首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uptake of pesticides into barley leaves was measured under controlled conditions. Leaves detached from plants were submerged in aqueous solutions of 14C-labelled (2,4-dichlorophenoxy)acetic acid, triadimenol, bitertanol and pentachlorophenol. Uptake was biphasic. A short (30-min) period with high rates of uptake was followed by uptake that proceeded more slowly and was steady over hours. Compartmentation of pesticides was studied by desorbing pentachlorophenol from leaves previously loaded with [14C]pentachlorophenol. From the uptake and desorption kinetics it was concluded that penetration of pesticides proceeds as follows: the compounds are first sorbed at the surface of epicuticular wax aggregates where they are in contact with the donor solutions. Solutes then diffuse through the surface wax aggregates into the cuticle. Equilibrium between donor solutions, surface wax and cuticle is established in about 30 min. After this time the amounts of solutes in these compartments no longer increase. Uptake after this time represents penetration into the leaf cells. This fraction of the pentachlorophenol is retained irreversibly, while that sorbed in wax and cutin can be desorbed again. All compounds were sorbed in cuticular waxes and partition coefficients wax/water were determined. On a mass basis only 5 to 10% of the amounts sorbed in cutin are sorbed in wax. This comparatively low solubility in wax contributes to the barrier properties of cuticular waxes. The other determinant of permeability is the very low mobility of solutes in cuticular waxes.  相似文献   

2.
A theory of cuticular penetration of crop protection agents (CPAs) is presented, which incorporates properties of cuticles and cuticular waxes as well as properties of active ingredients and adjuvants. Based on this theory, two models are developed which are analytical in the sense that they help to quantify and understand (i) differences in permeability among cuticles from different species, (ii) effects of properties of CPAs on permeabilities of cuticles and rates of uptake and (iii) the effects of adjuvants on properties of cuticles and rates of uptake of CPAs. The models can be used to predict rates of uptake of CPAs as affected by properties of cuticular waxes, active ingredients and adjuvants. However, before this can be done, a constant, two parameters and at least two variables must be estimated. Properties of cuticles are accounted for by the constant D0x and the parameter β′. The former, the ratio of the mobility of a hypothetical molecule having zero molar volume (D0x) divided by the path length (Δx) across the cuticle, has the dimension of velocity (ms?1) and is independent of the solubility of the CPA. The latter is a measure of size selectivity of the cuticle. Differences in permeabilities of cuticles from different species increase with increasing size of active ingredients due to size selectivity (β′). Removing cuticular waxes from Citrus cuticles increased D0x by a factor of 2042, while β was not affected. Differential solubility of CPAs is considered part of the driving force and at least two different partition coefficients are needed to account for differences in solubilities in cuticular waxes, cutin, water and the formulation residue on the surface of the cuticles. Adjuvants are solvents in the formulation residue on the leaf surface once the carriers (water and other volatile solvents) have evaporated and certain adjuvants also act as accelerators; they penetrate the cuticle and increase D0x. Thus, accelerators increase rates of uptake and this effect depends on two factors, (i) the intrinsic activity of the accelerator and (ii) rate of penetration into the cuticle, because the active ingredients follow the accelerator front across the cuticle. Since accelerators penetrate from the formulation residue into the cuticle, the volume of the formulation residue decreases with time. This maintains high concentrations of CPAs in the formulation residue and, thus, maximum driving forces and rates of penetration. To utilise fully this dual accelerator effect, it is necessary to match velocities of penetration of accelerators and active ingredients accurately.  相似文献   

3.
Cuticular wax on the plant epidermis inhibits or enhances prepenetration events of powdery mildew (Erysiphe necator Schwein). We examined the role of cuticular leaf and berry waxes as a resistance mechanism in four grapevine genotypes (Italia?×?Mercan-174, Gürcü, Isabella, Özer Karas?) resistant to powdery mildew after natural infection and inoculation. To understand cuticular wax properties, we determined the amount of wax and antifungal effects of thin layer chromatography (TLC) fractions from cuticular leaf and berry waxes, then assessed the chemical composition of fractions with different antifungal activities using gas chromatography/mass spectrometry (GC/MS). Susceptible genotypes Cabernet Sauvignon and Italia were used for comparison. Resistant and sensitive genotypes did not differ significantly in the total amount of wax on leaves and berries; however, 27 fatty acids, 26 alkanes, 6 terpenes, 4 indole derivatives and 4 ketones, and 3 amides, 3 phenols and 3 steroids were detected in fractions with high antifungal activity (≥75% inhibition of germination) in leaf and/or berry cuticular waxes of resistant genotypes only. These compounds may be evaluated as markers for powdery mildew resistance during genotype selection in a grapevine breeding program.  相似文献   

4.
Effects of monodisperse alcohol ethoxylates on mobilities of 14C-labelled pentachlorophenol (PCP) and tetracosanoic acid (C24AC) in reconstituted cuticular wax of barley leaves were measured. Depending on the respective alcohol ethoxylate investigated, the diffusion coefficient (D) of PCP in barley wax was increased by factors ranging from 3·3 to 19·6, whereas D of C24AC, was increased by factors varying between 22 and 315. In order to analyse the relationship between the concentration of surfactants in the wax and their effects on D, the amounts of alcohol ethoxylates dissolved in the wax at equilibrium with external concentrations well above the critical micelle concentration (CMC) were determined. Wax/water partition coefficients (Kww) of the alcohol ethoxylates were about one order of magnitude lower than cuticle/water partition coefficients (Kcw), which is a consequence of the semi-crystalline structure of the wax compared with amorphous cutin. Correlations between effects on D and maximum amounts of alcohol ethoxylates dissolved in the wax were obtained indicating an unspecific wax/surfactant interaction. This was solely dependent on the amount of surfactant sorbed to the wax, leading to increased mobilities of pesticides in the wax. Applying ESR-spectroscopy, which gave an insight into the molecular structure of the wax, supported this interpretation of an unspecific plasticising effect of the alcohol ethoxylates on the molecular structure of the wax. The results obtained in this study are in good accordance with the results obtained in a recent study investigating the effects of the same group of alcohol ethoxylates on mobilities of pesticides in isolated, but intact, cuticular membranes of Citrus. This demonstrates that the investigation of isolated and subsequently reconstituted cuticular wax is a useful model system analysing the mechanisms of the surfactant interaction with the transport-limiting barrier of plant cuticles.  相似文献   

5.
The plant cuticle is a highly complex membrane which forms the outer surface of the aerial portion of plants. The nature of the plant cuticle is reviewed with particular regard to its action as a potential barrier to the penetration of pesticide molecules; the role of the cuticular waxes is highlighted. The physicochemical properties of the cuticle influence the behaviour of spray droplets and, in turn, may affect the rate and efficiency of cuticle penetration. The permeation of active ingredients is influenced by their solubility characteristics as indicated by octanol/water (log Kow) and cuticle/water (Kcw) partition coefficients. Penetration of hydrophilic compounds (low log Kow) may be enhanced by hydration of the cuticle, while transcuticular transport of non-polar solutes (high log Kow) is increased by factors which reduce wax viscosity. The use of in-vitro models involving isolated cuticle membranes, isolated cuticle waxes, or isolated leaves has helped to focus on the activities of the cuticle in the absence of other physiological factors. Using these systems, the role of the waxes as a transport-limiting barrier has been identified and the factors influencing sorption, permeance and desorption examined. The action of surfactants, in vitro and in vivo, has been briefly addressed in regard to their role in facilitating cuticle penetration; other steps involving surfactant/solute/cuticle are complex, and synergy appears to depend on a number of factors including test species, concentration of active ingredient, surfactant type and concentration. Adjuvants may greatly influence the surface properties of the droplet, predispose the cuticle to solute transport, and enhance pesticide activity. The nature of these complex inter-relationships is discussed. © 1999 Society of Chemical Industry  相似文献   

6.
Polydisperse ethoxylated fatty alcohol (EFA) surfactants can improve the performance of crop protection agents. At the cuticular level they act as accelerators of penetration by increasing the mobility of active ingredients in the cuticle, the barrier properties of which are mainly caused by cuticular waxes. Polydisperse Genapol C-050 (GP C-050, average formula C12.5E5.8) was also found to increase mobility in wax-extracted polymer matrix membranes (MX) of bitter orange and pear, indicating that sorption of surfactants increased segmental mobility of polymethylene chains in cutin and wax. Sorption into MX of the active fraction of GP C-050 from 5g litre−1 micellar solutions was in equilibrium in less than 1 h after establishing contact. This is almost 100-fold faster than with cuticular membranes (CM). Temperature dependence of solute mobilities in CM was studied in order to measure activation energies (ED) of diffusion in the presence and absence of aqueous surfactant solutions. Monodisperse fatty alcohol ethoxylates C8E3, C8E4 and C12E6, and (non-surface-active) tributylphosphate decreased ED of the model compounds WL 110547 and bifenox in Citrus, Pyrus and Stephanotis CM by more than 100 kJ mol−1. This corresponds to 50 to 275-fold increases of mobilities at 15 °C. Our data suggest that the decrease in activation energies with the concomitant accelerating effect on mobility contributes considerably to the effects of so-called activator surfactants. High temperature and accelerators act similarly on barrier properties of CM. It is shown that effects of both monodisperse and polydisperse EFA surfactants on solute mobility are reversible and that radiolabelled C12E8 penetrated pear CM rapidly. However, rates of penetration were lowered by excess amounts of WL 110547 and especially phenylurea. Partition coefficients of seven organic solutes between Capsicum fruit cuticles and GP C-050 were very low and, with the exception of methylglucose, smaller than 1. They decreased with lipophilicity and differed about 100-fold. Especially for the lipophilic compounds they were orders of magnitude lower than octanol/water or cuticle/water partition coefficients, which indicates the limited usefulness of these values for an understanding of penetration of active ingredients from formulation residues. © 1999 Society of Chemical Industry  相似文献   

7.
Cuticular waxes represent the first and, in most cases, the limiting barrier for foliar uptake of pesticides from solution. Sorption of pesticides in reconstituted cuticular wax (wax/water partition coefficients) of Chenopodium album L. and in isolated cuticular membranes (cuticle/water partition coefficients) of Prunus laurocerasus L. was determined. Diffusion coefficients of pesticides in reconstituted cuticular wax of C. album leaves were size-dependent, increasing with increasing molar volume. In the presence of alcohol ethoxylates, diffusion coefficients were enhanced by up to two orders of magnitude, and size selectivity was significantly decreased. The accelerating effect and the decrease in size selectivity were attributed to plasticisation of the cuticular wax by the alcohol ethoxylates increasing the fluidity in the wax. A free volume model adopted from polymer science was successfully applied to predict diffusion coefficients of pesticides on the basis of the transport properties of the wax (size selectivity and crystallinity), the molar volume of the diffusing compound and the accelerator concentration in the wax.  相似文献   

8.
Fundamental to the development of models to predict the spread of cucurbit downy mildew is the ability to determine the escape of Pseudoperonospora cubensis sporangia from infected fields. Aerial concentrations of sporangia, C (sporangia m?3), were monitored using Rotorod samplers deployed at 0·5 to 3·0 m above a naturally infected cucumber canopy in two sites in central and eastern North Carolina in 2011, where disease severity ranged from 1 to 40%. Standing crop of sporangia was assessed each morning at 07·00 h EDT and ranged from 320 to 16 170 sporangia m?2. Disease severity and height above the canopy significantly (< 0·0001) affected C with mean concentration (Cm) being high at moderate disease. Values of Cm decreased rapidly with canopy height and at a height of 2·0 m, Cm was only 7% of values measured at 0·5 m when disease was moderate. Daily total flux (FD) was dependent on disease severity and ranged from 5·9 to 2242·3 sporangia m?2. The fraction of available sporangia that escaped the canopy increased from 0·028 to 0·171 as average wind speed above the canopy for periods of high C increased from 1·7 to 3·6 m s?1. Variations of Cm and FD with increasing disease were well described (< 0·0001) by a log‐normal model with 15% as the threshold above which Cm and FD decreased as disease severity increased. These results indicate that disease severity should be used to adjust sporangia escape in spore transport simulation models that are used to predict the risk of spread of cucurbit downy mildew.  相似文献   

9.
River-bed sediments are active zones for pesticide deposition and subsequent movement by diffusion, mass transport and sorption to solids. The aim of this work was to investigate the importance of diffusion as a means of pesticide movement. In laboratory experiments, simazine and lindane were introduced to well-mixed aqueous solutions overlying two different river sediments. Sediment cores were sectioned horizontally and analyzed for pesticide content by supercritical fluid extraction. Experiments were used to determine sorption isotherms of the compounds to suspended sediments at 10°C. Vertical profiles of the pesticides in the sediments showed that the compounds reached a maximum depth of 89 mm over a period of 37 days. A mathematical model was developed to describe pesticide transport by diffusion within the sediment porewaters and sediment sorbed phases, taking into account sorption of the compounds to sediment particles. Effective diffusion coefficients ((0.5–1.6)×10-10 m2 s-1) were obtained for simazine and lindane in the characterized sediments. These were used to calculate values for diffusion in the dissolved phase (0.38×10-10 and 6·16×10-10 m2 s-1 for simazine and lindane respectively) and diffusion in the sorbed phase (0.39×10-10 m2 s-1 for simazine and negligible for lindane). Sorption onto the sediment significantly influenced the rate of penetration of the compounds into the sediment; thus although lindane had a larger effective diffusion coefficient than simazine, its larger sorption affinity and negligible diffusion in the sorbed phase led to less penetration into the sediment. © 1998 Society of Chemical Industry  相似文献   

10.
BACKGROUND: Sorption coefficients (the linear KD or the non‐linear KF and NF) are critical parameters in models of pesticide transport to groundwater or surface water. In this work, a dataset of isoproturon sorption coefficients and corresponding soil properties (264 KD and 55 KF) was compiled, and pedotransfer functions were built for predicting isoproturon sorption in soils and vadose zone materials. These were benchmarked against various other prediction methods. RESULTS: The results show that the organic carbon content (OC) and pH are the two main soil properties influencing isoproturon KD. The pedotransfer function is KD = 1.7822 + 0.0162 OC1.5 ? 0.1958 pH (KD in L kg?1 and OC in g kg?1). For low‐OC soils (OC < 6.15 g kg?1), clay and pH are most influential. The pedotransfer function is then KD = 0.9980 + 0.0002 clay ? 0.0990 pH (clay in g kg?1). Benchmarking KD estimations showed that functions calibrated on more specific subsets of the data perform better on these subsets than functions calibrated on larger subsets. CONCLUSION: Predicting isoproturon sorption in soils in unsampled locations should rely, whenever possible, and by order of preference, on (a) site‐ or soil‐specific pedotransfer functions, (b) pedotransfer functions calibrated on a large dataset, (c) KOC values calculated on a large dataset or (d) KOC values taken from existing pesticide properties databases. Copyright © 2011 Society of Chemical Industry  相似文献   

11.
The study aimed to find the possible differences, existing between the cuticular waxes of cotton and mealybug insects, using advanced analytical studies. The biochemical composition of the leaf wax of upland cotton (Gossypium hirsutum L.) and the cuticular wax of the different mealybug species, including Phenacoccus solenopsis Tinsley, Ferrisia virgata Cockerell, Paracoccus marginatus Williams and Granara de Willink, and Drosicha mangiferae Green were analyzed in detail by Gas Chromatography-Mass Spectrometry (GC-MS). The results clearly confirmed that the cotton wax is dominated by the six-carbon alkanes, while the mealybug wax is a mixture of both the five-carbon alkanes and the six-carbon alkanes. Apart from these differences, the common hydrocarbons such as hexadecane, icosane, and heneicosane, the uncommon hydrocarbons such as ethane, cyclobutanone, decane, and cyclododecane, the species-specific compounds of mealybugs such as myristyl alcohol, quinoline, hexacosane, and pentacosane were also identified and their retention times (RT) were listed out in detail. The outcome of this study will be useful to develop pest management techniques targeting the waxy cuticle of mealybugs without obstructing the normal physiology and growth of the cotton crop.  相似文献   

12.
The mobility of chlorfenvinphos in isolated pear (Pyrus communis cv. Bartlett) leaf cuticular membranes (CM) was studied as a function of concentration of chlorfenvinphos sorbed in the cuticle. Mobilities of chlorfenvinphos increased approximately 9-fold when the amount sorbed increased from 1 to 100 μg cm−2 pear leaf cuticle. From the amounts per area, average volume fractions of chlorfenvinphos in the cuticle were calculated ranging from 2×10−3 to 5·1×10−2. The increase in mobilities was steepest at the lower and levelled off at higher volume fractions. This correlation could be described for the whole range of volume fractions investigated by an equation which assumes homogeneously dispersed chlorfenvinphos. Temperature dependence of mobilities was studied at 17, 25 and 35°C and chlorfenvinphos volume fractions of 5·5×10−3 and 0·12, respectively. Arrhenius graphs were linear for both volume fractions, showing that cuticles did not undergo a phase transition due to the high amount of sorbed chlorfenvinphos. However, at a volume fraction of 0·12, the activation energy of diffusion, ED, was significantly lower (83·6 kJ mol−1) than at 5·5×10−3 (135 kJ mol−1). We interpret these findings as evidence for a plasticising effect on cuticular waxes by chlorfenvinphos. So far, such an effect had been demonstrated only for certain adjuvants (ethoxylated alcohols) but not for active ingredients. Chlorfenvinphos not only increased its own mobility in pear leaf cuticles, but also that of 2,4-D in Citrus leaf cuticles. This would be expected if plasticising of waxes was the sole mechanism responsible for increased mobilities. From these data we predict that permeabilities of cuticles to chlorfenvinphos are not constant. Depending on temperature as well as types and amounts of adjuvants, rates of foliar penetration of chlorfenvinphos can be higher if its concentration in the spray liquid is increased.  相似文献   

13.
在植物的生长发育中,植物表皮蜡质能够保护植物免受外来生物和非生物胁迫的侵害。本研究选取榆黍1号、雁黍7号、陇糜8号、晋黍9号和宁糜10号5个糜子品种材料,利用气相色谱(GC)技术对不同品种及不同生长发育时期糜子叶片的表皮蜡质成分进行分析从而了解糜子叶片表皮蜡质的组成,并对不同品种糜子蜡质晶体结构进行扫描电镜观察。结果表明,不同糜子品种叶片表皮蜡质含量不同,高蜡品种榆黍1号蜡质总含量是低蜡品种宁糜10号的1.4倍。不同糜子品种蜡质组成成分相同,均以碳链长度分布范围为C22-C35的烷烃、初级醇、萜类物质等20种化合物为主。初级醇是糜子叶片表皮蜡质的主要组成成分,占蜡质总含量的67.46%;其中C32醇含量最高,占初级醇含量的82.73%。糜子不同生长发育时期蜡质组成比较相似,均含有初级醇、烷烃及萜类物质;且蜡质总量随生长发育时间的延长不断增加。扫描电镜观察表明,叶片表皮蜡质晶体结构为片状和少量球状。  相似文献   

14.
BACKGROUND: Sorption largely controls pesticide fate in soils because it influences its availability for biodegradation or transport in the soil water. In this study, variability of sorption and desorption of isoxaflutole (IFT) and its active metabolite diketonitrile (DKN) was investigated under conventional and conservation tillage. RESULTS: According to soil samples, IFT KD values ranged from 1.4 to 3.2 L kg?1 and DKN KD values ranged from 0.02 to 0.17 L kg?1. Positive correlations were found between organic carbon content and IFT and DKN sorption. IFT and DKN sorption was higher under conservation than under conventional tillage owing to higher organic carbon content. Under conservation tillage, measurements on maize and oat residues collected from the soil surface showed a greater sorption of IFT on plant residues than on soil samples, with the highest sorbed quantities measured on maize residues (KD ≈ 45 L kg?1). Desorption of IFT was hysteretic, and, after five consecutive desorptions, between 72 and 89% of the sorbed IFT was desorbed from soil samples. For maize residues, desorption was weak (<50% of the sorbed IFT), but, after two complementary desorptions allowing for IFT hydrolysis, DKN was released from maize residues. CONCLUSION: Owing to an increase in organic carbon in topsoil layers, sorption of IFT and DKN was enhanced under conservation tillage. Greater sorption capacities under conservation tillage could help in decreasing DKN leaching to groundwater. Copyright © 2012 Society of Chemical Industry  相似文献   

15.
The effects of octylphenol (OP) and four of its ethoxylated derivatives on uptake into, and distribution within, maize leaf of 2-deoxy-glucose (2D-glucose), atrazine and o, p′-DDT are reported. The surfactants and OP (2 g litre?1 in aqueous acetone) increased the uptake, at both 1.5 and 24 h, of the three model compounds (applied at 1 g litre?1) having water solubilities in the g, mg and μg litre?1 ranges. The uptake of 2D-glucose was positively correlated with the hygroscopicity of the surfactants. The uptake of DDT and atrazine increased with the uptake of the surfactants, being inversely related to their hydrophile:lipophile balance (HLB). Uptake of 2D-glucose and atrazine was enhanced at high humidity, the relative enhancement for atrazine increasing with increasing ethylene oxide (EO) content of the surfactants. A significant proportion of the atrazine and DDT entering the leaf was recovered from the epicuticular wax, the amount of atrazine recovered from the wax increasing with the EO content of the surfactants. The proportion of the surfactants taken up which was recovered from the epicuticular wax was minimal at an EO content of 12.5–16 mole equivalents. The appearance of the deposits on the leaf surface differed markedly among the surfactants, with similar trends for all three chemicals and without visible evidence for infiltration of the stomatal pores. The total quantities of glucose and atrazine translocated were increased by all surfactants but that of DDT was not, despite increases in uptake of up to 7.5-fold. Relative translocation (export from treated region of leaf as a percentage of chemical penetrating beyond the epicuticular wax) was reduced in all cases in the presence of surfactant. Up to 30% of the applied [14C]chemicals was not recovered from the treated leaf after 24 h. The reduced recovery of 2D-glucose, but not that of atrazine and DDT, was largely attributable to movement out of the treated leaf, with approximately 70% of the chemical taken up being translocated basipetally. Loss of atrazine and DDT was a result of volatilisation. There was no evidence that either [14C]2 D-glucose or [14C]atrazine was metabolised to [14C]carbon dioxide.  相似文献   

16.
Water penetrated through isolated leaf cuticles of dwarf orange (Citrus mitis Blanco, ?Calamondin’?) as undissociated molecules because both [18O] water (1H218O) and HTO (1H3H16O) permeated at the same rate. HTO penetrated to 3 to 21% of the theoretical equilibrium value (TEV) in an unstirred system within 10 days for astomatous cuticles and 50 to 60% of TEV for stomatous cuticles. The permeability coefficient (k) of HTO through astomatous cuticles at 25°C was 6.8 × 10?7 cm s?1. Two highly water-soluble 14C-labelled compounds, trichloroacetic acid (TCA) and 1,2,4-triazol-3-ylamine [aminotriazole (BSI) or amitrole (ISO)], and two nearly water-insoluble 14C-labelled compounds, 1-naphthyl methylcarbamate (carbaryl) and 2,6-dichloro-4-nitroaniline (dicloran), were compared to HTO as a reference standard in permeation studies. All four organic molecules permeated without decomposing. The relative k values for TCA, aminotriazole, carbaryl, HTO and dicloran were 0.32, 0.47, 0.71, 1.0, and 1.5 respectively. Although this suggested that the permeation of organic molecules may be inversely related to water solubility, this could not be established with certainty due to large variations in the data. The k values were obtained for 12 other organic compounds through a variety of biological and model membranes or were calculated from the literature. Any relationships between k and various molecular characteristics were unclear because a wide variety of cuticle sources and experimental design was used by different investigators working in this area. The calculation of k is considered essential in all permeability studies so that comparisons can be made between laboratories.  相似文献   

17.
A series of compounds containing the trifluoromethylketone group have been synthesized utilizing either a modified Grignard procedure or by reacting selected aliphatic bromides or tosylates with the Collman reagent [Na2Fe(CO)4]. When tested in vitro as inhibitors of crude juvenile hormone esterase from the hemolymph of the cabbage looper, Trichoplusia ni (Noctuidae), the most active compounds were trifluoromethylketones possessing either a juvenoid-like structure or a straight aliphatic chain. The logarithm of the inhibitory potency of the aliphatic compounds was proportional to their chain length, up to 1,1,1-trifluorotetradecan-2-one (I50 = 1 × 10?7M). This powerful inhibition was found to be highly selective for JHE, reversible, competitive by Lineweaver-Burk analysis, and was characterized by high affinity of the inhibitor for the esterase (Ki = 3.2 × 10?9M, Km JH III = 2 × 10?7M). Other trifluoromethylketones were shown to be inhibitors of T. ni α-naphthylacetate esterase and bovine trypsin. By analogy with the mechanism of trypsin action, trifluoromethylketones are probably potent inhibitors due to their resemblance to a tetrahedral transition state on the reaction coordinate to the acylated enzyme.  相似文献   

18.
Wettable powder formulations of the organophosphorus insecticides, fenitrothion and pirimiphos-methyl, and the pyrethroids, permethrin and deltamethrin, have been compared for persistence and activity on woven polypropylene fabric; the residues produced in maize kept under the test sheets have also been measured. The test insects were Sitophilus oryzue (L.) and Tribolium custuneum (Herbst). Permethrin at 41 and 83 mg m?2 was completely effective for the full 12 weeks of the experiment. Deltamethrin at 6.2 and 12.5 mg m?2 was almost equally effective but after 4 weeks the deposit was slower acting against S. oryzae. The organophosphorus compounds were effective only up to 2 weeks at 250 mg m?2 and up to 4 weeks at 500 mg m?2. No residues could be detected under the pyrethroids but the organophosphorus insecticides gave residues of 2–4 mg kg?1 on a thin layer of grain. This residue was biologically effective against the test insects.  相似文献   

19.
The effects of several nonionic surfactants on [14C]glyphosate mono(isopropylammonium) diffusion across isolated tomato fruit cuticles (Lycopersicon esculentum Mill.) were compared under controlled atmospheric conditions (25°C; 65% R.H.) using a model system consisting of 1-μl droplets applied to isolated cuticles on agar blocks. Rates of diffusion for glyphosate (10 g acid equivalent litre?1 in the applied solution) and overall amounts recovered in underlying agar blocks were influenced by the ethylene oxide (EO) chain length for a homologous nonylphenol surfactant series (10 g litre?1). Glyphosate uptake increased with EO content, reaching an optimum at a mean of 17 EO, then decreasing below control values for surfactants with 40 EO. There was a strong influence of the hydrophobe on glyphosate penetration for different surfactants with similar mean EO content (10 EO). The primary aliphatic amine enhanced penetration the most, followed by the nonylphenol while the aliphatic alcohol showed no improvement on glyphosate transfer across cuticles. Water soprtion was greatly enhanced by a primary aliphatic amine (10 EO) and by a nonylphenol (17 EO). The aliphatic alcohol (10 EO) and a shorter-chained nonylphenol (4 EO) did not significantly enhance water sorption. Comparison of water sorption with glyphosate diffusion across cuticles suggests a strong relationship between the two. Change in solution pH over a limited range had no significant effect. Promotion of cuticular hydration by surfactants may thus play an important role in the enhancement of foliar uptake of water-soluble herbicides such as glyphosate.  相似文献   

20.
Citrus fruits were treated with wax coatings containing sodium 2-phenylphenate tetrahydrate (SOPP) and stored at 10 °C. No injuries appeared during 30 days' storage in Valencia oranges sprayed with waxes containing up to 4.75% of SOPP, or during 70 days' storage in Shamouti oranges and in grapefruit dipped in waxes containing up to 2.16% of SOPP. In Shamouti oranges and grapefruit dipped in waxes containing 3.1 to 3.88% of SOPP, injuries appeared at the beginning of storage. In non-injured fruits, the amounts of SOPP applied by waxing did not exceed 74.7 μg/cm2 of the fruit surface and the 2-phenylphenol (OPP) residues in the fruits did not exceed 36.8 parts/million; in injured fruits the amounts of SOPP applied varied between 105.1 and 211.3 μg/cm2 and the OPP residues between 41.5 and 123.6 parts/million. In non-injured fruit the amount of wax applied did not exceed 3.46 μl/cm2; in injured fruits the figure varied between 3.19 and 6.2 μg/cm2, suggesting that the wax coating concentrates at some places on the peel, causing injuries to the fruit. In injured grapefruit 7.93 μl/cm2 of wax was found on the injured part of the peel, and 3.21 μl/cm2 on the non-injured part, so that 124.6 μg of SOPP/cm2 corresponding to 61.6 parts/million of OPP in the fruit was applied to the fruit without causing injuries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号