首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Field trials were carried out over a 4 year period (2004–2007) to determine the effect of agronomic factors, specifically cultivar resistance, irrigation, crop duration and chemical control (in‐furrow application of azoxystrobin), on black dot development on potato tubers grown in fields where soilborne inoculum of Colletotrichum coccodes was present. In 2004, 2005 and 2006, two field trials were performed each year and in 2007, 19 mini‐field trials were carried out across Scotland and England. Cultivar resistance was clearly demonstrated to be an effective method of reducing black dot disease severity on tubers (described here as the percentage of unmarketable tubers, i.e. those with symptoms covering a surface area of >10%). In the four field trials carried out in 2004 and 2005, in irrigated and fungicide‐untreated plots, 43·8% of tubers of cv. Maris Piper were unmarketable, compared with 17·0% of tubers of cv. Sante. Assessments of disease development on underground plant parts (stems, stolons and roots) revealed that cultivar resistance acted only at the tuber level, as disease symptoms on other parts were often high irrespective of published disease resistance ratings. Irrigation increased the severity of disease on tubers in two trials (England 2004 and 2006), but its effect was less significant when rainfall was high. Delaying harvest by 2 weeks increased disease severity in all six trials, whilst application of azoxystrobin consistently reduced black dot severity. There were significant interactions between factors. The results clearly show how black dot disease severity can be reduced through an integrated approach to disease management.  相似文献   

2.
Mixtures of cultivars with contrasting levels of resistance can suppress infectious diseases in wheat, as demonstrated in numerous field experiments. Most studies focus on airborne pathogens in bread wheat, while splash-dispersed pathogens have received less attention, and no studies have been conducted in durum wheat. We conducted a 2-year field experiment in Tunisia to evaluate the performance of cultivar mixtures with varying proportions of resistance (0%–100%) in controlling the polycyclic, splash-dispersed disease septoria tritici blotch (STB) in durum wheat. To measure STB severity, we used a high-throughput method based on digital image analysis of 3,074 infected leaves collected from 42 and 40 experimental plots during the first and second years, respectively. This allowed us to quantify pathogen reproduction on wheat leaves and to acquire a large data set that exceeds previous studies with respect to accuracy and precision. Our analyses show that introducing only 25% of a disease-resistant cultivar into a pure stand of a susceptible cultivar provides a substantial reduction of almost 50% in disease severity compared to the susceptible pure stand. However, incorporating two resistant cultivars instead of one did not further improve disease control, contrary to predictions of epidemiological theory. Susceptible cultivars can be agronomically superior to resistant cultivars or be better accepted by growers for other reasons. Hence, if mixtures with only a moderate proportion of the resistant cultivar provide a similar degree of disease control as resistant pure stands, as our analysis indicates, such mixtures are more likely to be accepted by growers.  相似文献   

3.
Plasmodiophora brassicae, causal agent of clubroot of crucifers, poses a serious threat to Canadian canola production. The effects of fallow (F) periods and bait crops (clubroot‐susceptible canola (B) and perennial ryegrass (R)) on clubroot severity and P. brassicae resting spore populations were evaluated in five sequences: R–B, B–R, R–F, B–F and F–F. Both host and non‐host bait crops reduced clubroot severity in a subsequent crop of a susceptible canola cultivar compared with fallow. Resting spore and P. brassicae DNA concentrations decreased in all treatments, but were lowest for the R–B and B–R bait crop sequences. In addition, two studies were conducted in mini‐plots under field conditions to assess the effect of rotation of susceptible or resistant canola cultivars on clubroot severity and P. brassicae resting spore populations. One study included three crops of susceptible canola compared with a 2‐year break of oat–pea, barley–pea, wheat–wheat or fallow–fallow. The other study assessed three crops of resistant canola, two crops of resistant canola with a 1‐year break, one crop of resistant canola and a 2‐year break, and a 3‐year break with barley followed by a susceptible canola. The rotations that included non‐host crops of barley, pea or oat reduced clubroot severity and resting spore concentrations, and increased yield, compared with continuous cropping of either resistant or susceptible canola. Growing of a susceptible canola cultivar contributed 23–250‐fold greater gall mass compared with resistant cultivars.  相似文献   

4.
Wheat is affected by many diseases, in Germany eight fungal diseases are recorded during the cultivar registration process. For a commercially successful cultivar, therefore, at least moderate resistances to important diseases, like yellow rust (YR) and Fusarium head blight (FHB), are necessary. Additionally, in 2013 a regional stem rust (SR) epidemic occurred in Central Germany for the first time for decades. Our objective was to analyze the resistance of 36 commercially grown winter wheat cultivars to YR, FHB, and SR in three individual and one combined inoculation. Appreciable disease severities were achieved for YR and FHB at three to four locations in two years (= seven location × year combinations), for SR at one to two locations in two years (= three location × year combinations). Wheat cultivars showed a significant genotypic variation for all diseases with high heritabilities (0.90–0.95). Interaction between inoculation treatments (individual vs. combined) and wheat genotype was not significant for each of the three diseases. Accordingly, correlations between both inoculation treatments were very high (R2?=?0.95–0.99). Several cultivars showed multi-disease resistance (MDR) to YR, FHB, and SR. In conclusion, resistance ranking among genotypes was not changed when plants were challenged with all three pathogens together compared to factorial inoculations of only one of them. Substituting factorial inoculation trials by multi-pathogen inoculation makes it more efficient to select for MDR in practical breeding programs.  相似文献   

5.
Soilborne potato diseases and soil microbial community characteristics were evaluated over 8 years in different potato cropping systems designed to address specific management goals of soil conservation, soil improvement and disease suppression. Results were compared to a standard rotation and non‐rotation control in field trials in Maine. Standard rotation consisted of barley underseeded with red clover, followed by potato (2‐year). Soil‐conserving system (SC) featured an additional year of forage grass and reduced tillage (3‐year, barley/timothy–timothy–potato). Soil‐improving system (SI) added yearly compost amendments to SC, and the disease‐suppressive system (DS) featured crops with known disease‐suppressive capability (3‐year, mustard/rapeseed–sudangrass/rye–potato). Systems were established in 2004, evaluated with and without irrigation, and actively managed until 2010, with potato also planted in 2011 and 2012 to examine residual effects. All rotations reduced soilborne diseases black scurf and common scab, and increased yield after one rotation cycle (3 years), but diseases increased overall after two rotation cycles. DS maintained lower soilborne disease levels than all other rotations, as well as high yields, throughout the study. Cropping system effects became more pronounced after multiple cycles. SI system and irrigation both resulted in higher yields, but also higher levels of soilborne disease. Cropping system and irrigation effects were significant even after systems were no longer maintained. Soil microbial community data showed significant changes associated with cropping system, and differences increased over time. Cropping system strategy had significant and lasting effects on soil microbiology and soilborne diseases, and can be used to effectively enhance potato production.  相似文献   

6.
For wheat, the optimum time to apply fungicide to control disease on a given leaf layer is usually at, or shortly after, full leaf emergence. Data from field experiments on barley were used to investigate whether the same relationship was applicable to control of leaf blotch on barley. Replicated plots of winter barley were sown in the autumns of 1991, 1992 and 1993 at sites in southwest England with high risk of Rhynchosporium secalis infection. Single fungicide treatments at four doses (0·25, 0·5, 0·75 or 1·0 times the label rate) were applied at one of eight different spray times, starting in mid-March in each year, with intervals of 10–11 days between spray timings. Disease was assessed every 10–11 days and area under the disease progress curve (AUDPC) values were used to construct fungicide dose by spray time response surfaces for each of the upper four leaves, for each year. Spray timings shortly before leaf emergence were found to minimize the AUDPC for each year and leaf layer, and also the effective dose (the dose required to achieve a specified level of control), similar to wheat. Fungicide treatments on barley were effective for a longer period before leaf emergence than afterwards, probably because treatments before emergence of the target leaf reduced inoculum production on leaves below. This partly explains why fungicides tend to be applied earlier in the growth of barley compared with wheat.  相似文献   

7.
The results of 21 winter wheat and 32 spring barley trials done in the United Kingdom showed that cultivars differed significantly in their yield response to a standard fungicide treatment. Regression analyses showed that yield responses were significantly related to disease reduction, particularly that of mildew, although the proportion of variance accounted for was small. Measurements made on seven winter wheat trials indicated that the percentage of leaf area remaining green after anthesis was increased by the fungicide treatment to a greater extent than could be attributed to disease reduction alone. In some of these trials, yield responses were more closely correlated with the increase in leaf area remaining green than with disease reduction.  相似文献   

8.
ABSTRACT Most barley cultivars are resistant to stripe rust of wheat that is caused by Puccinia striiformis f. sp. tritici. The barley cv. Steptoe is susceptible to all identified races of P. striiformis f. sp. hordei (PSH), the barley stripe rust pathogen, but is resistant to most P. striiformis f. sp. tritici races. To determine inheritance of the Steptoe resistance to P. striiformis f. sp. tritici, a cross was made between Steptoe and Russell, a barley cultivar susceptible to some P. striiformis f. sp. tritici races and all tested P. striiformis f. sp. hordei races. Seedlings of parents and F(1), BC(1), F(2), and F(3) progeny from the barley cross were tested with P. striiformis f. sp. tritici races PST-41 and PST-45 under controlled greenhouse conditions. Genetic analyses of infection type data showed that Steptoe had one dominant gene and one recessive gene (provisionally designated as RpstS1 and rpstS2, respectively) for resistance to races PST-41 and PST-45. Genomic DNA was extracted from the parents and 150 F(2) plants that were tested for rust reaction and grown for seed of F(3) lines. The infection type data and polymorphic markers identified using the resistance gene analog polymorphism (RGAP) technique were analyzed with the Mapmaker computer program to map the resistance genes. The dominant resistance gene in Steptoe for resistance to P. striiformis f. sp. tritici races was mapped on barley chromosome 4H using a linked microsatellite marker, HVM68. A linkage group for the dominant gene was constructed with 12 RGAP markers and the microsatellite marker. The results show that resistance in barley to the wheat stripe rust pathogen is qualitatively inherited. These genes might provide useful resistance against wheat stripe rust when introgressed into wheat from barley.  相似文献   

9.
Analyses of the results of 21 winter wheat and 32 spring barley trials showed that cultivars differed significantly in their yield response to a standard fungicide treatment. Responses were also strongly influenced by differences between sites and between years. Regression analyses showed that responses were significantly related to reductions in foliar disease, particularly that of mildew, although the proportion of variance accounted for was small. Measurements made on seven winter wheat trials indicated that the percentage of leaf area remaining green after anthesis was increased by the fungicide treatment to a greater extent than could be attributed to reduction in foliar disease alone. In one of these trials, yield response was more closely correlated with the increase in leaf area remaining green than with reduction in foliar disease.  相似文献   

10.
Disease-yield relationship in barley.   总被引:1,自引:0,他引:1  
The effect of disease on growth and yield of two barley cultivars sown at different times and in different years was investigated in New Zealand. The data were used to develop yield-loss models based on both disease severity (measured as green leaf area) and yield target (estimated by duration of crop growth). Disease influenced yield differently in Triumph and Sonya barley (spring and winter types, respectively), and yield components were affected to different degrees. Empirical yield-loss models for individual cultivars, sowing dates and seasons had different slope values, and the best models were based on measurements of disease at different growth stages. Combined models were less significant and explained less variation in yield than the individual models. Models which included the duration of crop growth as an estimate of yield target improved the fit to the data. Empirical models were specific to cultivar, sowing date and season, suggesting that they were not applicable in the varying conditions tested. The inclusion of estimated yield target improved the general applicability of models, and provided a method of using models in crops sown at different times and in different seasons, without measuring yield target directly.  相似文献   

11.
Wheat yellow rust (WYR), caused by Puccinia striiformis f. sp. tritici (PST), is a major disease of wheat, and deployment of a single cultivar often leads to disease epidemics. Effect of inoculum level, foliar fungicide spray, and wheat cultivar mixtures were evaluated on disease development in the field and greenhouse in Nepal. Treatments were arranged in a split–split plot design with three replications in both experiments. Two inoculum levels of PST (low and high) were main plot factors; nontreated control and foliar spray of fungicides (Mancozeb and Bayleton) were subplot factors; and two-component cultivar mixtures, composed of different ratios of a susceptible (S) and a resistant (R) cultivars (90:10, 80:20, and 50:50, 100:0, and 0:100) were sub–subplot factors. WYR severity was assessed at different time intervals, and disease development was calculated as area under the disease progress curve (AUDPC). Inoculum level did not cause significant differences in AUDPC in the field but did in the greenhouse. Foliar spray of fungicides reduced the AUDPC in the greenhouse and field. In both experiments, AUDPC values were low in cultivar mixtures compared with a pure stand of a susceptible cultivar. As the proportion of resistant cultivar increased compared with the susceptible cultivar in the S:R mixture component, disease severity decreased with a consequent increase in grain yield. The greater yield obtained with cultivar mixtures compared with only the susceptible cultivar, independent of inoculum level and fungicide spray in the field, revealed a promising strategy to manage WYR in Nepal.  相似文献   

12.
The use of cultivar mixtures to control foliar fungal diseases is well documented for windborne diseases, but remains controversial for splash‐dispersed diseases. To try to improve this strategy, a cultivar mixture was designed consisting of two wheat cultivars with contrasted resistance to Mycosphaerella graminicola , responsible for the rainborne disease septoria tritici blotch (STB), in a 1:3 susceptible:resistant ratio rather than the 1:1 ratio commonly used in previous studies. The impact of natural STB epidemics in this cultivar mixture was studied in field experiments over 4 years. Weekly assessments of the number of sporulating lesions, pycnidial leaf area and green leaf area were carried out on the susceptible cultivar. In years with sufficient STB pressure, disease impacts on the susceptible cultivar in the mixture were always significantly lower than in the pure stand (e.g. 42% reduction of pycnidial leaf area for the three upper leaves in 2008 and 41% in 2009). In years with low STB pressure (2010 and 2011), a reduction of disease impacts was also shown but was not always significant. After major rainfall events, the number of sporulating lesions observed on the susceptible cultivar after one latent period was reduced on average by 45% in the mixture compared to the pure stand. All the measurements showed that a susceptible cultivar was consistently protected, at least moderately, in a mixture under low to moderate STB pressure. Therefore, the results prove that the design of an efficient cultivar mixture can include the control of STB, among other foliar diseases.  相似文献   

13.
ABSTRACT Controversy has long existed over whether plant disease epidemics spread with constant or with increasing velocity. We conducted largescale field experiments with wheat stripe rust at Madras and Hermiston, Oregon, where natural stripe rust epidemics were rare, to test these competing models. Data from three location-years were available for analysis. A susceptible winter wheat cultivar was planted in pure stand and also in a 1:4 or 1:1 mixture with a cultivar immune to the stripe rust race utilized in the experiments. Plots were 6.1 m wide and varied from 73 to 171 m in length. A 1.5 by 1.5-m focus was inoculated in either the center (2001) or upwind of the center (2002 and 2003) of each plot. Disease severity was evaluated weekly throughout the epidemics in each plot at the same points along a transect running upwind and downwind from the focus. Velocity of spread was calculated from the severity data and regressed separately on time and on distance from the focus. In all location-years and treatments, and at all levels of disease severity, velocity consistently increased linearly with distance, at an average rate of 0.59 m/week per m, and exponentially with time. Further, across epidemics there was a significant positive relationship between the apparent infection rate, r, and the rate of velocity increase in both space and time. These findings have important implications for plant diseases with a focal or partially focal character, and in particular for the effectiveness of ratereducing disease management strategies at different spatial scales.  相似文献   

14.
The use of cultivar mixtures is increasingly practical in wheat stripe rust management. Field experiments with wheat cultivar mixtures were conducted to determine their effects on temporal and spatial patterns of stripe rust epidemics in three regions. In the Beijing and Gangu fields, where the epidemics were caused by artificial inoculation, disease incidence and the area under the disease progress curve (AUDPC) of the cultivar mixtures were significantly lower (P < 0.05) than those of the susceptible pure stands. We defined the relative effectiveness of cultivar mixture on disease development related to that in pure stands (REM). The results demonstrated that in many treatments of mixtures of susceptible cultivar with resistant cultivars at various ratios in different locations, their effects on disease reduction were positive (REM < 1). The reduction of epidemic rate in cultivar mixtures expressed in either early season or late season depended on the initial pattern of disease and cultivar mixture treatments. Semivariograms were used to determine the spatiotemporal patterns of disease in the Gangu field. The spatial analysis showed clear spatial patterns of the disease in all four directions of the fields on susceptible pure stands but not on cultivar mixtures. The results implied that the mechanisms of cultivar mixture on disease management might include the interruption of disease spatial expansion and a physical barrier to pathogen inoculum by resistant cultivars.  相似文献   

15.
Barley spot blotch (SB), caused by Cochliobolus sativus, is an important barley disease which causes extensive grain yield losses. These losses may not always correlate directly with the amount of diseased leaf area. Two barley cultivars, Quebracho (susceptible to SB) and Carumbé (with intermediate susceptibility to SB), were compared in field experiments in 2003, 2004 and 2006. Plots of each cultivar were either inoculated with C. sativus or protected with fungicide under field conditions to generate contrasting treatments: i) diseased, and ii) free of disease, respectively. SB severity over the growing season, photosynthetic rate on leaves with no visible symptoms and grain yield were assessed for each treatment and year. There was no treatment effect on cv. Carumbé, while cv. Quebracho showed a significant yield reduction, even though SB severity during the grain filling period was <10 %. This yield reduction was associated with a reduced photosynthetic rate at the beginning of the grain filling period in cv. Quebracho. A similar experiment was conducted under greenhouse conditions, adding a treatment without inoculum or fungicide. There were no differences in photosynthetic rate or grain yield per plant among treatments. These results suggest a distinct physiological response to SB infection among cultivars affecting leaf photosynthetic rate, and SB severity may not be the best estimator of yield losses caused by SB.  相似文献   

16.
K. Andersson 《EPPO Bulletin》1984,14(3):409-416
The effects of increasing inputs of pesticides, nitrogen and growth regulators were studied in field trials in winter wheat and spring barley in southern Sweden. The trials also included a comparison of different strategies: no control, routine control and supervised control. In 1982 EPIPRE, a computerized pest and disease management system developed in the Netherlands, was included. High inputs of nitrogen only slightly influenced the yields. In winter wheat, routine control, comprising one insecticide and three fungicide sprays, heavily increased the yield and was more profitable than supervised control. On an average only 1.2 pesticide sprays were carried out in supervised plots. However, in spring barley supervised control was slightly more profitable than routine control comprising one fungicide and one insecticide application. The average number of sprays in supervised was 0.6 only. In both winter wheat and barley the yield increase for routine control significantly increased with increasing nitrogen level. In barley a significant relationship between number of aphids per tiller and yield increase could be proved.  相似文献   

17.
Five winter wheat cultivars, six two-component cultivar mixtures, and one four-way mixture were grown in the presence of yellow rust, eyespot, both diseases, and neither disease for three seasons. On average, mixtures reduced the severity of yellow rust relative to their component pure stands by 53%. The four-component mixture provided better yellow rust control than did the two-way mixtures. Eyespot severity was reduced through mixing only in the absence of yellow rust and by only three of the seven mixtures (mean reduction = 13%). Yellow rust was 13% less severe in the presence of eyespot, and eyespot was 10% more severe in the presence of yellow rust. Averaged over all years, the mixtures increased yield relative to the pure stands by 6·2, 1·7, 7·1, and 1·3% in the presence of yellow rust, eyespot, both diseases, and neither disease, respectively. Two mixtures provided significant yield increases over the means of their component pure stands (7% and 9%) in the presence of eyespot even though one of them did not significantly reduce eyespot severity. Accounting for all disease treatments and years, four mixtures provided distinctly higher yield increases than the other three. In mixtures containing a resistant cultivar and a cultivar susceptible to eyespot, yield loss by the susceptible cultivar was not compensated for by increased yield of the resistant cultivar. The mixtures showed improved yield stability relative to the pure stands, with the four-component mixture being particularly stable.  相似文献   

18.
Yellow or tan spot (caused by Pyrenophora tritici-repentis) and septoria nodorum blotch (caused by Phaeosphaeria nodorum) occur together and are a constraint to wheat yields in Australia. Recently, higher crop yields and lower fungicide costs have made fungicides an attractive management tool against these diseases. Yield-loss under different rates of progress of yellow spot and septoria nodorum blotch was examined in four experiments over three years to define the relationship between disease severity and yield. In these experiments, differences in disease were first promoted by inoculations either with P. tritici-repentis-infected stubble or aqueous spore suspensions of P. nodorum. Disease progress was further manipulated with foliar application of fungicide. The pattern of disease development varied in each year under the influence of different rainfall patterns. The inoculation and fungicide treatments produced differences in disease levels after flag leaf emergence. The infection of yellow spot or septoria nodorum blotch caused similar losses in grain yield, ranging from 18% to 31%. The infection by either disease on the flag or penultimate leaf provided a good indication of yield-loss. Disease severity on flag leaves during the milk stage of the crop or an integration of disease as area under the disease progress curve on the flag leaves based on thermal time explained more than 80% variance in yield in a simple regression model. The data provided information towards the development of disease management strategies for the control of septoria nodorum blotch and yellow spot.  相似文献   

19.
The effects of aldicarb on populations of root lesion nematodes (primarily Pratylenchus penetrans ) and on grain yields of spring barley and wheat were examined in the field over 3 years, 1981*83. The incidence of barley net blotch ( Pyrenophora teres ), wheat leaf blotch ( Leptosphaeria nodorum ), and common root rot ( Cochliobolus sativus ) was also recorded in 1982 and 1983. Aldicarb treatments reduced the size of root lesion nematode populations in soil and roots in all years, except in the mid-season soil sample in 1983. The severity of leaf disease was decreased only in 1982, but the incidence of root rot was not significantly affected by the nematticide. Although aldicarb increased cereal grain yields by approximately 15% there was no significant relationship between numbers of root lesion nematodes in roots and soil and fungal disease symptoms on barley and wheat.  相似文献   

20.
Fusarium head blight (FHB) can affect wheat and barley and is a devastating disease caused by a complex of Fusarium species. Here we report on a large-scale survey on the genetic diversity of isolates collected from barley in China. Ten VNTR markers were tested on a representative set of 40 isolates covering 14 sampling areas along the Yangtze River. VNTR4 and VNTR7, with 13 and 6 alleles, each were applied to a total of 1106 single-spore isolates to reveal the population structure of F. asiaticum. The F. asiaticum population showed high genetic diversity and a clear genotypic substructure within China. Pair-wise comparisons of allele frequencies between the mountainous provinces of Sichuan and Chongqing in Western China, Hubei Province in the centre or the eastern provinces of Zhejiang, Jiangsu and Shanghai showed significant differences. Even between counties of the same province, significant differences between allele frequencies were found (P?<?0.001). Our results indicate serious constraints for migration of this pathogen in the major cereal-growing areas of China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号