首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A pressure-chamber technique was used to study the root uptake and xylem translocation of some fungicides, herbicides and an insecticide from different chemical classes in detopped soybean roots. Physiological parameters such as K+ leakage from roots, K+ concentrations in the xylem sap, and protein and ATP levels in the root cells were measured so as to evaluate any potential damage of this technique to the root system. HPLC was used to quantify the compounds in the xylem sap. The pressure-chamber technique has proved useful to study the root uptake and translocation of pesticides, does not damage the root system, and allows one to obtain appreciable volumes of xylem sap that can be analysed directly by HPLC, thus avoiding dependence on the availability of radio-labelled compounds. The concentration of each pesticide in the xylem sap showed a steady-state kinetic profile. Non-linear regression analysis was used to calculate the steady-state concentration and the time required to achieve 50% of the steady-state concentration (TSSC50). TSSC50 was well correlated with log Kow; the more lipophilic the compound the more time was required to reach the steady-state concentration. The efficiency of translocation was assessed by the transpiration stream concentration factor (TSCF) and a non-linear relationship between TSCF and log Kow was observed. The highest TSCF values were measured for those compounds with log Kow values around 3, a lipophilicity value similar to that reported earlier in an analogous experiment with detopped soybean plants but slightly higher than that reported in earlier experiments with intact barley plants. Lower TSCF values were obtained with chemicals with log Kow values below as well as above 3. © 1997 SCI.  相似文献   

2.
The uptake by barley roots from nutrient solution and subsequent transport to shoots of two series of amine bases were measured over 6 to 72 h. The compounds were chosen to span systematically ranges of lipophilicity (assessed using 1-octanol/water partition coefficients, Kow) and pKa that would include commercial pesticide amines. In a series of six substituted phenethyl amines, strong bases with pKa∽9·5, all the compounds were strongly taken up by roots from solutions of pH 8·0; uptake declined substantially as the pH was lowered to 5·0, especially for the compounds of intermediate lipophilicity (log Kow 2 to 3). This uptake could be ascribed to three processes: (i) accumulation of the cation inside the root cells due to the negative charge on the plasmalemma, as given by the Nernst equation and important only for the polar compounds which have low permeation rates through membranes; (ii) accumulation into the vacuole by ion-trapping, which was the dominant process at high pH for all compounds and at all pH values for the compounds of intermediate lipophilicity; (iii) partitioning on to the root solids, substantial only for the most lipophilic compounds. Translocation to shoots was proportional to uptake by roots, this ratio being independent of external pH for each compound and being optimal for the compounds of intermediate lipophilicity. Such proportionality was also observed in a series of three weaker bases of intermediate lipophilicity, in which compounds of pKa 7·4 to 8·0 were also well taken up and translocated whereas the very weak base 4-ethylaniline (pKa 5·03) was much less so. Tests with quaternised pyridines confirmed that organic cations move only slowly through membranes. The observed behaviour of the amines could be modelled reasonably well assuming that transport within the plant was dominated by movement across membranes of the non-ionised species, and this appeared to be true even for the most lipophilic phenethylamine (log Kow 4·67) studied, though its long-distance movement would be as the protonated species. © 1998 Society of Chemical Industry  相似文献   

3.
Determinations were made of the distribution of two series of non-ionised chemicals, O-methylcarbamoyloximes and substituted phenylureas, in barley shoots, following uptake by the roots from solution. The concentrations in basal and central shoot sections became constant after 24 to 48 h for all but the most lipophilic chemical studied, and were then greatest for the more lipophilic chemicals. Amounts in the leaves generally increased up to 72 or 96 h, when degradation balanced translocation. The accumulation of chemical in the lower section of shoots can be ascribed to a partitioning process similar to that in roots, the chemical being partitioned between the shoot and the xylem transpiration stream; this uptake could be estimated from the octan-1-01/water distribution coefficients, and was predicted to be greatest for compounds for which log Kow=4. 5.  相似文献   

4.
A novel compound, 1-(3-trifluoromethylphenyl)-5-phenoxy-1,2,3,4-tetrazole (WL 110547) is a pre-emergence bleaching herbicide with selectivities in certain crops. These selectivities and the weed-control spectrum are derived, in part, from features which influence the uptake of WL 110547 into sensitive tissue. WL 110547 is strongly adsorbed to soil with measured Koc values in the range 1500-2500 and, following application, is confined to the surface layers of soil, especially when the organic matter content is high. Some plant species have anatomical features which protect their developing leaf tissue from contact with the soil during emergence and thus escape direct contact with these treated layers. Furthermore, some of these plants are deeply rooted and thus there is little opportunity for sufficient uptake of WL 110547 to cause a phytotoxic effect. However some weeds, especially annual dicotyledons, germinate only from shallow depths and, during emergence, their cotyledons or leaves are in contact with the soil. In soils treated with WL 110547 they can thus absorb phytotoxic concentrations of herbicide directly into their cotyledons or leaves. Additional uptake may also occur through roots near the surface and allow WL 110547 to be translocated via the transpiration stream to the site of action in cotyledons and leaves and enhance phytotoxicity. Knowledge of the features controlling uptake, combined with a knowledge of intrinsic susceptibility, have allowed an understanding of the spectrum of weed control and the selectivities between weeds and crops.  相似文献   

5.
Transport of atrazine (ATR), 2,4-dinitrotoluene (DNT), and 1,2,3-trichlorobenzene (TCB) from roots to shoots via xylem of wheat and tomato seedlings was measured following a 24-h exposure of plant roots to hydroponic solutions of these organic compounds. Transport of the compounds from roots to shoots reached equilibrium within 24 h, consistent with an earlier finding. Low concentrations of TCB were detected in the final external solution and the xylem efflux of control wheat seedlings. This suggested that there was a fast foliar uptake of TCB and its downward movement via phloem of the wheat seedlings. Concentrations of DNT, ATR, and TCB in xylem effluxes of wheat and tomato increased significantly with increases of their external concentrations. The translocation stream concentration factors (TSCF), i.e., the ratios of the concentrations in xylem sap to those in external solution, of the compounds with tomato seedlings followed the order of ATR > DNT >> TCB, which was inversely correlated with the log Kow (the octanol–water partition coefficient) of the compounds. The observed xylem transports of DNT and TCB from roots to shoots with wheat seedlings were lower than those with tomato seedlings. ATR exhibited a high xylem transport with the two plant species, which resulted presumably from an atrazine–metal complex formation.  相似文献   

6.
pKa values for a wide range of commonly used ionisable pesticides, together with the log Kow values of the most lipophilic form of each, have been measured using pH-metric techniques. Examples of acids, bases and multiprotic compounds from the major classes of herbicides, and a number of insecticides and fungicides that contain ionisable groups, are included. The pKa and log Kow values so obtained were generally in good agreement with values taken from the literature that were measured by other methods. The lower limit of log Kow that could be measured by the pH-metric method lay below the -0·97 obtained for amitrole, but the method could not be applied to glyphosate for which shake-flask measurements indicated log Kow below -3. The highest log Kow obtained in this study was 5·12 for pentachlorophenol. The pH-metric technique offers a rapid and convenient method to determine pKa and log Kow for ionisable compounds, especially when utilising an automatic titration system linked to a dedicated computer.  相似文献   

7.
BACKGROUND: 4‐(3‐Trifluoromethylphenyl)pyridazine represents a new series of compounds with bleaching and herbicidal activities. RESULTS: A total of 43 novel 3‐(substituted benzyloxy or phenoxy)‐6‐methyl‐4‐(3‐trifluoromethylphenyl)pyridazine derivatives were synthesised, and their bleaching and herbicidal activities were evaluated through Spirodela polyrrhiza and greenhouse tests. Some compounds exhibited excellent herbicidal activities, even at a dose of 7.5 g ha?1. CONCLUSION: The results showed that a substituted phenoxy group at the 3‐position of the pyridazine ring and the electron‐withdrawing group at the para ‐position on the benzene ring were essential for high herbicidal activity. Copyright © 2011 Society of Chemical Industry  相似文献   

8.
Some of the factors affecting absorption and translocation of pesticides by the hypocotyls of intact radish (Raphanus sativus, L., cv. Black Spanish) seedlings have been studied, particular attention being given to the triazine herbicides simazine, atrazine and atraton. Uptake and translocation appear to be largely passive processes and by contrast with foliar absorption seem to be unaffected by humidity, con-centration, light and by the aqueous solubilities of the compounds. Diffusion across the tissues of the hypocotyl, rather than rate of transpiration, appears to determine the rate at which atrazine and simazine are translocated to the cotyledons. For several pesticides there is a qualitative relationship between the percentages of the compounds translocated to the upper portion of the shoots and their partition coefficients in oil/water systems. In conclusion, some consideration is given to the relative importance of uptake by roots and shoots under field conditions.  相似文献   

9.
Ray blight disease of pyrethrum (Tanacetum cinerariifolium) is caused by Stagonosporopsis tanaceti, with infected seed being a major means of transmission of this fungal pathogen. The infection process of S. tanaceti in pyrethrum seed and seedlings was determined. Infection hyphae only infected the outer and inner layers of the seed coat and not the embryo of naturally infected pyrethrum seed. During the process of germination of infected seed, S. tanaceti from the seed coat infected the developing embryo and cotyledon, resulting in pre‐ and post‐emergence death, depending on the level of infection in the seed coat. Pre‐emergence death occurred due to disintegration of the infected embryo, which was replaced by hyphae and extracellular anthocyanin‐like material (EAM) at 7 days after incubation (dai). Post‐emergence death occurred after both epidermal and cortical tissues of infected cotyledons at the crown/hypocotyl region disintegrated due to colonization by hyphae. Moreover, most of the tissues of the vascular bundles and cortical tissues contained heavy depositions of EAM at 10–14 dai. In 6‐week‐old infected seedlings, hyphae were confined to the epidermis and the cortical tissues at the crown/hypocotyl regions; the vascular bundles of both infected and uninfected regions, and cortical tissues of the uninfected regions of the seedlings were completely free from infection hyphae and EAM. These findings provide a better understanding of the early stages of the disease cycle of S. tanaceti and will lead to improved control measures for seedborne infection using seed treatments.  相似文献   

10.
New fluoroalkyl-substituted 1,3,5-triazine derivatives were synthesized and screened for herbicidal activity using a greenhouse pot test. Surprisingly, a series of 2-alkyl-4-fluoroalkyl-6-aralkylamino-1,3,5-triazines e.g. 6-(4-bromobenzylamino)-2-methyl-4-trifluoromethyl-1,3,5-triazine was found to possess strong pre- and post-emergence herbicidal activities, although the conventional herbicidal 1,3,5-triazines generally should have a 2-substituted-4,6-diamino-1,3,5-triazine structure for herbicidal activity. Our compounds show strong Photosynthetic Electron Transport inhibitory activity (PI50 c 7). Although their herbicidal effect is considered to be caused by a process similar to that for the conventional 1,3,5-triazine herbicide atrazine, they can control atrazine-resistant Chenopodium album effectively, and will thus form promising trial compounds for new triazine herbicide design.  相似文献   

11.
The plant cuticle is a highly complex membrane which forms the outer surface of the aerial portion of plants. The nature of the plant cuticle is reviewed with particular regard to its action as a potential barrier to the penetration of pesticide molecules; the role of the cuticular waxes is highlighted. The physicochemical properties of the cuticle influence the behaviour of spray droplets and, in turn, may affect the rate and efficiency of cuticle penetration. The permeation of active ingredients is influenced by their solubility characteristics as indicated by octanol/water (log Kow) and cuticle/water (Kcw) partition coefficients. Penetration of hydrophilic compounds (low log Kow) may be enhanced by hydration of the cuticle, while transcuticular transport of non-polar solutes (high log Kow) is increased by factors which reduce wax viscosity. The use of in-vitro models involving isolated cuticle membranes, isolated cuticle waxes, or isolated leaves has helped to focus on the activities of the cuticle in the absence of other physiological factors. Using these systems, the role of the waxes as a transport-limiting barrier has been identified and the factors influencing sorption, permeance and desorption examined. The action of surfactants, in vitro and in vivo, has been briefly addressed in regard to their role in facilitating cuticle penetration; other steps involving surfactant/solute/cuticle are complex, and synergy appears to depend on a number of factors including test species, concentration of active ingredient, surfactant type and concentration. Adjuvants may greatly influence the surface properties of the droplet, predispose the cuticle to solute transport, and enhance pesticide activity. The nature of these complex inter-relationships is discussed. © 1999 Society of Chemical Industry  相似文献   

12.
Ruling factors governing pre-emergence herbicidal activity were analysed for 16 photosynthesis-inhibiting 5-hydroxy-3-methyl-2–oxo-imidazolidine-1-carboxamide derivatives. Herbicidal performance was quantified by the reduction in area of experimental weed vegetation, measured by a computer-aided image analysis system. A system for fluorometric estimation of photosynthesis inhibitor concentration in aqueous solution greatly facilitated determination of the soil adsorption coefficients (Kd). Maximum herbicidal performance was found for N-sec-butyl-5-hydroxy-3-methyl-2-oxo-imidazolidine-1-carboxamide, a compound with the second lowest soil adsorptivity and average photosynthesis-inhibiting activity. A multiple regression analysis suggested that herbicidal performance of the soil-applied imidazolidine derivatives was determined by a balance between Kd and photosynthesis-inhibiting activity. In the present experimental system, however, the main influence was attributed to Kd.  相似文献   

13.
Quantitative structure-activity relationships (QSAR) were developed between the physicochemical parameters of the 5-substituent of a series of analogs of the imidazolinone herbicide, imazapyr, and root absorption, translocation, inhibition of acetohydroxyacid synthase (AHAS), and herbicidal activity of the analogs. An optimum substituent lipophilicity (π = 1.85–2–3) for root absorption was identified for corn (Zea mays L.) and sunflower (Helianthus annuus L.). Translocation from roots to shoots was greatest for those analogs having either highly nonpolar or highly polar 5-substituents, indicating that both symplastic and apopiastic mechanisms may be functioning. In addition, translocation from roots was positively correlated with electron-withdrawing parameters of the 5-substituent, and a possible mechanism governing this relationship is discussed. Modeling in vitro AHAS inhibition was not successful, but models were developed for herbicidal activity as measured in an Arabidopsis thaliana (L.) Hevnh. bioassay. The whole-plant models described an optimum substituent lipophilicity (π = 0 71) which probably reflected the influence of this parameter on the component processes of absorption and translocation. Whole-plant activity was also greater for analogs having electron-donating 5-substituents; this result suggests that electron donation may be important for metabolism, or more likely, for AHAS inhibition.  相似文献   

14.
The relationship between the physicochemical properties (molar volume, partition coefficient, and dissociation constant) of slow-acting systemic postemergence xenobiotics and their uptake and translocation to the sites of action was investigated using the nonlinear, dynamic simulation model ERMESSE. When the pKa was held constant at 4.0, the model enables the prediction of the uptake of a systemic xenobiotic as a function of its partition coefficient and molar volume. The model also considered the effects of the physicochemical properties of a systemic xenobiotic on its long-distance translocation within the vascular tissues. For instance, when the log Kow and pKa were held constant at 1.5 and 6.0, respectively, the model predicted a higher translocation rate (55%) for molecules with a small (e.g., MV = 100 cm3 mol−1) as opposed to a large (e.g., MV = 300 cm3 mol−1, 33%) molar volume. In addition, the theoretical predictions from the ERMESSE model showed that any xenobiotic with a molar volume not exceeding 300 cm3 mol−1 could provide an uptake ?50% and a translocation rate ?25% when its log Kow is between −0.5 and 2.5 and its pKa is between 0.0 and 8.0.  相似文献   

15.
Eight new sterol biosynthesis-inhibiting fungicides, structurally related to penconazole and having vapour pressures up to 118 mPa, were synthesised. Their toxicities to the cereal take-all fungus, Gaeumannomyces graminis var. tritici, on agar were measured; intrinsic activities were measured after incorporating the compounds into the agar and vapour activities were measured after their evaporation from glass and from moist soil. Vapour activity following evaporation from soil was shown to be a function of both the intrinsic activity of the compound and its partition coefficient between the air and moist soil (Kas). The latter is itself a function of vapour pressure, 1-octanol/water partition coefficient (Kow) and the soil type. The compound most active as vapour from soil in the in-vitro test, 1-(pyridin-3-yl)-2-(4-flurorophenyl)pentane, was ineffective against take-all in wheat in a pot test in which the inoculated soil was treated unevenly, providing further evidence that the redistribution of fungicides in moist soil occurs predominantly via the water phase rather than the vapour phase.  相似文献   

16.
Reverse-phase high performance liquid chromatography (h.p.l.c.), using a C18 analytical column, has been applied to the determination of partition coefficients for a range of agrochemicals and industrial chemicals. Using a correlation plot of the logarithm of the capacity factor (k) with the logarithm of the n-octanol/water partition coefficient (Pow), partition coefficients were predicted with a 95% tolerance interval of ± log 0.80 of the literature ‘shake flask’ value for compounds of random structure over the log Pow range 0–6. Individual regression lines were fitted for compounds of comparable size and functional grouping, which reduced any bias and thereby enabled more accurate predictions to be made. The reverse-phase h.p.l.c. method has a number of advantages over the traditional ‘shake-flask’ method. Quantitative methods are not required or do not have to be developed and only the determination of the retention time is necessary. Quick and precise determinations of retention times are facilitated by h.p.l.c. and further improvement can be obtained by automation of solvent mixing, solute injection and data processing. H.p.l.c. was used to generate partition coefficient data for highly hydrophobic materials and, because of its resolving power, data for mixtures and solvent fractions. Dual detection, using u.v. and r.i. in series, was necessary for some compounds, particularly unknown mixtures and impure compounds. Calculations of log Pow based on the fragment-addition method using the structural data file, MACCS, was of considerable value in confirming experimentally derived values. In certain cases, calculated log Pow values were considered more trustworthy than experimental values.  相似文献   

17.
Ascochyta blight of chickpea (Cicer arietinum L.), caused byAscochyta rabiei (Pass.) Labrousse, was found to be both externally as well as internally seedborne in nature, with the external infection being predominant. The pathogen was located primarily on or in the seed coat and in very few cases penetrated into the cotyledons and rarely, to the embryo. Seedling infection resulted from both externally as well as internally seedborne inoculum. The mode of fungal transmission from seed to the foliar plant parts was strictly non-systemic in nature.  相似文献   

18.
Anthracnose of tomato caused by Colletotrichum coccodes is a devastating disease of ripe fruits. This pathogen may also infect tomato roots, stems and leaves. In the present study, C. coccodes is shown to be capable of contaminating seeds collected from artificially inoculated tomato fruits. Seedlings germinating from these infected seeds exhibited disease symptoms and therefore may transmit the pathogen to the next crop. The proportion of infected seeds ranged between 20% and 63% in all C. coccodes isolates tested and correlated with the aggressiveness of the isolates to tomato fruits. Fungicidal treatment of the collected seeds reduced, but did not eliminate, seed infection. A transgenic C. coccodes isolate expressing green fluorescent protein was used to visualize the pathogen. Mycelium was observed both on surfaces of the seed coat and within 1% of the embryos.  相似文献   

19.
The activity of Trichoderma harzianum in the spermosphere and rhizosphere of different plant species was studied by use of a beta-glucuronidase (GUS) transformant (strain T3a). Hereby, direct observation of micro-habitats supporting metabolic activity of T. harzianum is reported. Germination of conidia and mycelial growth were not supported by exudates from healthy roots of various ages. Instead, growth and activity of T. harzianum depended on access to dead organic substrates such as seed coats, decaying roots, and wounds, including those caused by infecting pathogens. A correlation between the GUS activity of T. harzianum and the biomass of Pythium ultimum in infected roots was established. On the basis of our observations, we suggest that the biocontrol ability of T. harzianum involves competition with the pathogen for substrates including the seed coat, and wounded or infected root tissue.  相似文献   

20.
在实验室模拟沉积农药条件下,通过液相色谱-串联质谱 (LC-MS/MS) 和气相色谱-串联质谱 (GC-MS/MS) 检测技术,研究了经水洗、水煮、炒制、去皮和腌制5种加工方式后,多菌灵、吡虫啉、啶虫脒、乙霉威、霜霉威、丙溴磷、氯氰菊酯、三唑磷、敌敌畏和嘧霉胺10种农药在黄瓜中的残留量变化情况。结果表明:在5种加工方式中,以去皮处理对农药的去除效果最明显,其中丙溴磷和氯氰菊酯的加工因子 (PF) 均为0.04,其他4种加工方式对农药去除效果的强弱顺序为水煮>炒制、水洗、腌制;农药的log Kow(辛醇水分配系数) 值跟农药的去除效果直接相关,经水洗和水煮2种加工方式处理后,农药的log Kow值越小,越易被去除。另外,水洗、水煮和炒制处理,在0~10 min内随处理时间延长农药残留量呈减小的趋势,10种农药的PF变化范围为:水洗时PF在1.00~0.62之间,水煮时PF在0.86~0.37之间,炒制时PF在1.13~0.52之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号