首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Nutrient leaching from dry (COD) and wet (COW) coffee, sisal (SIS), brewery barley malt (BEB) and sugar cane (FIC) by-products, and linseed (LIC) and niger seed cakes (NIC), and uptake by maize were studied in a pot experiment with tropical Alfisol. After three months, soils were leached to recover labile plant nutrients, and root and shoot biomass was harvested. The leachate from FIC-amended soil had the highest concentration of inorganic P (0.90 μmol L?1), whereas the highest concentrations of potassium (K) (48,088 μmol L?1) and calcium (2566 μmol L?1) were determined in leachates from COD and BEB treatments, respectively. The amendments significantly increased K uptake by maize proportional to the amount of K applied, but the effects for other plant nutrients were small. The results indicated that pre-decomposition of agro-industrial by-products may increase the nutrient release in tropical soils.  相似文献   

2.
An essential prerequisite for a sustainable soil use is to maintain a satisfactory soil organic‐matter (OM) level. This might be achieved by sound fertilization management, though impacts of fertilization on OM have been rarely investigated with the aid of physical fractionation techniques in semiarid regions. This study aimed at examining changes in organic C (OC) and N concentrations of physically separated soil OM pools after 26 y of fertilization at a site of the semiarid Loess Plateau in China. To separate sensitive OM pools, total macro‐OM (> 0.05 mm) was obtained from bulk soil by wet‐sieving and then separated into light macro‐OM (< 1.8 g cm–3) and heavy macro‐OM (> 1.8 g cm–3) subfractions; bulk soil was also differentiated into light OM (< 1.8 g cm–3) and mineral‐associated OM (> 1.8 g cm–3). Farmyard manure increased concentrations of total macro‐OC and N by 19% and 25%, and those of light fraction OC and N by 36% and 46%, compared to no manuring; both light OC and N concentrations but only total macro‐OC concentration responded positively to mineral fertilizations compared to no mineral fertilization. This demonstrated that the light‐fraction OM was more sensitive to organic or inorganic fertilization than the total macro‐OM. Mineral‐associated OC and N concentrations also increased by manuring or mineral fertilizations, indicating an increase of stable OM relative to no fertilization treatment, however, their shares on bulk soil OC and N decreased. Mineral fertilizations improved soil OM quality by decreasing C : N ratio in the light OM fraction whereas manuring led to a decline of the C : N ratio in the total macro‐OM fraction, with respect to nil treatment. Further fractionation of the total macro‐OM according to density clarified that across treatments about 3/4 of total macro‐OM was associated with minerals. Thus, by simultaneously applying particle‐size and density separation procedures, we clearly demonstrated that the macro‐OM differed from the light OM fraction not only in its chemical composition but also in associations with minerals. The proportion of the 0.5–0.25 mm water‐stable aggregates of soil was higher under organic or inorganic fertilizations than under no manure or no mineral fertilization, and increases in OC and N concentrations of water‐stable aggregates as affected by fertilization were greater for 1–0.5 and 0.5–0.25 mm classes than for the other classes. Results indicate that OM stocks in different soil pools can be increased and the loose aggregation of these strongly eroded loess soils can be improved by organic or inorganic fertilization.  相似文献   

3.
A field method for the measurement of substrate‐induced soil respiration A novel method for in situ measurements of microbial soil activity using the CO2 efflux combined with kinetic analysis is proposed. The results are compared with two conventional, laboratory methods, (1) substrate‐induced respiration using a ’︁Sapromat’ and (2) dehydrogenase activity. Soil respiration was measured in situ after addition of aqueous solutions containing 0 to 6 g glucose kg—1 soil. The respiration data were analysed using kinetic models to describe the nutritional status of the soil bacteria employing few representative parameters. The two‐phase soil respiration response gave best fit results with the Hanes' or non‐parametric kinetic model with Michaelis‐Menten constants (Km) of 0.05—0.1 g glucose kg—1 soil. The maximum respiration rates (Vmax) were obtained above 1 g glucose. Substrate‐induced respiration rates of the novel in situ method were significantly correlated to results of the ’︁Sapromat’ measurements (r2 = 0.81***). The in situ method combined with kinetic analysis was suitable for the characterisation of microbial activity in soil; it showed respiration rates lower by 59% than measured in the laboratory with disturbed samples.  相似文献   

4.
The continuous use of plowing for grain production has been the principal cause of soil degradation. This project was formulated on the hypothesis that the intensification of cropping systems by increasing biomass‐C input and its biodiversity under no‐till (NT) drives soil restoration of degraded agro‐ecosystem. The present study conducted at subtropical [Ponta Grossa (PG) site] and tropical regions [Lucas do Rio Verde, MT (LRV) site] in Brazil aimed to (i) assess the impact of the continuous plow‐based conventional tillage (CT) on soil organic carbon (SOC) stock vis‐à‐vis native vegetation (NV) as baseline; (ii) compare SOC balance among CT, NT cropping systems, and NV; and (iii) evaluate the redistribution of SOC stock in soil profile in relation to soil resilience. The continuous CT decreased the SOC stock by 0·58 and 0·67 Mg C ha−1 y−1 in the 0‐ to 20‐cm depth at the PG and LRV sites, respectively, and the rate of SOC sequestration was 0·59 for the PG site and ranged from 0·48 to 1·30 Mg C ha−1 y−1 for the LRV site. The fraction of C input by crop residues converted into SOC stock was ~14·2% at the PG site and ~20·5% at the LRV site. The SOC resilience index ranged from 0·29 to 0·79, and it increased with the increase in the C input among the NT systems and the SOC sequestration rates at the LRV site. These data support the hypothesis that NT cropping systems with high C input have a large potential to reverse the process of soil degradation and SOC decline. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
Intensive land use may affect soil properties (e.g., decreased soil organic matter [SOM] content) and, consequently, reduce crop yields considerably. One way of counteracting the loss of SOM and stimulating plant productivity could be the use of organic residues from agro‐industrial processes as bioactive products. The present study was focused on the possible effects of phenol‐containing organic substances derived from agro‐industrial by‐products on maize (Zea mays L.) metabolism in a pot experiment. Plants were grown for 12 d in a nutrient solution in the absence (control) or in the presence of either a cellulosolitic dry apple hydrolyzate (AP) or a dry blueberry cool extract (BB) applied at two rates (0.1 and 1 mL L–1). Both products increased root and leaf biomass and led to higher concentrations of macronutrients in the plant tissue. AP and BB also had a positive impact on nitrogen (N) metabolism stimulating the activity and gene expression of phenylalanine ammonia‐lyase, a key enzyme of the phenylpropanoid pathway. Furthermore, both products increased leaf concentrations of phenols (+ 28% and 49% for AP and BB, respectively) and flavonoids (+ 22% and 25% for AP and BB, respectively). From our results it can be assumed that residues from agro‐industry may be successfully used as bioactive products in agriculture to increase plant yield and resistance to stress conditions.  相似文献   

6.
Residue retention and reduced tillage are both conservation agricultural practices that may enhance soil organic carbon (SOC) stabilization in soil. We evaluated the long‐term effects of no‐till (NT) and stover retention from maize on SOC dynamics in a Rayne silt loam Typic Hapludults in Ohio. The six treatments consisted of retaining 0, 25, 50, 75, 100 and 200% of maize residues on each 3 × 3 m plot from the crop of previous year. Soil samples were obtained after 9 yrs of establishing the experiment. The whole soil (0–10 and 10–20 cm of soil depths) samples under different treatments were analysed for total C, total N, recalcitrant C (NaOCl treated sample) and 13C isotopic abundance (0–10 cm soil depth). Complete removal of stover for a period of 9 yrs significantly (P < 0.01) decreased soil C content (15.5 g/kg), whereas 200% of stover retention had the maximum soil C concentration (23.1 g/kg). Relative distribution of C for all the treatments in different fractions comprised of 55–58% as labile and 42–45% as recalcitrant. Retention of residue did not significantly affect total C and N concentration in 10–20 cm depth. 13C isotopic signature data indicated that C4‐C (maize‐derived C) was the dominant fraction of C in the top 0–10 cm of soil layer under NT with maize‐derived C accounting for as high as 80% of the total SOC concentration. Contribution of C4‐C or maize‐derived C was 71–84% in recalcitrant fraction in different residue retained plots. Residue management is imperative to increase SOC concentrations and long‐term agro‐ecosystem necessitates residue retention for stabilizing C in light‐textured soils.  相似文献   

7.
Crop residues and manure are important sources of carbon (C) for soil organic matter (SOM) formation. Crop residue return increases by nitrogen (N) fertilization because of higher plant productivity, but this often results only in minor increases of SOM. In our study, we show how N fertilization and organic C additions affected SOM and its fractions within a 32‐year‐long field‐experiment at Puch, Germany. Five organic additions, no‐addition (control), manure, slurry, straw and straw + slurry, were combined with three mineral N fertilization rates (no, medium and high fertilization), which resulted in 1·17–4·86 Mg C‐input ha‐1 y‐1. Topsoil (0–25 cm) SOM content increased with N fertilization, mainly because of the C in free light fraction (f‐LF). In contrast, subsoil (25–60 cm) SOM decreased with N fertilization, probably because of roots' relocation in Ap horizon with N fertilization at the surface. Despite high inputs, straw contributed little to f‐LF but prevented C losses from the mineral‐associated SOM fraction (ρ > 1·6 g cm‐3) with N fertilization, which was observed without straw addition. Above (straw) and belowground (roots) residues had opposite effects on SOM fractions. Root C retained longer in the light‐fractions and was responsible for SOM increase with N fertilization. Straw decomposed rapidly (from f‐LF) and fueled the mineral‐associated SOM fraction. We conclude that SOM content and composition depended not only on residue quantity, which can be managed by the additions and N fertilization, but also on the quality of organics. This should be considered for maintaining the SOM level, C sequestration, and soil fertility. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Soil organic carbon (SOC) content and its spatial distribution in the Northern Gangetic Plain (NGP) Zone of India were determined to establish the cause–effect relationship between agro‐ecological characteristics, prevailing crop management practices and SOC stock. Area Spread Index (ASI) approach was used to collect soil samples from the NGP areas supporting predominant cropping systems. Exponential ordinary kriging was found most suitable geo‐statistical model for developing SOC surface maps of the NGP. Predicted surface maps indicated that 43.7% area of NGP had 0.5–0.6% SOC, while the rest of the area was equally distributed with high (0.61–0.75%) and low (< 0.5%) SOC content levels. Averaged across cropping systems, maximum SOC content was recorded in Bhabar and Tarai Zone (BTZ), followed by Central Plain Zone (CPZ), Mid‐Western Plain Zone (MWPZ), Western Plain Zone (WPZ) and South‐Western Plain Zone (SWPZ) of the NGP. The SOC stock was above the optimum threshold (> 12.5 Mg/ha) in 97.8, 57.6 and 46.4% areas of BTZ, CPZ and MWPZ, respectively. Only 9.8 and 0.4% area of WPZ and SWPZ, respectively, had SOC stock above the threshold value. The variation in SOC stock was attributed largely to carbon addition through recycling of organic sources, cropping systems, tillage intensity, crop or residue cover and land‐use efficiency, nutrient‐use pattern, soil texture and prevailing ecosystem. Adoption of conservation agriculture, balanced use of nutrients, inclusion of legumes in cropping systems and agro‐forestry were suggested for enhancing SOC stock in the region.  相似文献   

9.
A long‐term fertilization experiment with monoculture corn (Zea mays L.) was established in 1980 on a clay‐loam soil (Black Soil in Chinese Soil Classification and Typic Halpudoll in USDA Soil Taxonomy) at Gongzhuling, Jilin Province, China. The experiment aimed to study the sustainability of grain‐corn production on this soil type with eight different nitrogen (N)‐, phosphorus (P)‐, and potassium (K)–mineral fertilizer combinations and three levels (0, 30, and 60 Mg ha–1 y–1) of farmyard manure (FYM). On average, FYM additions produced higher grain yields (7.78 and 8.03 Mg ha–1) compared to the FYM0 (no farmyard application) treatments (5.67 Mg ha–1). The application of N fertilizer (solely or in various combinations with P and K) in the FYM0 treatment resulted in substantial grain‐yield increases compared to the FYM0 control treatment (3.56 Mg ha–1). However, the use of NP or NK did not yield in any significant additional effect on the corn yield compared to the use of N alone. The treatments involving P, K, and PK fertilizers resulted in an average 24% increase in yield over the FYM0 control. Over all FYM treatments, the effect of fertilization on corn yield was NPK > NP = NK = N > PK = P > K = control. Farmyard‐manure additions for 25 y increased soil organic‐matter (SOM) content by 3.8 g kg–1 (13.6%) in the FYM1 treatments and by 7.8 g kg–1 (27.8%) in the FYM2 treatments, compared to a 3.2 g kg–1 decrease (11.4%) in the FYM0 treatments. Overall, the results suggest that mineral fertilizers can maintain high yields, but a combination of mineral fertilizers plus farmyard manure are needed to enhance soil organic‐matter levels in this soil type.  相似文献   

10.
Several previous field studies in temperate regions have shown decreased soil respiration after conventional tillage compared with reduced or no‐tillage treatments. Whether this decrease is due to differences in plant residue distribution or changes in soil structure following tillage remains an open question. This study investigated (1) the effects of residue management and incorporation depth on soil respiration and (2) biological activity in different post‐tillage aggregates representing the actual size and distribution of aggregates observed in the tilled layer. The study was conducted within a long‐term tillage experiment on a clay soil (Eutric Cambisol) in Uppsala, Sweden. After 38 y, four replicate plots in two long‐term treatments (moldboard plowing (MP) and shallow tillage (ST)) were split into three subplots. These were then used for a short‐term trial in which crop residues were either removed, left on the surface or incorporated to about 6 cm depth (ST) or at 20 cm depth (MP). Soil respiration, soil temperature, and water content were monitored during a 10‐d period after tillage treatment. Respiration from aggregates of different sizes produced by ST and MP was also measured at constant water potential and temperature in the laboratory. The results showed that MP decreased short‐term soil respiration compared with ST or no tillage. Small aggregates (< 16 mm) were biologically most active, irrespective of tillage method, but due to their low proportion of total soil mass they contributed < 1.5% to total respiration from the tilled layer. Differences in respiration between tillage treatments were found to be attributable to indirect effects on soil moisture and temperature profiles and the depth distribution of crop residues, rather than to physical disturbance of the soil.  相似文献   

11.
Soil erosion is a major constraint to crop production on smallholder arable lands in Sub‐Saharan Africa (SSA). Although different agronomic and mechanical measures have been proposed to minimize soil loss in the region and elsewhere, soil management practices involving biochar‐inorganic inputs interactions under common cropping systems within the framework of climate‐smart agriculture, have been little studied. This study aimed to assess the effect of different soil and crop management practices on soil loss characteristics under selected cropping systems, typical of the sub‐region. A two‐factor field experiment was conducted on run‐off plots under different soil amendments over three consecutive cropping seasons in the semi‐deciduous forest zone of Ghana. The treatments, consisting of three soil amendments (inorganic fertilizer, biochar, inorganic fertilizer + biochar and control) and four cropping systems (maize, soyabean, cowpea, maize intercropped with soyabean) constituted the sub‐plot and main plot factors, respectively. A bare plot was included as a soil erosion check. Seasonal soil loss was greater on the bare plots, which ranged from 9.75–14.5 Mg ha?1. For individual crops grown alone, soil loss was 31%–40% less under cowpea than under maize. The soil management options, in addition to their direct role in plant nutrition, contributed to significant (p < 0.05) reductions in soil loss. The least soil loss (1.23–2.66 Mg ha?1) was observed under NPK fertilizer + biochar treatment (NPK + BC) over the three consecutive cropping seasons. Biochar in combination with NPK fertilizer improved soil moisture content under cowpea crops and produced considerably smaller bulk density values than most other treatments. The NPK + BC consistently outperformed the separate mineral fertilizer and biochar treatments in biomass yield under all cropping systems. Biochar associated with inorganic fertilizers gave economic returns with value–cost ratio (VCR) > 2 under soyabean cropping system but had VCR < 2 under all other cropping systems. The study showed that biochar/NPK interactions could be exploited in minimizing soil loss from arable lands in SSA.  相似文献   

12.
Paddy soils in subtropical China are usually deficient in phosphorus (P) and require regular application of chemical fertilizers. This study evaluated the effects of chemical fertilizers on the distribution of soil organic carbon (SOC), total nitrogen (N) and available P, and on the activity of the associated enzymes in bulk soil and aggregates. Surface soils (0–20 cm) were collected from a 24‐yr‐old field experiment with five treatments: unfertilized control (CK), N only (N), N and potassium (NK), N and P (NP), and N, P and K (NPK). Undisturbed bulk soils were separated into >2, 1–2, 0.25–1, 0.053–0.25 and <0.053 mm aggregate classes using wet sieving. Results showed that both NP‐ and NPK‐treated soils significantly increased mean weight diameter of aggregates, SOC, available P in bulk soil and aggregates, as compared to CK. Most SOC and total N adhered to macro‐aggregates (>0.25 mm), which accounted for 64–81% of SOC and 54–82% of total N in bulk soil. The activities of invertase and acid phosphatase in the 1–2 mm fraction were the highest under NPK treatment. The highest activity of urease was observed in the <0.053 mm fraction under NP treatment. Soil organic carbon and available P were major contributors to variation of enzyme activities at the aggregate scale. In conclusion, application of NP or NPK fertilizers promoted the formation of soil aggregates, nutrient contents and activities of associated enzymes in P‐limited paddy soils, and thus enhanced soil quality.  相似文献   

13.
The great achievement of the development of intensive in agriculture in China can be partly attributed to substantial increases in mineral‐nutrient application. However, whereas farmers tend to apply high levels of nitrogen (N) and phosphorus (P) application of potassium (K) has been neglected. A greater understanding of the relationship between maize (Zea mays L.) grain yield and K‐application rate is thus required to provide an improved rationale for K fertilization for farmers in the various agro‐ecological regions of China. In this study, a total of 2765 farmers' survey data and 3124 on‐farm experiments across major maize agro‐ecological regions in China were collected and evaluated for farmers' K‐management status and to determine grain‐yield response to K application. Nationally, the average K‐application rate on farms was 26 kg K ha–1 and varied from 0 to 158 kg K ha–1, with a coefficient of variation of 107%, but the applied K‐fertilizer rates were not related to grain yield. Maize grain yields at recommended K rates increased by 14.0%, 14.7%, 19.4%, and 4.3% in Northeast China, North China Plain, Southwest China, and Northwest China, respectively, compared to zero K fertilization (K0). Increased yield due to K fertilization (IYmax, difference between maximum yield across all treatments and K0‐treatment yield for each experiment) averaged 1.4 t ha–1 but varied widely in different agro‐ecological regions. Soil extractable K (NH4OAc‐K) and intercounty variation resulted in large variation in IYmax in agro‐ecological regions, as did other factors, such as use of particular maize hybrids, soil types, or years in different regions.  相似文献   

14.
Microbial properties may help to provide an integrated view of changes in soil functioning associated with soil management or soil status. The fatty acid profiles of membrane phospholipids (PLFA) can give the composition of ecophysiological groups of soil microbial communities, while catabolic response profiles (CRP) estimate the heterotrophic functional diversity in soils, both relevant to the understanding of the role of micro‐organisms in the functioning of the soil. The objectives of this study were (i) to evaluate the CRP and PLFA as microbial tools to characterize changes in soil functioning and (ii) clarify the relation among these microbial measurements, with other physical, chemical and biochemical soil properties. We compare the same soil subjected to different managements and degrees of erosion. An undisturbed soil (UN), an old pasture soil (OP) and soils under continuous cultivation (NT) with four different depth of A horizon: 25 cm (NT 25), 23 cm (NT 23), 19 cm (NT 19) and 14 cm (NT 14) were tested. Substrate‐induced respiration of most substrates diminished when cropping pressure increased (UN > OP > NT), and soil catabolic evenness, as a diversity index, decreased by increasing production pressure and soil erosion. The correlation found among most of the measured physical, chemical and biochemical soil properties with the catabolic evenness showed the potential of this measurement to provide an integrated view of soil functioning. The PLFA analysis showed that the composition of microbial community denoting a partial recovery after 10 yr under grazed grassland. The stress indicators showed that farming practices increased microbial stress with the highest values found in the most eroded soils.  相似文献   

15.
The objective of this study was to investigate differences in organic matter fractions, such as dissolved organic carbon and humic substances, in soils under different land uses. Soil samples were collected from the upper layer of arable lands and grasslands. Humic substances (HS) were chemically fractionated into fulvic acids (FA), humic acids (HA) and humins (HUM), and based on the separated fractions, the humification index (HI) and the degree of HS transformation (DT) were calculated. Dissolved organic carbon (DOC) was determined by cold (CWE) and hot water (HWE) extractions. Regardless of land use, the results indicated significant differences in soil organic carbon (SOC) and HS composition, with HA and HUM as the dominant fractions. Total SOC was higher in grassland (median = 17.51 g kg?1) than arable soils (median = 9.98 g kg?1); the HI and DT indices did not differ significantly between land uses (HI = 0.3–10.3 and DT = 0.2–6.2 for grasslands, > 0.05; HI = 0.3–3.9 and DT = 0.2–20.1 for arable lands, > 0.05). This indicates the relatively high stability of organic carbon and efficient humification processes in both land uses. Additionally, in arable soils lower CWE‐C (0.75 g kg?1) and higher HWE‐C (2.59 g kg?1) than in grasslands (CWE‐C = 1.13 g kg?1, HWE‐C = 1.60 g kg?1) can be related to farming practice and application of soil amendments. The results showed that both labile and humified organic matter are better protected in grassland soils and are consequently less vulnerable to mineralization.  相似文献   

16.
To improve soil structure and take advantage of several accompanying ecological benefits, it is necessary to understand the underlying processes of aggregate dynamics in soils. Our objective was to quantify macroaggregate (> 250 μm) rebuilding in soils from loess (Haplic Luvisol) with different initial soil organic C (SOC) contents and different amendments of organic matter (OM) in a short term incubation experiment. Two soils differing in C content and sampled at 0–5 and 5–25 cm soil depths were incubated after macroaggregate destruction. The following treatments were applied: (1) control (without any addition), (2) OM1 (addition of OM: preincubated wheat straw [< 10 mm, C : N 40.6] at a rate of 4.1 g C [kg soil]–1), and (3) OM2 (same as (2) at a rate of 8.2 g C [kg soil]–1). Evolution of CO2 released from the treatments was measured continuously, and contents of different water‐stable aggregate‐size classes (> 250 μm, 250–53 μm, < 53 μm), microbial biomass, and ergosterol were determined after 7 and 28 d of incubation. Highest microbial activity was observed in the first 3 d after the OM application. With one exception, > 50% of the rebuilt macroaggregates were formed within the first 7 d after rewetting and addition of OM. However, the amount of organic C within the new macroaggregates was ≈ 2‐ to 3‐fold higher than in the original soil. The process of aggregate formation was still proceeding after 7 d of incubation, however at a lower rate. Contents of organic C within macroaggregates were decreased markedly after 28 d of incubation in the OM1 and OM2 treatments, suggesting that the microbial biomass (bacteria and fungi) used organic C within the newly built macroaggregates. Overall, the results confirmed for all treatments that macroaggregate formation is a rapid process and highly connected with the amount of OM added and microbial activity. However, the time of maximum aggregation after C addition depends on the soil and substrate investigated. Moreover, the results suggest that the primary macroaggregates, formed within the first 7 d, are still unstable and oversaturated with OM and therefore act as C source for microbial decomposition processes.  相似文献   

17.
The 4‐year application of pig‐manure compost (PMC) to crop fields in Jiangsu significantly increased organic‐C and total N concentrations compared to chemical fertilization and control treatment. To identify the soil processes that led to these changes, 13C cross‐polarization magic‐angle spinning nuclear‐magnetic resonance (13C CPMAS NMR) and dipolar‐dephasing nuclear‐magnetic‐resonance spectroscopy (DD NMR) were conducted on soil organic matter (SOM) fractions separated by wet‐sieving and density fractionation procedures. This allowed characterization of the SOM quality under three contrasting fertilizer regimes. The results indicate that PMC application can alter the distribution of functional groups and improve alkyl C‐to‐O‐alkyl C ratios compared to chemical‐fertilizer treatment (CF). Alkyl C contents were increased from macroaggregate fractions (> 2 mm) to microaggregate fractions (0.05–0.25 mm) for all treatments, suggesting that recalcitrant material accumulates in the microaggregate fractions. The O‐alkyl C contents were decreased from macroaggregate fractions (> 2 mm) to microaggregate fractions (0.05–0.25 mm) under CF and PMC treatments, while no consistent trend was found for the control (NF) treatment. The alkyl C‐to‐O‐alkyl C ratios in macroaggregates were lower than those in microaggregates, indicating that the degrees of SOM decomposition were lower in macroaggregates compared to microaggregates. In all aggregate‐size classes, the amount of organic matter appeared to depend on the fertilization regime. This study provides useful information regarding the buildup of organic material in soil from long‐term manure‐compost enrichment.  相似文献   

18.
The aim of this study was to assess differences in rhizodeposition quantity and composition from maize cropped on soil or on 1:1 (w/w) soil–sand mixture and distribution of recently assimilated C between roots, shoots, soil, soil solution, and CO2 from root respiration. Maize was labeled in 14CO2 atmosphere followed by subsequent simultaneous leaching and air flushing from soil. 14C was traced after 7.5 h in roots and shoots, soil, soil solution, and soil‐borne CO2. Rhizodeposits in the leachate of the first 2 h after labeling were identified by high‐pressure liquid chromatography (HPLC) and pyrolysis–field ionization mass spectrometry (Py‐FIMS). Leachate from soil–sand contained more 14C than from soil (0.6% vs. 0.4%) and more HPLC‐detectable carboxylates (4.36 vs. 2.69 μM), especially acetate and lactate. This is either because of root response to lower nutrient concentrations in the soil–sand mixture or decreasing structural integrity of the root cells during the leaching process, or because carboxylates were more strongly sorbed to the soil compared to carbohydrates and amino acids. In contrast, Py‐FIMS total ion intensity was more than 2 times higher in leachate from soil than from soil–sand, mainly due to signals from lignin monomers. HPLC‐measured concentrations of total amino acids (1.33 μM [soil] vs. 1.03 μM [soil–sand]) and total carbohydrates (0.73 vs. 0.34 μM) and 14CO2 from soil agreed with this pattern. Higher leachate concentrations from soil than from soil–sand for HPLC‐measured carbohydrates and amino acids and for the sum of substances detected by Py‐FIMS overcompensated the higher sorption in soil than in sand‐soil. A parallel treatment with blow‐out of the soil air but without leaching indicated that nearly all of the rhizodeposits in the treatment with leaching face decomposition to CO2. Simultaneous application of three methods—14C‐labeling and tracing, HPLC, and Py‐FIMS—enabled us to present the budget of rhizodeposition (14C) and to analyze individual carbohydrates, carboxylates, and amino acids (HPLC) and to scan all dissolved organic substances in soil solution (Py‐FIMS) as dependent on nutrient status.  相似文献   

19.
Mining activities leave large areas of post‐mining lands to be reclaimed. Increases in soil C and N pools and N availability are important to successfully reestablish trees on post‐mining land. In this study, we determined C and N concentrations and natural stable isotope of 13C and 15N in soil and plant in Mongolian pine (Pinus sylvestris L. var. mongolica Litv.) plantations 8 years after establishment on non‐mined land (NM), post‐mining land without soil amendment (NAM), and post‐mining land with soil amendment (AM) in a placer gold mining region of Northeast China. We found that the growth of Mongolian pine was significantly slower on NAM as compared with NM (decreasing by 73% in tree height and 63% in basal diameter), but tree growth improved on AM. Soil C and N concentrations, plant N concentration, and soil δ15N value decreased in the order of NM > AM > NAM, implying that soil N availability decreased in post‐mining land, but soil amendment could increase soil N availability. However, the values of δ15N in plant tissues of Mongolian pine were higher on NAM than on NM and AM, suggesting that soil inorganic N form absorbed by trees might be changed when trees were directly planted on post‐mining land with lower soil N availability. In addition, the values of δ13C in 1‐ and 2‐year‐old leaves of Mongolian pine were lowest when planted on NAM, indicating a decrease in intrinsic water‐use efficiency of Mongolian pine. Our results suggest that soil amendment helps us establish forests successfully on post‐mining lands. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Abandonment of mountain grassland often changes vegetation composition and litter quantity and quality, but related effects on labile soil organic matter (SOM) are largely unknown. The aim of this study was to investigate the impacts of grassland management and abandonment on soil carbon distribution in light (< 1.6 g cm–3) particulate organic matter (POM) and aggregation along a gradient of management intensity including hay meadows, pastures, and abandoned grasslands. The reduction of management intensity is an interregional phenomenon throughout the European Alps. We therefore selected sites from two typical climate regions, namely at Stubai Valley, Austria (MAT: 3°C, MAP: 1097 mm) and Matsch Valley, Italy (MAT: 6.6°C, MAP: 527 mm), to evaluate effects of land‐use change in relation to climate. Free water‐floatable and free POM (wPOM, fPOM), and an occluded POM fraction (oPOM), were isolated from three water‐stable aggregate size classes (2–6.3 mm, 0.25–2 mm, < 0.25 mm) using density fractionation. Aggregate mean weight diameter slightly decreased with decreasing management intensity. In contrast to absolute POM‐C, fPOM‐C increased in aggregates at both sites with abandonment. Because the oPOM‐C was less affected by abandonment, the ratio of oPOM‐C : fPOM‐C shifted from > 1 to < 1 from meadow to abandoned grassland in aggregates at both sites and thus independent of climate. This suggests that in differently managed mountain grasslands free and occluded POM are functionally different SOM fractions. In bulk soil, the oPOM‐C : fPOM‐C ratio is better suited as an indicator for the response of SOM to management reduction in subalpine grasslands than the total soil C, absolute or relative POM‐C content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号