. suum.  相似文献   

2.
Calcium regulation is an important event in synaptic transmission and neuronal function, which is governed by a very intricate signal transduction system which is not completely understood. Using a variety of pharmacological assays, we have characterized the action of deltamethrin on the ciliary voltage-sensitive calcium channel and on phospholipase C activity of Paramecium tetraurelia Sonneborn, an organism that does not possess a voltage-sensitive sodium channel. In fura-2 fluorometric assays, which examined whole cells and ciliary membrane vesicles enriched with calcium channels, deltamethrin stimulated Ca2+ uptake. We also determined that the phospholipase C activity of the ciliary membrane vesicles is regulated by the βγ-subunit from heterotrimeric G-proteins. Subsequent treatment with deltamethrin resulted in a substantial and highly significant increase in phospholipase C activity. These results provide evidence that the molecular mode of action of pyrethroids on the voltage-sensitive calcium channel is distinct from the action of this insecticide on the voltage-sensitive sodium channel and may be dependent, in part, upon an interaction with the βγ-subunit of heterotrimeric G-protein.  相似文献   

3.
Effects of deltamethrin on voltage-sensitive calcium channels (VSCC) from rat brain (Cav2.2) expressed in Xenopus oocytes were assessed electrophysiologically. Deltamethrin reduced peak current of wild-type Cav2.2 in a stereospecific and concentration-dependent manner with an EC50 of 1 × 10−9 M. Phosphorylation of threonine 422 enhances voltage-sensitive calcium current, increases the probability that Cav2.2 will open under depolarizing conditions and antagonizes the inhibition of the channel by the betagamma subunit of heterotrimeric G-protein (Gβγ). Site-directed mutagenesis of threonine 422 to glutamic acid (T422E) results in a channel that acts as if it were permanently phosphorylated. Deltamethrin (10−7 M) significantly enhanced peak current via the T422E channel (1.5-fold) compared to the nontreated control and the increase was significantly greater than for either the wild-type (T422) or T422A (permanently unphosphorylated mutant) channels. The effect of deltamethrin on T422E Cav2.2 was stereospecific and concentration-dependent with an EC50 of 9.8 × 10−11 M. Thus, Cav2.2 is modified by deltamethrin but the resulting perturbation is dependent upon the phosphorylation state of threonine 422.  相似文献   

4.
The effects of the oxadiazine insecticide indoxacarb and its N-decarbomethoxylated metabolite (DCJW) on tetrodotoxin-resistant (TTX-R) voltage-gated sodium channels in rat dorsal ganglion neurons were studied using the whole-cell patch clamp technique. Indoxacarb and DCJW suppressed the peak amplitude of action potentials, and DCJW exhibited a faster time course and higher potency than indoxacarb in the blocking effects. In voltage-clamp experiments, indoxacarb and DCJW suppressed TTX-R sodium currents in a time-dependent manner without a steady-state level of suppression. IC50 values for indoxacarb and DCJW on TTX-R sodium currents were estimated to be 10.7 and 0.8 microM after 25 min of bath application, respectively. DCJW was about 10 times more potent than indoxacarb in blocking TTX-R sodium currents. Although the suppressive effects of indoxacarb were partially reversible after washout with drug-free external solution, no recovery of sodium current was observed in DCJW treated neurons after prolonged washout. In current-voltage relationships, both indoxacarb and DCJW blocked the sodium currents to the same degree in the entire range of membrane potentials. The sodium conductance-voltage curve was not shifted along the voltage axis by indoxacarb and DCJW at 10 microM. In contrast, the steady-state inactivation curves were shifted in the hyperpolarizing direction by indoxacarb as well as by DCJW. Based on these results, it was concluded that indoxacarb and DCJW potently blocked the TTX-R sodium channel in rat DRG neurons with hyperpolarizing shifts of the steady-state inactivation curves, suggesting preferential association of the insecticides to the inactivated state of sodium channels. The small structural variation between indoxacarb and DCJW resulted in clear differences in potency for blocking sodium channels and reversibility after washout.  相似文献   

5.
6.
Isolated presynaptic nerve terminals prepared from whole rat brain were used to evaluate the action of deltamethrin on voltage-sensitive calcium channels by measuring calcium influx and endogenous glutamate release. Deltamethrin-enhanced K+-stimulated calcium influx and subsequent Ca2+-dependent glutamate release. The effect of deltamethrin was concentration-dependent, stereospecific, blocked by ω-conotoxin MVIIC but unaltered in the presence of tetrodotoxin. These results suggest that N-type voltage-sensitive calcium channels are a site of action at the presynaptic nerve terminal. Electrophysiological studies were carried out using rat brain Cav2.2 and β3 subunits coexpressed in Xenopus oocytes to validate such action. Deltamethrin reduced barium peak current in a concentraion-dependent and stereospecific manner, increased the rate of activation, and prolonged the inactivation rate of this channel. These experiments support the conclusion that N-type voltage-sensitive calcium channel operation is altered by deltamethrin.  相似文献   

7.
Among insect GABA receptors, the GABA-gated chloride channel subtype is insensitive to bicuculline and has been thought to be composed of two populations because of differences in chloride conductance increase, GABA and picrotoxin (PTX) sensitivity. To characterize this possible diversity in GABA-gated chloride channels, electropharmacological experiments were performed on giant interneuron synaptic GABA receptors and on somatic GABA receptors of dorsal unpaired median (DUM) neuron and fast coxal depressor (Df) motoneuron of the cockroach Periplaneta americana (L). Electrophysiological assays performed at cercal-afferent giant interneuron synapses demonstrated that a biphasic increase in membrane conductance, in response to long-lasting (30 s) neuropilar microapplication of GABA, could be explained by the existence of two GABA-operated chloride channel receptor subtypes. The low stable membrane conductance increase, representing less than 30% of the maximum reached during the early transient phase, was not desensitized quickly. It was reproduced by neuropilar microapplication of cis-4-aminocrotonic acid (CACA) and, in contrast to the fast phase, was not antagonized by bath application of 10−5 M PTX. Long-lasting (3 min) pneumatic pressure application of GABA on the cell body of motoneuron Df evoked a fast transient hyperpolarization followed by a slower phase of further hyperpolarization. PTX (10−5 M ) blocked the fast transient phase and revealed a slow stable hyperpolarization. PTX (10−4 M ) blocked the major part of the remaining GABA response. The slow hyperpolarization was reproduced by application of CACA. Similar effects of GABA and CACA were recorded on DUM neuron cell bodies. All of these observations are consistent with the possible existence of two GABA-gated chloride channel subtypes in the insect CNS. © 1999 Society of Chemical Industry  相似文献   

8.
The effects of a wide range of pyrethroids and DDT analogs on the membrane potential and membrane sodium currents were studied in crayfish giant axons. Compounds differed greatly in their ability to produce depolarizing afterpotentials, repetitive firing, and membrane depolarization. The differences observed at the membrane potential level could be explained by differences in the kinetics with which the insecticides interact with the nerve membrane sodium channel. The compounds containing a cyano group at the α position retain sodium channels in a modified open state persistently, depolarize the membrane, and block the action potential without causing repetitive firing. The pyrethroids without an α-cyano group and DDT analogs retain sodium channels in a modified open state only transiently, cause large depolarizing afterpotentials, and evoke repetitive firing with minimal effect on the resting potential. The effects of the phenoxybenzyl pyrethroids were found to be intermediate between these two extremes suggesting that a continuous variation exists in kinetics with which pyrethroids and DDT analogs modify sodium channels. It was not necessary to assume a second site of action to account for the variability observed. The implications of these results to the construction of quantitative structure-activity relationships is discussed.  相似文献   

9.
烟碱乙酰胆碱受体及其与新烟碱类相互作用的研究进展   总被引:1,自引:0,他引:1  
对烟碱乙酰胆碱受体(nAChRs)的结构与功能、配体结合部位、门控机理以及与新烟碱类的相互作用进行了综述,并对nAChRs亚基基因突变和敲除对新烟碱类和多杀菌素敏感性的影响进行了讨论。nAChRs在脊椎动物和昆虫的胆碱能突触的快速神经传递中起着重要作用,其在昆虫中仅存在于中枢神经系统(CNS)中,而在脊椎动物中同时存在于CNS和神经肌肉连接处。nAChRs是新烟碱类杀虫剂、多杀菌素和杀螟丹的作用靶标。肌肉和CNS中的nAChRs是一个由两个α和三个非α(β,γ和δ)亚基组成的异数五聚体,该受体主要有三部分:一个在细胞外发现的区域(胞外区)、一个位于膜内的区域(跨膜区),另一个是位于细胞内的区域(胞质区)。每个亚基(从N-C端)都具有一个包含乙酰胆碱(ACh)结合部位的细胞外结构域;4个跨膜结构域(M1~4),其中M2的大部分氨基酸位于离子通道的内壁;一个胞质噜扑(loop)和一个胞外C端。通道门位于孔道内的疏水区。ACh结合部位位于天然和功能受体的两个亚基的界面,是由一个亚基的3个噜扑(A-C)和另一个亚基的3个噜扑(D-F)构成。每当受体与ACh(或其他激动剂)分子结合时,M2 α螺旋体的构象发生改变,使通道开启,处于阳离子传导状态,直至一个或两个激动剂分子从结合口袋解离,通道才关闭。如果激动剂一直存在,并反复结合,则通道处于脱敏状态。nAChRs与新烟碱类的各种选择性作用取决于新烟碱类的结构以及nAChRs的亚基组成。  相似文献   

10.
Sodium channel blocker insecticides (SCBIs) are a relatively new class of insecticides, with a mechanism of action different from those of other classes of insecticides that target voltage-gated sodium channels. These compounds have no effect at hyperpolarized membrane potentials, but cause a voltage-dependent, nearly irreversible block as the membrane potential is depolarized. The mechanism of action of SCBIs is similar to that of local anesthetics (LAs), class I anticonvulsants and class I antiarrhythmics. In this article, we review the physiological actions of these compounds on the whole animal, the nervous system and sodium channels, and also present the results from recent studies that elucidate the receptor site of SCBIs.  相似文献   

11.
Pyrethroids disrupt nerve function by altering the rapid kinetic transitions between conducting and nonconducting states of voltage-gated sodium channels that underlie the generation of nerve action potentials. Recent studies of pyrethroid action on cloned insect and mammalian sodium channel isoforms expressed in Xenopus laevis oocytes show that in some cases pyrethroid modification is either absolutely dependent on or significantly enhanced by repeated channel activation. These use-dependent effects have been interpreted as evidence of preferential binding of at least some pyrethroids to the open, rather than resting, state of the sodium channel. This paper reviews the evidence for state-dependent modification of insect and mammalian sodium channels expressed in oocytes by pyrethroids and considers the implications of state-dependent effects for understanding the molecular mechanism of pyrethroid action and the development and testing of models of the pyrethroid receptor.  相似文献   

12.
Recent advances in molecular neurobiology have provided an unprecedented insight into the structure and function of the three principal target sites for neurotoxic insecticides: acetylcholinesterase, the 4-aminobutyric acid (GABA) receptor–chloride ionophore complex, and the voltage-sensitive sodium channel. This paper reviews some of these advances and their current or potential application to problems in insecticide resistance. It particularly emphasizes studies of the molecular biology of voltage-dependent sodium channels in the context of resistance to DDT and pyrethroids resulting from reduced neuronal sensitivity.  相似文献   

13.
For a conditioned taste aversion (CTA) agent to be successful in wildlife management applications, the compound must not be detectable by the animal. Levamisole is an effective CTA agent when administered by oral intubation, but it is readily detected by a number of species when mixed directly in food. This paper describes the development of an ion-exchange resin complex (resinate) to mask the taste of levamisole. Two different resins were evaluated, Amberlite IRP-64 and Amberlite IRP-69, and release studies indicated that the resinate formed using IRP-64 resin would be most suitable for use in wildlife management. Although it contained a relatively low loading of levamisole (77 g kg(-1)), the results indicated that the IRP-64 resinate should be stable in the mouth and release the levamisole quickly in the acid environment of the stomach (93% of levamisole was released into 0.1 M HCl in 5 min). In a bioassay using laboratory rats (Rattus norvegicus Berk), we showed that the taste of levamisole was successfully masked in a biscuit bait using the IRP-64 resinate and that a CTA was generated to untreated bait. The use of ion-exchange resins is a new approach in the taste-masking of CTA agents and could be applied to other wildlife management applications.  相似文献   

14.
When applied at concentrations of one nM or higher to a house fly larval neuromuscular preparation, deltamethrin (DM) and fenvalerate (FV) greatly increased miniature excitatory postsynaptic potential (mepsp) rate and blocked neuromuscular transmission. The DM-induced mepsp discharge was abolished by tetrodotoxin (TTX), removal of Ca2+ from the saline, or by application of hyperpolarizing stimuli to the nerve, indicating that it was due to depolarization of the presynaptic terminals. Also, in the presence of TTX, K+ depolarization increased mepsp rate at the same external K+ concentration before and after DM treatment, confirming that DM released transmitter by depolarizing the nerve terminals rather than by altering the voltage dependence of transmitter release. The potassium channel blocker tetraethylammonium (TEA) increased mepsp rate somewhat, while aconitine (20 μM), which keeps sodium channels open, increased mepsp rate consistently. Pretreatment of nerves with a subthreshold dose of TEA greatly increased the mepsp rate-increasing activity of DM and aconitine, while a subthreshold level of aconitine did not synergize DM. These observations suggest that DM, like aconitine, depolarized nerves by modifying the sodium channels. Knockdown resistant (kdr) larvae were resistant to the depolarizing action of DM and aconitine but not to that of TEA, indicating that the kdr gene produced a modified sodium channel which was less sensitive to the action of pyrethroids and aconitine. During sustained transmitter release by DM, evoked release gradually declined, resulting in a condition called early block in which spontaneous release was high and release could be evoked by electrotonic depolarization of the nerve terminals, but not by a nerve action potential. Early block was probably due to conduction block in the nerve terminals. Early block eventually gave way to late block, characterized by the decline of spontaneous release to subnormal levels and complete failure of evoked release. After late block, the calcium ionophore X-537A could not release transmitter, suggesting that late block was due to depletion of available transmitter. DM did not have a direct effect upon extrasynaptic muscle membrane. However, after late block, muscles were left insensitive to the putative transmitters glutamate and aspartate when these were bath or iontophoretically applied. A low rate of mepsps persisted after late block, indicating that the muscles were still sensitive to the natural transmitters.  相似文献   

15.
Conventional film autoradiography was used at the light microscopic level for the localization and quantization of 4-aminobutyric acid (GABA) receptors in the locust brain (Schistocerca americana). Localization of the receptor site was achieved via binding with the receptor-ligand probe [3 H]muscimol. Frozen sections were cut and subsequently incubated either in 40 nM [3H]muscimol or by coincubating sections with [3H]muscimol and one of the following: GABA (50 μM)], a receptor specific agonist [muscimol (1 μM) or isoguvacine (1 μM)], an uptake inhibitor [nipecotic acid (50 μM)], or a noncompetitive channel modulator [avermectin B1a, (1 μM) or aldrin (50 μM)]. Through computer image enhancement and densitometric analysis of the optical density of [3H]muscimol binding sites, the interaction of the above compounds with the putative GABA receptor was determined for various anatomical regions of the locust brain. By comparing the differently treated, but adjacent sections, GABA receptor distribution was quantitated and mapped. Receptor sites were found distributed in the antennal lobes, central body, β-lobe and β-lobe of the corpus pedunculatum, protocerebral bridge, and calyx as well as the optic lobe regions.  相似文献   

16.
Head lice resistance to permethrin is mainly conferred by the knockdown resistance (kdr) trait, a voltage-sensitive sodium channel (VSSC) insensitivity factor. Three VSSC mutations (M815I, T917I and L920F) have been identified. Functional analysis of the mutations using the house fly VSSC expressed in Xenopus oocytes revealed that the permethrin sensitivity is reduced by the M827I (M815I) and L932F (L920F) mutations when expressed alone but virtually abolished by the T929I (T917I) mutation, either alone or in combination. Thus, the T917I mutation is primarily responsible for permethrin resistance in head lice. Comparison of the expression rates of channel variants indicates that the M815I mutation may play a role in rescuing the decreased expression of channels containing T917I. A step-wise resistance monitoring system has been established based on molecular resistance detection techniques. Quantitative sequencing (QS) has been developed to predict the VSSC mutation frequency in head lice at a population basis. The speed, simplicity and accuracy of QS made it an ideal candidate for a routine primary resistance monitoring tool to screen a large number of wild louse populations as an alternative to conventional bioassay. As a secondary monitoring method, real-time PASA (rtPASA) has been devised for more precise determination of low resistance allele frequencies. To obtain more detailed information on resistance allele zygosity, as well as allele frequency, serial invasive signal amplification reaction (SISAR) has been developed as an individual genotyping method. Our approach of using three tiers of molecular resistance detection should facilitate large-scale routine resistance monitoring of permethrin resistance in head lice using field-collected samples.  相似文献   

17.
The cyclic depsipeptide PF1022A, given orally to mice, showed very good anthelmintic activity against Heligmosomoides polygyrus and Heterakis spumosa at 50 mg kg−1. In vitro, PF1022A was very active against Trichinella spiralis and had good activity against Nippostrongylus brasiliensis at 1 μg ml−1. An 18-membered enniatin analogue, JES 1798, showed good activity only against N. brasiliensis at 10 μg ml−1. The optical antipode of PF1022A had poor activity even at 100 μg ml−1. The effects of PF1022A on the membrane potential and input conductance of somatic muscle of Ascaris suum were examined using a two-microelectrode current-clamp technique. PF1022A did not antagonize the effects of the selective nicotinic agonist levamisole. PF1022A and an analogue, JES 1798, but not the PF1022A antipode, produced a small time-dependent increase in input conductance associated with no potential change. The increase in input conductance did not occur in the Cl-free bathing solution, suggesting that the increase in input conductance was mediated by Cl ions. The addition of high concentrations of Ca2+ to the preparation after the addition of PF1022A did not lead to production of Ca2+-activated Cl channels, suggesting that its mode of action was not that of a Ca2+ ionophore. The mechanism by which the cyclic depsipeptide might increase the Cl conductance is discussed.  相似文献   

18.
The effect of pyrimethanil on the levels of cell wall degrading enzymes secreted by Botrytis cinerea Pers. was investigated in diseased plant tissues and in liquid B. cinerea cultures. Total proteinase activity isolated from infected carrot slices which were treated with 5.0 μM pyrimethanil was decreased by 76%, 3 d after inoculation. Polygalacturonase, cellulase, proteinase and laccase activities were all decreased in the medium of three day-old cultures grown in the presence of pyrimethanil. The pyrimethanil concentrations resulting in 50% reduction in total enzyme activities (IC50) were approximately 0.25 μM for polygalacturonase, cellulase and proteinase, and approximately 1.0 μM for laccase. No significant growth inhibition was observed at these pyrimethanil concentrations. Pyrimethanil did not inhibit the enzymes directly, nor did it inhibit the synthesis of cytosolic proteins. Therefore, it was proposed that the fungicide inhibits protein secretion at a post-translational stage in the secretory pathway. Large differences were found in the effects of pyrimethanil on the growth of B. cinerea in liquid cultures and on agar plates, depending on the composition of the medium. In liquid media containing cellulose and protein as carbon and nitrogen sources, growth inhibition occurred at 5.0 μM pyrimethanil, whilst no growth inhibition was observed with 50 μM pyrimethanil in malt extract. Similarly, growth occurred on potato/dextrose agar (PDA) at 0.5 μM pyrimethanil, but no growth was seen at this concentration on agars containing cellulose and protein. Thus it appears that pyrimethanil is most active in media where the fungus has to utilise extracellular enzymes to mobilise the nutrients it requires for growth.  相似文献   

19.
Isolated rat brain synaptosomes were used to evaluate the action of pyrethroid mixtures on Ca2+ influx and subsequent glutamate release under depolarizing conditions. In equipotent binary mixtures at their respective and/or estimated EC50s with deltamethrin always as one of the two components, cismethrin, λ-cyhalothrin, cypermethrin, esfenvalerate and permethrin were additive and S-bioallethrin, fenpropathrin and tefluthrin were less-than-additive on Ca2+ influx. In binary mixtures with deltamethrin always as one of the two components, esfenvalerate, permethrin and tefluthrin were additive and λ-cyhalothrin was less-than-additive on glutamate release. Binary mixture of S-bioallethrin and cismethrin was additive for both Ca2+ influx and glutamate release. Only a subset of pyrethroids (S-bioallethrin, cismethrin, cypermethrin, and fenpropathrin) in binary mixtures with deltamethrin caused a more-than-additive effect on glutamate release. These binary mixtures were, however, only additive (cismethrin and cypermethrin) or less-than-additive (S-bioallethrin and fenpropathrin) on Ca2+ influx. Therefore, increased glutamate release evoked by this subset of pyrethroids in binary mixture with deltamethrin is not entirely occurring by Ca2+-dependent mechanisms via their action at voltage-sensitive calcium channels. These results suggest that pyrethroids do not share a common mode of toxicity at presynaptic nerve terminals from rat brain and appear to affect multiple target sites, including voltage-sensitive calcium, chloride and sodium channels.  相似文献   

20.
The current study examines the acute effects of the organophosphorus pesticide chlorpyrifos on a sympathetic synapse of the frog Caudiverbera caudiverbera. Nerve stimulation was followed immediately by a transient increase in the short-circuit current (SCC) and in the potential difference (PD), which consisted of a rapid and then a slow component. Chlorpyrifos concentrations from 5 μM to 1.0 mM caused a dose-dependent block of both components to a 10% of their control values, which was reversed by washout. The pesticide blockade did not affect the skin response to noradrenaline. X-ray diffraction and fluorescence spectroscopy studies on membrane models showed marked phospholipid perturbation, which favors changes in ion channel conformation and interferes with receptor proteins, thus altering noradrenergic transmission and Cl secretion in the mucous glands. The foregoing results may be interpreted as a reversible inhibition of the neuroepithelial synapse to nerve stimulation, possibly due to non-specific lip μd-protein perturbation, interference with synaptic transmission, and transient Cl channel inactivation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号