首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
We investigated 15N abundance (δ15N) of winter wheat (Triticum aestivum cv. Jinmai 1) plants and soil at different growth stages in a field with a 13-year fertilization history of urea and compost, to determine whether or not the δ15N of plant parts can be used as an indicator of organic amendment with compost. Plant parts (roots, leaves, stems and grains) and soil were sampled at re-greening, jointing, grain filling and mature growth stages of winter wheat. There were significant differences between the urea and compost treatments in 815N of whole plants, plant parts and soil over the whole growing season. Determination of the δ15N of plant parts was more convenient than that of whole plant to distinguish between the application of organic amendment and synthetic N fertilizer.  相似文献   

2.
Summary The effect of salts on the balance of fertilizer N applied as 15N-labelled ammonium sulphate and its interaction with native soil N was studied in a pot experiment using rice (Oryza sativa L.) as a test crop. The rice crop used 26%–40% of the applied N, the level of applied N and salts showing no significant bearing on the uptake of fertilizer N. Losses of fertilizer N ranged between 54% and 68% and only 5%–8% of the N was immobilized in soil organic matter. Neither the salts nor the rate of N application had any significant effect on fertilizer N immobilization. The effective use of fertilizer N (fertilizer N in grain/fertilizer N in whole plant) was, however, better in the non-saline soil. The uptake of unlabelled N (N mineralized from soil organic matter and that originating from biological N2 fixation in thes rhizosphere) was inhibited in the presence of the salts. However, in fertilized soil, the uptake of unlabelled N was significantly enhanced, leading to increased A values [(1-% Ndff/% Ndff)x N fertilizer applied, where Ndff is N derived from fertilizer], an index of interaction with the added N. This added N interaction increased with increasing levels of added N. Since the extra unlabelled N taken up by fertilized plants was greater than the fertilizer N immobilized, and the root biomass increased with increasing levels of added N, a greater part of the added N interaction was considered to be real, any contribution by an apparent N interaction (pool substitution or isotopic displacement) to the total calculated N interaction being fairly small. Under saline conditions, for the same level of fertilizer N addition, the added N interaction was lower, and this was attributed to a lower level of microbial activity, including mineralization of native soil N, rootdriven immobilization of applied N, and N2 fixation.  相似文献   

3.
Leaching losses of N are a major limitation of crop production on permeable soils and under heavy rainfalls as in the humid tropics. We established a field trial in the central Amazon (near Manaus, Brazil) in order to study the influence of charcoal and compost on the retention of N. Fifteen months after organic‐matter admixing (0–0.1 m soil depth), we added 15N‐labeled (NH4)2SO4 (27.5 kg N ha–1 at 10 atom% excess). The tracer was measured in top soil (0–0.1 m) and plant samples taken at two successive sorghum (Sorghum bicolor L. Moench) harvests. The N recovery in biomass was significantly higher when the soil contained compost (14.7% of applied N) in comparison to only mineral‐fertilized plots (5.7%) due to significantly higher crop production during the first growth period. After the second harvest, the retention in soil was significantly higher in the charcoal‐amended plots (15.6%) in comparison to only mineral‐fertilized plots (9.7%) due to higher retention in soil. The total N recovery in soil, crop residues, and grains was significantly (p < 0.05) higher on compost (16.5%), charcoal (18.1%), and charcoal‐plus‐compost treatments (17.4%) in comparison to only mineral‐fertilized plots (10.9%). Organic amendments increased the retention of applied fertilizer N. One process in this retention was found to be the recycling of N taken up by the crop. The relevance of immobilization, reduced N leaching, and gaseous losses as well as other potential processes for increasing N retention should be unraveled in future studies.  相似文献   

4.
Mounting fertilizer costs are disproportionally affecting farmers in developing countries. Alternative soil fertility amendments [worm compost, pyrolyzed carbon (biochar)] and arbuscular mycorrhizal fungi have the potential to reduce these costs while promoting soil health. Our greenhouse study investigated the role of mycorrhizal associations and alternative fertility amendments on the productivity and plant nutrition of grain sorghum. We assessed sorghum (Sorghum bicolor cv. Macia) grown with ten different treatments (combinations of biochar, worm compost, and commercial N and P fertilizers) plus a non‐amended control. An amendment blend containing worm compost, biochar, and 50% of the typically recommended commercial fertilizer rate produced similar plant biomass and protein, similar total tissue mineral contents (Ca, Fe, K, Mg, P, and Zn), and supported ≈ 60% more mycorrhizal fungi in the host plant's roots, compared to sorghum grown with the recommended rate of commercial fertilizer (N and P). Our results indicate the potential of biochar and worm compost to enhance the benefits of mycorrhizal fungi for grain sorghum production and plant nutrition while reducing commercial fertilizer applications.  相似文献   

5.
 Gross rates of soil processes and microbial activity were measured in two grazed permanent pasture soils which had recently been amended with N fertilizer or dung. 15N studies of rates of soil organic matter turnover showed gross N mineralization was higher, and gross N immobilization was lower, in a long-term fertilized soil than in a soil which had never received fertilizer N. Net mineralization was also found to be higher in the fertilized soil: a consequence of the difference between the opposing N turnover processes of N mineralization and immobilization. In both soils without amendments the soil microbial biomass contents were similar, but biomass activity (specific respiration) was higher in the fertilized soil. Short-term manipulation of fertilizer N input, i.e. adding N to unfertilized soil, or witholding N from previously fertilized soil, for one growing season, did not affect gross mineralization, immobilization or biomass size and activity. Amendments of dung had little effect on gross mineralization, but there was an increase in immobilization in both soils. Total biomass also increased under dung in the unfertilized soil, but specific respiration was reduced, suggesting changes in the composition of the biomass. Dung had a direct effect on the microbial biomass by temporarily increasing available soil C. Prolonged input of fertilizer N increases soil C indirectly as a result of enhanced plant growth, the effect of which may not become evident within one seasonal cycle. Received: 18 December 1998  相似文献   

6.
Apparent net N mineralization (mineralization minus immobilization) in fertilized and unfertilized treatments was determined in 133 fertilizer trials with cereals and sugar beet over 3 years (1988-90). Apparent net mineralization was defined as follows: Apparent net N mineralization = (crop N at harvest - crop N in spring) - (Nmin in spring - Nmin at harvest) - N fertilizer applied. Results can be summarised as follows:
  • 1 For both crop species, apparent net N mineralization decreased in the following order: unfertilized > optimally fertilized > overfertilized.
  • 2 The decrease in apparent net mineralization of N with increasing rate of N fertilizer was attributed to immobilization. This was confirmed by measurements of increased remineralization during the following autumn, winter and during the growing season in the following year.
  • 3 Both the soil Nmin at harvest and fertilizer N which was immobilized and remineralized during autumn and winter, is at risk of being leached. At optimal fertilizer doses 30 kg N/ha and 74 kg N/ha were leached on average over winter from loamy and sandy soils respectively.
  • 4 Apparent net mineralization was not important for optimally fertilized cereals and therefore does not need to be considered for fertilizer recommendations for winter cereals. This does not apply to land receiving slurry applications before or during the growth period.
  • 5 In contrast to cereals, apparent net mineralization contributed considerably to the nutrition of sugar beet. Approximately 140 kg N/ha were mineralized at the optimum rate of N fertilizer application. However, the EUF- and CaCl2-methods were unable to predict N mineralization and were therefore unable to improve the prediction of fertilizer requirement even in combination with the NO3 soil N fraction.
  相似文献   

7.
Bulking agents and bedding materials used on farms for composting manures affect the time required for composts to mature. The effects of these materials on guidelines for the use of composted manures in potting mixes are not fully known. Several chemical and biological compost characteristics were mentioned and a cucumber plant growth greenhouse bioassay was performed on samples removed from windrows during composting of: (i) dairy manure amended with wheat straw; (ii) dairy manure amended with sawdust (mostly Quercus spp.); and (iii) pig manure amended with sawdust and shredded wood (mostly Quercus spp.). Dry weights of cucumber seedlings grown in fertilized and unfertilized potting mixes amended with composts (30%, v/v) having stability values of <1 mg CO2-C g-1 dw d−1, did not differ significantly from those in a control peat mix. Only the most mature dairy manure-wheat straw compost samples consistently established sufficient N concentrations in cucumber shoots in unfertilized treatments. For the dairy manure-wheat straw compost, all possible subset regression analyses of compost characteristics versus cucumber plant dry weight revealed that any of several compost characteristics (electrical conductivity-EC, compost age, total N, organic C, C-to-N ratio, ash content, CO2 respirometry, Solvita CO2 index and the Solvita® Compost Maturity Index) predicted growth of cucumber in the unfertilized treatments, and thus maturity. In contrast, at least two characteristics of the dairy manure-sawdust compost were required to predict growth of cucumber in the unfertilized treatments. Effective combinations were EC with compost age and the Solvita® maturity index with total N. Even five compost characteristics did not satisfactorily predict growth of cucumber in the non-fertilized pig manure-wood compost. Nutrient analysis of cucumber shoots indicated N availability was the principal factor limiting growth in potting mixes amended with the dairy manure-sawdust compost, and even more so in the pig manure-wood compost even though the compost had been stabilized to a high degree (<1 mg CO2-C g−1 dw d−1). Maturity of the composted manures, which implies a positive initial plant growth response of plants grown without fertilization, could not be predicted by compost characteristics alone unless the bulking agent or bedding type used for the production of the composts was also considered.  相似文献   

8.
When fertilizing with compost, the fate of the nitrogen applied via compost (mineralization, plant uptake, leaching, soil accumulation) is relevant both from a plant‐production and an environmental point of view. In a 10‐year crop‐rotation field experiment with biowaste‐compost application rates of 9, 16, and 23 t ha–1 y–1 (f. m.), the N recovery by crops was 7%, 4%, and 3% of the total N applied via compost. Due to the high inherent fertility of the site, N recovery from mineral fertilizer was also low. In the minerally fertilized treatments, which received 25, 40, and 56 kg N ha–1 y–1 on average, N recovery from mineral fertilizer was 15%, 13%, and 11%, respectively. Although total N loads in the compost treatments were much higher than the N loads applied with mineral fertilizer (89–225 kg Ntot ha–1 y–1 vs. 25–56 kg Ntot ha–1 y–1; both on a 10‐year mean) and the N recovery was lower than in the treatments receiving mineral N fertilizer, soil NO ‐N contents measured three times a year (spring, post‐harvest, autumn) showed no higher increase through compost fertilization than through mineral fertilization at the rates applied in the experiment. Soil contents of Norg and Corg in the plowed layer (0–30 cm depth) increased significantly with compost fertilization, while with mineral fertilization, Norg contents were not significantly higher. Taking into account the decrease in soil Norg contents in the unfertilized control during the 10 years of the experiment, 16 t compost (f. m.) ha–1 y–1 just sufficed to keep the Norg content of the soil at the initial level.  相似文献   

9.
The fate of fertilizer N applied with different irrigation amounts in tobacco fields was quantitatively studied by applying 15N double-labelled NH4NO3 in lysimeters. The 15N (fertilizer N originating from the fertilizer applied in 2011) in tobacco plants, 15N in soils and 15N loss were observed continuously from 2011 to 2014. The results showed that 21.6% of 15N was utilized by tobacco plants, 72.1% remained in the 0–60 cm soil layer and 6.3% was lost from the soil–plant system after the first season’s harvest (2011) of flue-cured tobacco. During the four seasons from 2011 to 2014, cumulative utilization of 15N by tobacco plants was 34.3%, while 54.2% remained in the 0–60 cm soil layer, and 11.5% was lost via mechanisms such as leaching and volatilization. The fate of 15N in terms of accumulation in plants and soils or losses from the soil–plant system from 2012 to 2014 was greatly affected by the fertilizer and irrigation management strategies in 2011. The results of this investigation suggest that the major amount of fertilizer N applied during the first season remains available in the soil for utilization by tobacco plants after 4 years.  相似文献   

10.
Summary The dynamics of basally applied 15N-labeled ammonium sulfate in inorganic and organic soil fractions of five wetland rice soils of the Philippines was studied in a greenhouse experiment. Soil and plant samples were collected and analyzed for 15N at various growth stages. Exchangeable NH4 + depletion continued after 40 days after transplanting (DAT) and corresponded with increased nitrogen uptake by rice plants. Part of the applied fertilizer was fixed by 2:1 clay minerals, especially in Maligaya silty clay loam, which contained beidellite as the dominant clay mineral. After the initial fixation, nonexchangeable 15N was released from 20 DAT in Maligaya silty clay loam, but fixation delayed fertilizer N uptake from the soil. Part of the applied N was immobilized into the organic fraction. In Guadalupe clay and Maligaya silty clay loam, immobilization increased with time while the three other soils showed significant release of fertilizer N from the organic fraction during crop growth. Most of the immobilized fertilizer N was recovered in the nondistillable acid soluble (alpha-amino acid + hydrolyzable unknown-N) fraction at crop maturity. Between 61% and 66% of applied N was recovered from the plant in four soils while 52% of fertilizer N was recovered from the plant in Maligaya silty loam. Only 20% – 30% of the total N uptake at maturity was derived from fertilizer N. Nmin (mineral N) content of the soil before transplanting significantly correlated with N uptake. Twenty-two to 34% of applied N was unaccounted for possibly due to denitrification and ammonia volatilization.  相似文献   

11.
The capability to determine nitrogen availability of composts is necessary to ensure that such materials will provide sufficient fertilization to the growing crop and cause minimal environmental degradation. A greenhouse study using tall fescue as a bioindicator was used to evaluate nitrogen availability of two biosolids composts, two mixed yard waste-poultry manure composts, and one commercially-processed poultry litter. Five inorganic nitrogen (as NH4NO3-N) treatments applied at 0, 22.5, 45, 67.7, and 90 mg N/kg soil were employed to establish an N calibration curve. Yield, fescue biomass total nitrogen (as total Kjeldahl N (TKN)), and soil TKN and KCl extractable NO3?-N and NH4+-N concentrations of the organically amended treatments were compared to the inorganically fertilized treatments to determine amendment N mineralization rates and N fertilizer equivalent values (NFEV). Nitrogen mineralization rates were greatest in the poultry litter (21%) and Panorama yard waste compost (5%) amended pots. The NFEV of these amendments were 49% and 10%, respectively. Wolf Creek biosolids compost and Huck's Hen Blend yard waste compost immobilized N (?5% and 0.18%, respectively), and had percent NFEV of ?0.66% and 0.19%, respectively. Rivanna biosolids compost immobilized N (?15%), but the NFEV was 30% due to the relatively high inorganic N content in the amendment. Nitrogen mineralization and NFEV were generally greater in amendments with greater total N concentrations and lower C:N values. The total N concentration and C:N values were less reliable variables in predicting N mineralization and percent NFEV when a significant portion of the total N was in the inorganic form. Nitrogen equivalency value and N mineralization for each amendment increased with time of sampling, indicating the potential for early season N insufficiency to plants fertilized with compost due to lack of synchrony between N mineralization and plant N needs.  相似文献   

12.
Pinus radiata is a highly valued conifer because of its timber production and its value as a reforestation plant. To increase production, nurseries currently use a nutritional method based on mineral fertilizers high in macronutrients. This produces individual trees which are unbalanced in size and more likely to suffer infections from phytopathogenic fungi. In this paper, the effect on plant and soil of applying an aerated compost tea (ACT) is compared to a conventional fertilizer. Biometric measures of pines, their nutrient and pigment concentrations, soil physical‐chemical parameters and microbial composition of the rhizosphere along with its enzymatic activity were analyzed. The results reveal that the physical‐chemical parameters of the soil are suitable for plant growth in all the treatments (pH 8, maximum EC of 0.07 dS m?1 and +239 mV of Eh), and high phosphatase activity was detected in the peat fertilized with aerated compost tea. In addition, the microorganisms developed in peat with ACT showed greater Pseudomonas spp. and fungal diversity. Pines fertilized with compost tea showed greater radicular development, proportionate distribution, higher photosynthetic pigment and total potassium concentrations, a higher yield of PSII and a greater photosynthetic assimilation rate than conventionally fertilized and unfertilized pine plants. Therefore, ACT could be used in the production of forest plants without compromising their productivity.  相似文献   

13.
Abstract

Available soil mineral nitrogen (N) varies both temporally and spatially. These variations affect field‐scale N‐use efficiency. A field study was conducted for three years to investigate spatial variability in available soil mineral N within uniform research plots in relation to leaf greenness or chlorophyll content (plant N sufficiency) and yield. Variations within the plot in available soil mineral N sampled at the 6‐ligule stage was related to N fertility: the higher the fertilizer N levels, the higher the variability. The standard deviation for the 200 kg N ha‐1 treatment was up to five times higher than the unfertilized control treatment. The nitrate (NO3)‐N accounted for 70 to 80% of soil mineral N in fertilized plots compared to 50 to 60% in unfertilized control plots. The variability in grain yield of individual maize (Zea mays L.) plants within a plot was inversely related to soil N fertility: the higher the fertilizer N levels, the lower the yield variability (at 100 or 200 kg N ha‐1, yield ranged from 97 to 148 g plant1, or 10% CV within ayear compared to ranges from 0 to 82, or 50% CV in the same year at 0 kg N ha‐1). On an individual plant basis, chlorophyll content from the 6‐ligule stage through the growing season generally showed much smaller CV's, but had a similar trend to variations in yield. Leaf greenness from 6‐ligule stage to silking was significantly correlated with harvest yield (r>0.60, P<0.01), and both also correlated with available soil mineral N, though to a lesser degree (r>0.36). The number of fully expanded leaves prior to silking differentiated N treatments better than did single leaf chlorophyll measurements with higher yields associated with more rapid vegetative development. Our data suggest that multiple core samples are required to estimate available soil mineral N, particularly in fertilized plots that have greater spatial variability. Variability of plant‐based measures, such as chlorophyll content, could be used as an indicator of relative plant N sufficiency at early growth stages as spatial variability declined with higher soil N fertility.  相似文献   

14.
We compare the effect of arbuscular mycorrhizal (AM) colonization and PO4?3 fertilization on nitrate assimilation, plant growth and proline content in lettuce plants growing under well‐watered (?0.04 MPa) or drought (?0.17 MPa) conditions. We also tested how AM‐colonization and PO4?3 fertilization influenced N uptake (15N) and the percentage of N derived from the fertilizer (% NdfF) by plants under a concentration gradient of N in soil. Growth of mycorrhizal plants was comparable with that of P‐fertilized plants only under well‐watered conditions. Shoot nitrogen content, proline and nitrate reductase activity were greater in AM than in P‐fertilized plants under drought. The addition of 100 μg g?1 P to the soil did not replace the AM effect under drought. Under well‐watered conditions, AM plants showed similar (at 3 mmol N), greater (at 6 mmol N) or lesser (at 9 mmol N) %NdfF than P‐fertilized plants. Comparing a control (without AM inoculation) to AM plants, differences in % NdfF ranged from 138% (3 mmol N) to 22.6% (6 mmol N) whereas no differences were found at 9 mmol N. In comparison with P fertilization, mycorrhizal effects on %NdfF were only evident at the lowest N levels, which indicated a regulatory mechanism for N uptake in AM plants affected by N availability in the soil. At the highest N level, P‐fertilized plants showed the greatest %NdfF. In conclusion, AM symbiosis is important for N acquisition and N fertilizer utilization but this beneficial mycorrhizal effect on N nutrition is reduced under large quantities of N fertilizer.  相似文献   

15.
采用15N示踪技术,选用水稻土和灰潮土在宜兴进行小麦盆栽试验,研究了稻草、猪粪及其堆肥与化肥配施对作物生长及氮素吸收的影响。结果表明,在水稻土和灰潮土上,不同有机物及其堆肥与化肥配施分别比单施化肥增产4.46%~24.82%和1.01%~20.53%,稻草堆肥和猪粪堆肥配施化肥处理籽粒产量分别高于稻草和猪粪直接与化肥配施处理。稻草和猪粪堆肥后更利于作物吸收氮素,增加植物体内15N累积。两种土壤上15N回收率表现为相同配比的堆肥处理未堆肥处理单施化肥处理。随着小麦生育期的推进,土壤微生物量氮和矿质态氮含量均呈下降趋势,稻草和猪粪处理的微生量氮含量始终高于稻草堆肥和猪粪堆肥处理。有机无机肥配施处理土壤矿质态氮在小麦生育前期低于单施化肥,成熟期则高于单施化肥。整个生育期中,稻草堆肥和猪粪堆肥处理土壤矿质态氮含量分别高于稻草和猪粪处理。因此,有机物堆肥后与化肥配施更有利于提高产量,促进作物对氮素的吸收利用。  相似文献   

16.
Nitrogen (N) fertilization in rice (Oryza sativa L.) is extensive throughout the world, but fertilizer N recovery is generally low. Split fertilizer applications that coincide with plant demand have been suggested as a method of improving fertilizer N efficiency. However, the effectiveness of split applications has not been established. Furthermore, there is little information available on plant N accumulation after a midseason application. The purpose of this study was to measure plant dry matter, root growth, and N accumulation after a midseason N application and to determine the length of time during which midseason N is accumulated by the plant. ‘Cypress’ rice was drill‐seeded in a Crowley silt loam soil (fine, montmorillonitic, thermic Typic Albaqualf) and urea‐N was broadcast at 101 kg N ha‐1 preflood. Microplots enclosed by retainers were established prior to panicle initiation (PI), and l5N‐labeled urea was topdressed at PI into the floodwater within each microplot at 67 kg N ha‐1. Microplots were harvested at 1 day after topdress (DAT), 3 DAT.7DAT, 14 DAT, and at 90% heading (35 DAT). Dry matter production was not affected by the midseason N application and increased linearly from the time of midseason application until 90% heading. Root growth at the time of the midseason application was extensive and roots could be seen at the soil surface. Root length density was greatest in the top 7.5 cm of the soil profile and decreased with depth. Most accumulation of midseason N occurred within 7 DAT. Both midseason N and native N in the plant increased during this period. About half of the midseason N was accumulated by the crop, probably because of the extent of the root system. This approximates N recovery from preplant or preflood N applications. Nitrogen loss was probably due to ammonia (NH3) volatilization. Nitrogen accumulation by the plants continued throughout the duration of the experiment. This study shows that N broadcast into the floodwater at PI is quickly and efficiently utilized.  相似文献   

17.
Azolla microphylla Kaulf. (Azolla) biomass was composted to create a high nitrogen (N) organic matter amendment (Azolla compost). We examined the effect of this Azolla compost on carbon (C) and N mineralization and the production of biogenic gases, nitrous oxide (N2O) and carbon dioxide (CO2), in a soil incubation experiment. A pot experiment with upland kangkong (Ipomoea aquatica Forsk.) examined plant growth in silt loam soil treated with three levels of Azolla compost. The results showed that N2O production from soil increased with urea amendment, but not with Azolla compost treatments. The Azolla-amended soil showed enhanced CO2 production throughout the 4-week incubation. The Azolla-treated soils showed a 98% lower global warming potential compared to urea treatment over the 4-week incubation. However, Azolla-amended soil had higher nitrate (NO3) levels compared to urea-fertilized soil at 1 week of incubation, and these were maintained until the fourth week. Soils amended with Azolla compost showed lower ammonium nitrogen (NH4-N) levels than those in the urea-fertilized soils. The height and dry weight of upland kangkong fertilized with Azolla compost were similar to plants receiving urea fertilization. Therefore, the use of Azolla compost as a substitute for urea fertilizer would be beneficial for reducing the production of N2O while maintaining plant growth.  相似文献   

18.
To evaluate the impact of top-pruning time on fertilizer N use efficiency (NUE) of flue-cured tobacco, we adopted 15N tracing technique and conducted a 2-year experiment from 2014 to 2015 in eastern China. The experiment included three top-pruning points of time: 5th, 25th and 45th day after flowering (DAF), abbreviated, respectively, as TP5, TP25 and TP45. The amounts of plant N derived from fertilizer (Ndff) and soil (Ndfs) were observed during 0–55th DAF. Results showed that top-pruning slowed down the increase of Ndff in tobacco organs, particularly in the leaf, but accelerated the increase of Ndfs dramatically. The proportion of Ndff (%) accounted for the total N reduced dramatically after top-pruning. This reduction might attribute to the selectivity of plant to different N sources as influenced by top-pruning while had little relationship with soil N supply, according to the analysis on the soil total mineral N and mineral 15N. The average NUE for the 2 years was 32%, 41% and 47%, respectively, for TP5, TP25 and TP45, showing significant (< 0.05) differences. We concluded that the tobacco preferred to uptake soil N rather than fertilizer N after top-pruning; thus, optimizing the top-pruning time might be one of the approaches to improve the in-season NUE of flue-cured tobacco.  相似文献   

19.
The potential of an organically managed Cambic Arenosol to supply nitrogen (N) from either an applied commercial organic fertilizer (granulated hen manure), a compost produced on‐farm, or four different mixtures of both fertilizers was studied in a laboratory incubation and a pot experiment with lettuce. In the incubation experiment, a significant higher apparent N mineralization occurred after hen‐manure application (53.4% of the organic N applied) compared to compost (4.5%) or mixed‐fertilizer application (8.7% to 16.7%). The apparent N mineralization in a mixed treatment consisting of compost and half rate of hen manure (15.4% of the organic N applied) was significantly higher than that estimated based on the N mineralization for compost and hen‐manure treatments (7.6%), proving that a combined application of both fertilizers enhanced organic‐N mineralization when compared to separate fertilizer supply. In the pot experiment, a higher lettuce fresh‐matter yield was obtained with hen manure (1.9 kg m–2) than with compost (1.7 kg m–2) or unfertilized control treatment (1.3 kg m–2). Combined application of compost with only a half rate of hen manure led to yields (2.0 kg m–2) equal to those obtained with only hen manure. A good correlation was observed between the N‐mineralization incubation data and the N accumulated by lettuce plants in the pot experiment (r = 0.983). Hence, in the organic production of baby‐leaf lettuce, a mixture of compost and hen manure appears to be a good fertilization alternative, since it allows a reduction by half of the typical amount of commercial fertilizer usually applied (granulated hen manure), cutting fertilization costs, and providing an amount of available N that allows maintaining lettuce yields.  相似文献   

20.
Summary N accumulation and natural 15N abundance in three legumes (groundnuts, cowpeas, and soybeans) and in two cereals (sorghum and maize) were investigated over two seasons in Alfisols with and without N fertilization. Using the N uptake and natural 15N abundance of non-nodulating plants as the indication of N derived from soil and fertilizer, the per cent N derived from atmospheric N2 was calculated for nodulated plants. In the first experiment, the groundnut genotype contained 85% atmosphere-derived N, but the percentage decreased with N application. Estimates of atmosphere-derived N by the N-difference and 15N-abundance techniques gave identical results. The percentages of atmosphere-derived N estimated by the two methods at different stages of groundnut growth were also similar. In the second experiment, atmosphere-derived N was estimated in plants grown with 0–200 kg ha-1 applied N. The estimated atmosphere-derived N ranged from 42% to 61% for groundnuts from 33% to 77% for cowpeas, and from 24% to 48% for soybeans, depending on the amount of N applied. Inoculation with a Bradyrhizobium strain increased the percentage of atmospherederived N in soybean plants grown without any fertilizer N. The natural 15N abundance of sorghum and maize was very close to that of the non-nodulating groundnut, suggesting that these cereals can be used as reference plants in the estimation of atmosphere-derived N by the natural 15N-abundance method.ICRISAT Journal Article No. 876  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号