首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A greenhouse experiment was designed in order to evaluate growth, water relations, and nutrient concentrations of grafted and ungrafted tomato plants grown under varying levels of salinity (0, 30, or 60 mM NaCl). Two cultivars, ‘Fanny’ and ‘Goldmar’, were grafted onto AR‐9704, using the cleft‐grafting method. Growth of grafted ‘Fanny’ plants was higher than that of ungrafted plants. Growth of ‘Goldmar’ plants was not affected by salinity treatments or grafting, but it was slower than for ‘Fanny’. Leaf turgor showed no significant differences between grafted and ungrafted plants or between salinity levels. The stomatal conductance (Gs) was higher for grafted than for ungrafted plants, and salinity decreased it significantly and progressively in both grafted and ungrafted plants and in both varieties. The concentrations of Na+ and Cl were significantly higher in ungrafted than in grafted ‘Fanny’ plants. ‘Fanny’ was more tolerant when grafted, probably due to reduced accumulation of Na+ and/or Cl in the shoot.  相似文献   

2.
Soil contamination by heavy metals negatively affects crop productivity, besides representing serious threat to human health. Grafting tomato onto appropriate rootstocks may raise Ni tolerance through limiting heavy metal uptake by roots and/or its translocation to the shoot and by detoxification. A greenhouse experiment was conducted to determine the influence of long‐term Ni exposure (0, 25, or 50 µM) on crop productivity, fruit quality, leaf chlorophyll content, fluorescence, electrolyte leakage, catalase (CAT), ascorbate peroxidase (APX), and guaiacol peroxidase (GPX) activities in leaf, proline content, membrane lipid peroxidation, and mineral composition of tomato plants cv. Ikram, either self‐grafted or grafted onto three rootstocks: Black Beauty, Unifort, and Maxifort. Significant reduction in yield was observed in response to an increase in Ni concentration with more detrimental effects at 50 µM Ni. The fruit dry matter and total soluble solids content increased under severe Ni stress. The depression of crop performance under Ni toxicity was attributed to a decrease in leaf pigments (SPAD index), efficiency of PSII, macro‐ and microelements, and increase in lipid peroxidation and membrane damage. Plants grafted onto tomato rootstocks Maxifort and Unifort exhibited higher chlorophyll content, photochemical activity of PSII, antioxidant activity of APX and GPX, lower accumulation of MDA, and a better nutritional status (higher Ca and Fe, and lower Ni) in the leaf tissues in comparison with self‐grafted plants and those grafted onto Black Beauty. Plants grafted onto tomato rootstocks Unifort and especially Maxifort could minimize the nickel toxicity by improving nutritional status and detoxification processes.  相似文献   

3.
为综合评价露地小型西瓜产量品质的砧木效应,以接穗京颖-6自根苗为对照,研究南瓜砧和葫芦砧分别嫁接同一接穗品种后,不同嫁接组合的幼苗质量、植株长势、产量、果实性状和品质变异特征。结果表明,所有砧木的嫁接成活率均高于90%,供试南瓜砧中幼苗质量以兴盛和铁砧尔帝较好,葫芦砧以强根和京欣砧1号表现较好。嫁接成株长势和产量也因选择砧木不同而表现不同,其中南瓜砧嫁接植株长势较强,产量较高,最低增产率也达17.0%;葫芦砧嫁接植株长势和产量变异较大,强根增产率达49.4%,但京欣砧王单位产量较对照低12.3%,且嫁接对小型西瓜果实特性及果实营养品质的影响显著。构成小型西瓜果实品质相关指标的综合评价结果表明,仅2个南瓜砧和4个葫芦砧嫁接果实品质优于自根苗。综上,供试南瓜砧均显著提高了小型西瓜的产量,但多降低了果实品质;葫芦砧中仅强砧和京欣砧1号嫁接西瓜的产量有所提高,且果实品质有所改善。本研究为嫁接小型西瓜优质高产栽培提供了理论依据。  相似文献   

4.
A short-term experiment was conducted to investigate whether the effect of rootstock on plant response to salinity depends on the solanaceous species used as scion. Tomato cv. ‘Ikram’ and eggplant cv. ‘Black Bell’ were grafted onto two tomato interspecific hybrids (‘Beaufort’ and ‘He-Man’). Plants were grown in an open soilless cultivation system and supplied with two nutrient solutions: non-saline control and a saline solution (adding 15 mM Na2SO4, 3.7 dS m?1). Plant dry biomass production and partitioning were influenced by salinity, but its effect was depending on the rootstock/scion combination. ‘Beaufort’ eliminated the deleterious effect of salinity when tomato was used as scion, but reduced (?29.6%) the shoot biomass of eggplant. ‘He-Man’ had a different effect on scion growth under saline conditions: shoot biomass was less reduced in eggplant (?20.6%) than in tomato (?26.8%). Under salt stress, ‘Beaufort’ reduced the accumulation of Na+ in tomato leaves more than in eggplant, whereas no differences were observed between tomato and eggplant grafted onto ‘He-Man’. Stem Na+ accumulation followed a different pattern. The increase of Na+ in the stems was similar for tomato and eggplant grafted onto ‘Beaufort’, whereas stems of tomato accumulated more Na+ compared to eggplant grafted onto ‘He-Man’. The opposite response of the tested rootstocks to salt stress when the scion was either tomato or eggplant seems to be partially related to the capacity of the rootstock and scion to exclude Na+ from the shoot. However, the results of nutrient accumulation within plant tissues imply that other mechanisms in addition to ion competition are involved in the salt resistance of grafted plants.  相似文献   

5.
The grafting of melon plants onto cucurbit rootstocks is a common commercial practice in many parts of the world. However, certain cucurbits have been shown to accumulate large quantities of weathered persistent organic pollutants from the soil, and the potential contamination of grafted produce has not been thoroughly evaluated. Large pot and field experiments were conducted to assess the effect of grafting on accumulation of weathered DDX (the sum of p,p'-DDT, p,p'-DDD, and p,p'-DDE) from soils. Intact squash (Cucurbita maxima × moschata) and watermelon (Citrullus lanatus), their homografts, and compatible heterografts were grown in pots containing soil with weathered DDX at 1480-1760 ng/g soil or under field conditions in soil at 150-300 ng/g DDX. Movement of DDX through the soil-plant system was investigated by determining contaminant levels in the bulk soil and in the xylem sap, roots, stems, leaves, and fruit of the grafted and nongrafted plants. In all plants, the highest DDX concentrations were detected in the roots, followed by decreasing amounts in the stems, leaves, and fruit. Dry weight concentrations of DDX in the roots ranged from 7900 ng/g (intact watermelon) to 30100 ng/g (heterografted watermelon) in the pot study and from 650 ng/g (intact watermelon) to 2430 ng/g (homografted squash) in the field experiment. Grafting watermelon onto squash rootstock significantly increased contaminant uptake into the melon shoot system. In the pot and field studies, the highest stem DDX content was measured in heterografted watermelon at 1220 and 244 ng/g, respectively; these values are 140 and 19 times greater than contaminant concentrations in the intact watermelon, respectively. The xylem sap DDX concentrations of pot-grown plants were greatest in the heterografted watermelon (6.10 μg/L). The DDX contents of the leaves and fruit of watermelon heterografts were 3-12 and 0.53-8.25 ng/g, respectively, indicating that although the heterografted watermelon accumulated greater pollutant levels, the resulting contamination is not likely a food safety concern.  相似文献   

6.
The salinity tolerance of loquat grafted onto anger or onto loquat was studied. The plants were irrigated using solutions containing 5, 25, 35, 50, or 70 mM sodium chloride (NaCl) for five months. Different parameters of vegetative growth were studied, all of them showing that plants grafted onto loquat are much less salinity-tolerant than those grafted onto anger. Thus, the concentration of NaCl that produced a growth reduction of 50% (C50) for the growth parameters of the shoot was around 35 mM for loquat plants grafted onto loquat. With the NaCl levels employed, loquat-anger plants did not reach the C50. Lower chloride (Cl?) and sodium (Na+) uptake, higher potassium (K+)-Na+ selectivity and a lower reduction in the leaf magnesium (Mg2+) concentration for the loquat-anger combination can explain the higher salinity tolerance compared to loquat-loquat.  相似文献   

7.
Two tomato scions (cvs. ‘Raf’ and ‘Gorety’) were grafted on three different rootstocks: S. torvum, ‘Beaufort’ (Lycopersicum esculentum × Lycopersicum hirsutum) and intermediate grafting of eggplant ‘Cristal’ between tomato and S. torvum (double graft). Plants were grown in Mediterranean greenhouse conditions. The response to grafting was measured through growth parameters, Fv/Fm and leaf macronutrients analysis, and it was compared with non-grafted plants. The scions grafted on S. torvum in simple and double graft showed lower fresh and dry weight of leaves, number of commercial fruits, plant height, Fv/Fm and decreased their capacity to absorb several nutrients resulting in a lower mineral concentration in scions leaves, as a result of a thickened graft union. On the other hand, both scions showed a good response when grafted on the rootstock ‘Beaufort’, with which growth parameters, yield and photosynthetic capacity were similar to non-grafted plants.  相似文献   

8.
Plant growth, nutritional status, and proline content were investigated in non-grafted and grafted greenhouse tomato plants onto five rootstocks of eggplant, datura, orange nightshade, local Iranian tobacco, and field tomato, exposed to 0, 5, and 10 mM sodium bicarbonate (NaHCO3) to determine whether grafting could improve alkalinity tolerance of tomato. The leaf fresh mass of ungrafted and grafted tomato plants decreased significantly as NaHCO3 levels increased. Despite other rootstocks and ungrafted plants, alkalinity had no significant effect on stem and root fresh mass and shoot phosphorus (P), potassium (K) and magnesium (Mg) concentrations of datura grafted plants. The lowest solution pH and electrical conductivity (EC) values and the highest leaf proline content were observed in the plants grafted onto datura rootstock. Moreover, sodium (Na) concentration in shoots was lower in plants grafted onto datura rootstock than in other plants especially under high NaHCO3 levels. Overall, using datura rootstock improved alkalinity tolerance of tomato plants under NaHCO3 stress.  相似文献   

9.
ABSTRACT

Three vegetative rootstocks of plum (Prunus domestica), Marianna GF 8-1 (Prunus cerasifera × munsoniana), Myrobolan B (P. Cerasifera) and Pixy (P. Insititia) were grown in pots containing sand and irrigated with complete nutrient solution to investigate the effect of calcium sulfate supplied to the nutrient solution on plants grown under salt stress. Treatments were (1) control (C): nutrient solution alone; (2) S (salinity stress): 40 mM NaCl; (3) S+Ca1: 40 mM NaCl +2.5 mM calcium (Ca) and (4) S+Ca2: 40 mM NaCl + 5 mM Ca. Calcium was supplied as CaSO4. The plants grown under 40 mol L?1 NaCl produced less dry matter and had lower chlorophyll content than those without NaCl. Supplementary CaSO4 at both 2.5 and 5 mM concentrations ameliorated the negative effects of salinity on plant dry matter and chlorophyll content. Salt treatment impaired membrane permeability by increasing electrolyte leakage. The addition of calcium sulfate partially maintained membrane permeability. Sodium (Na) concentration in plant tissues increased in both leaves and roots of plants under the high NaCl treatment. Pixy had much lower Na. The CaSO4 treatments lowered significantly the concentrations of Na in both leaves and roots. Pixy was more tolerant to salinity than the other two rootstocks. The accumulation of Na in leaves and roots indicates a possible mechanism whereby Pixy copes with salinity in the rooting medium, and/or may indicate the existence of an inhibition mechanism of Na transport to leaves. Concentrations of Ca and K were lower in the plants grown at high NaCl than in those under the control treatment, and these two element concentrations were increased by calcium sulfate treatments in both leaves and roots, but remained lower than control values in most cases.  相似文献   

10.
Two experiments were conducted to study the effect of grafting on nitrogen‐use efficiency (NUE) in mini‐watermelon plants. In the first study, mini‐watermelon plants (Citrullus lanatus [Thumb.] Matsum. and Nakai cv. Minirossa) either ungrafted or grafted onto Macis, Vita (Lagenaria siceraria [Mol.] Standl.), PS1313, and RP15 (Cucurbita maxima Duchesne × Cucurbita moschata Duchesne) rootstocks grown in hydroponics were compared in terms of shoot dry biomass, leaf area, root‐to‐shoot ratio, SPAD index, shoot N uptake, and nitrate reductase (NR) activity 40 d after transplantation in response to nitrate concentration in the nutrient solution (0.5, 2.5, 5, 10, 15, or 20 mM of NO$ _3^- $ ). In the second experiment, the suitability of a selected rootstock with high NUE (Vita) to improve crop performance and NUE of grafted mini‐watermelon plants was evaluated under field conditions. In the hydroponic experiment mini‐watermelon grafted onto Vita rootstock needed the lowest nitrate concentration (1.31 mM of NO3) in the nutrient solution to reach half maximum shoot dry weight. Total leaf area, SPAD index, and shoot N uptake increased in response to an increase of N concentration in the nutrient solution. At 2.5 mM NO$ _3^- $ , mini‐watermelon grafted on either Vita or RP15 had the highest NR activity whereas no significant difference was observed at 10 mM NO$ _3^- $ . The open‐field study indicated that increasing N‐fertilization rates from 0 to 100 kg ha–1 improved total and marketable yields of mini‐watermelon plants while decreasing NUE. When averaged over N levels, the marketable yield, NUE, N‐uptake efficiency, and N‐utilization efficiency were significantly higher by 39%, 38%, 21%, and 17%, respectively, in Minirossa grafted onto Vita compared to ungrafted Minirossa plants. Therefore, grafting mini‐watermelon plants onto selected rootstocks can be used as a quick and effective method for improving productivity and NUE.  相似文献   

11.
Abstract

The effect of salinity on the growth and yield of tomato plants and mineral composition of tomato leaves was studied. Five tomato (Lycopersicon esculentum Mill) cultivars, Pearson, Strain B, Montecarlo, Tropic, and Marikit, were grown in sand nutrient culture. The nutrient solutions applied consisted of a modified half‐strength Hoagland solution with 50 mM sodium chloride (NaCl), 3 mM potassium sulphate (K2SO4), 1.5 mM orthophosphoric acid (H3PO4), and 10 mM calcium sulphate (CaSO4). Stem height and number of leaves of tomato plants were not found to be significantly different but leaf and stem dry weight were reduced significantly in plants irrigated with saline nutrient solution in contrast with control plants. The total yield was reduced in plants that received saline treatments, but there was no significant difference in fruit number and fruit set percentage. The fruit electrical conductivity and total soluble solids were increased in plants irrigated with saline nutrient solution. Fruit pH was not found to be significantly different among salinity treatments. Mineral composition of tomato leaves were increased by addition of potassium (K), phosphorus (P), and calcium (Ca) to the saline nutrient solution. The addition of K to the solution resulted in an increase in sodium (Na) leaf content. The amounts of K and magnesium (Mg) were not significantly different among salinity treatments. Calcium content was increased when CaSO4 was added. Application of H3PO4 resulted in the highest amount of P in tomato leaves under saline conditions. The present study revealed that application of K, P, and Ca under saline conditions improved fruit electrical conductivity and total soluble solids. Sufficiency levels of the mineral nutrients K and P were obtained in tomato leaves when the appropriate nutrient was used in the saline solution.  相似文献   

12.
The effect of NaCl‐salinity on growth responses and tissue mineral content was investigated for two olive (Olea europaea L.) genotypes of different vigor, Leccino and Frantoio. Forty‐day‐old self‐rooted plants were grown for a 60‐day period in a sand culture system supplied with a 1/2 strength Hoagland solution with the addition of 0,12.5,25,50, and 100 mM NaCl. Plants were harvested at 12‐day intervals, and the dry weights of shoot, and principal and lateral roots were evaluated. Relative growth rate (RGR) was also estimated. At the same time, plant tissues were analysed for N, P, K, Ca, Mg, Na, and Cl content.

Growth inhibition by NaCl treatments was greater for Leccino than Frantoio plants. At the end of the experiment, 50 mM NaCl significantly reduced Leccino growth, while negative effects on Frantoio were detected only when using 100 mM NaCl. Leccino always accumulated more Na and Cl in the leaves than Frantoio. In a similar manner, Na/K ratio was always higher in the Leccino leaves compared to the Frantoio leaves. An inverse relationship between NaCl tolerance and vigor of the genotype emerged.  相似文献   

13.
Abstract

Tomato cultivars were grown in a saline nutrient culture system to investigate growth and fruiting responses in relation to the application of 3 mM potassium (K), 1.5 mM phosphorus (P), and 10 mM calcium (Ca). The deleterious effects of salinity on tomato stem growth and fruit yield were ameliorated following the addition of K, P, and Ca to the nutrient solution. Potassium levels in tomato leaves were increased 4‐fold compared to control plants in the presence of applied K. The use of K resulted in an increase in Na content, however, a comparatively low level of sodium (Na) was obtained in treatments receiving K, Ca, and P. Calcium content was greater than sufficiency levels in all treatments, whereas magnesium (Mg) declined with the increase in salinity. The amount of P in tomato leaves was increased 4–5 fold when the nutrient solution was supplemented with 1.5 mM P. Correlation of vegetative parameters, such as stem height and leaf growth to salinity, revealed no significant responses, however commercial parameters such as total soluble solids and fruit weight correlated significantly with the saline nutrient treatments.  相似文献   

14.
Olive trees (Olea europaea L.) are considered moderately tolerant to salinity, with clear differences found among cultivars. One‐year‐old self‐rooted olive plants of the Croatian cv. Oblica and Italian cv. Leccino were grown for 90 d in nutrient solutions containing 0, 66, or 166 mM NaCl, respectively. The shoot length and the number of nodes and leaves for both cultivars were not affected by salinity up to 66 mM NaCl. However, at 166 mM NaCl, growth of Leccino was reduced earlier and to a higher extent than growth of Oblica. After 10 d of exposure to 66 and 166 mM NaCl, increased activity of superoxide dismutase (SOD) was observed in Leccino, whereas there was almost no response in Oblica. Reduced SOD activity in Leccino at 166 mM NaCl was observed after prolonged stress (90 d), whereas in Oblica SOD was increased at 66 mM compared to control or 166 mM NaCl. Electrolyte and K+ leakage were increased and relative water content decreased as NaCl concentration increased with similar intensity of response measured in both cultivars. Oblica exhibited an ability to keep a higher K+ : Na+ ratio at all salinity levels compared to Leccino, but since no difference was found in leaf K+ concentration, this was mainly achieved by less Na+ ions reaching the younger leaves. The antioxidative system represents a component of the complex olive salt‐tolerance mechanism, and it seems that the role of SOD in protection from oxidative stress depends on sodium accumulation in leaves.  相似文献   

15.
Abstract

The effect of two different levels of salinity upon adult plants of Digitalis purpurea has been studied. Seeds of D. purpurea plants were sown in pots of equal size and moistened with deionized water during one year. Afterwards, different treatments with NaCl were initiated, the concentrations being 100 mM and 200 mM NaCl in irrigation water during 63 days. Growth, measured as dry and fresh weight, and soluble protein contents, were lower in stressed plants than in control plants. Monovalent cation analysis showed that in leaves K+ plus Na+ (Total M) values did not change with the different treatments, but that in roots these values increased with the increasing salinity stress. On the other hand, proline levels were higher in stressed plants although the accumulation of this amino acid was not significant In leaves, Cl? levels increased linearly with salinity degree, and the accumulation of this ion was faster than that of Na+, whereas in roots, the Cl? level remained relatively low.

Total cardenolide levels in leaves and roots of the 100 mM NaCl plants were higher than those in 200 mM NaCl and control plants. We infer that moderate salinity conditions lead to raised cardenolide levels, principally in leaves, but the reason for this is not clear.  相似文献   

16.
Plant growth promoting effects of Bacillus subtilis EY2, Bacillus atrophaeus EY6, Bacillus spharicus GC subgroup B EY30, Staphylococcus kloosii EY37 and Kocuria erythromyxa EY43 were tested on strawberry cv. ‘Fern’ in terms of fruit yield, growth, chlorophyll reading value, leaf relative water content (LRWC), membrane permeability and ionic composition of leaves and roots under saline conditions. Compared with 0 mM sodium chloride (NaCl) treatment, the average decrease of yield and LRWC were 51.6% and 21.0%, respectively, when 35 mM NaCl was applied. However, EY30, EY37, and EY43 treatments under saline condition (35 mM NaCl) significantly increased fruit yield (54.4%, 51.7% and 94.9%) compared with 35 mM NaCl treatment without plant growth promoting bacteria (PGPB). The LRWC increased from 72.0% in 35 mM NaCl treatment to 88.4%, 86.6%, 84.2%, 83.5%, and 86.2% by EY2, EY6, EY30, EY37, and EY43 applications, respectively. The lowest membrane permeability among the bacterial strains was obtained from EY37 treatment (37) while it was 33 and 58 in 0 mM NaCl and 35 mM NaCl treatments, respectively. The concentration of all plant tissue nutrients investigated [nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg)] with the exception of root phosphorus (P) and Mg concentration significantly decreased with 35 mM salt treatment. Nitrogen content of leaves varied between 3.04 and 3.14% in bacterial treatments under saline conditions while it was 2.71% in 35 mM NaCl treatment. In contrast sodium (Na) and chloride (Cl) of leaves and Cl content of roots were significantly decreased by root inoculation with all bacterial treatments in comparison to 35 mM NaCl treatment with no inoculation. Treatment with Bacillus EY30, Staphylococcus EY37 and Kocuria EY43 to strawberry plants can ameliorative the deleterious effect of salt stress on fruit yield, growth and nutrition. These results demonstrate that PGPB treatment could be offer an economic and simple means to increased plant resistance for salinity stress.  相似文献   

17.
黄瓜果实表面蜡粉的多少影响其商品品质,蜡粉多少在一定条件下取决于植株对硅的吸收特性。本试验选择4个果实表面具蜡粉的南瓜自交系(Z1、 Z2、 Z3和Z4)和4个果实表面没有蜡粉的南瓜自交系(Z5、 Z6、 Z7 和Z8)为砧木,嫁接津优1号黄瓜,以自根黄瓜为对照,研究了嫁接和自根黄瓜果面蜡粉形成与硅吸收分配的关系。结果表明, 采用果面具蜡粉砧木Z1、 Z2嫁接的黄瓜果实表面鲜亮、 光滑,几乎无蜡粉;果面具蜡粉的砧木Z3、 Z4以及不具蜡粉的4个砧木嫁接的黄瓜果面蜡粉量多,色灰暗,与自根黄瓜之间差异显著或不显著。果面没有蜡粉的黄瓜植株各器官中硅含量显著低于果面有蜡粉的黄瓜;果实果皮中硅含量高于果肉。嫁接黄瓜果面是否具蜡粉与砧木果面有无蜡粉没有必然联系,采用去蜡粉砧木嫁接的黄瓜硅吸收量明显减少。  相似文献   

18.
Abstract

The turf grass Pennisetum clandestinum Hochst. (kikuyu grass) is one of the candidate plants for utilization and reclamation of salinized areas. The capability of kikuyu grass to grow under saline conditions was tested during 6 months, under various irrigation treatments (tap water control, 80‐mM, 150‐mM, 200‐mM, 240‐mM NaCl). Plant biomass production was visibly affected only at NaCl concentrations greater than 150‐mM NaCl. Plant growth and plant regeneration capability in the 200‐ and 240‐mM NaCl treatments gradually decreased as the experiment progressed in time. The photosynthetic potential of the plants remained unchanged and was neither affected by the treatment nor with time. Proline content of leaves as well as the content of Na+ and Cl? increased with increasing salinity stress. Apparently, kikuyu grass can withstand moderate concentrations of NaCl for prolonged periods and under repeated mowing. Thus, this grass can be used as a potential ground cover and as fodder grass in saline habitats.  相似文献   

19.
Agricultural productivity is worldwide subjected to increasing salinity problems. Various strategies are applied to overcome the deleterious effects of salinity on plants. This study was conducted in order to determine whether drought pretreatment of seedlings or seed pretreatment with NaCl increases the long‐term salinity resistance of tomato (Solanum lycopersicum L.) and whether the adaptive response to salinity is accompanied by physiological changes throughout the plant‐growth cycle. When plants were pretreated at the five‐leaf growth stage, the plant dry weight was significantly higher in drought‐pretreated than in non‐pretreated plants after 50 d of salt treatment. The positive effect of drought pretreatment applied at the five‐leaf stage was maintained throughout the entire growth cycle, as fruit yield of drought‐pretreated plants was 40% higher than that of non‐pretreated plants at the end of the harvest period (150 d of 70 mM NaCl treatment). Moreover, the most productive plants maintained lower Na+ and Cl accumulation in their leaves until the end of the growth cycle, which shows that adaptation is a long‐term response during which the plants adjust their physiology to the environmental conditions. Salt resistance was also improved through seed pretreatment with NaCl. In conclusion, drought pretreatment applied at the five‐leaf stage or seed pretreatment with NaCl provide an alternative way to enhance salt resistance in tomato, and the increase in yield is associated with physiological changes throughout the plant‐growth cycle.  相似文献   

20.
A sand culture experiment was conducted to study the effect of saline water on the growth and fruit quality of processing tomato (Lycopersicon esculentum Mill.) Seedlings of five tomato cultivars were transplanted in quartz‐sand pots in a greenhouse at the Agricultural Experiment Station of Sultan Qaboos University. There were four saline nutrient solutions and a control consisting of half‐strength Hoagland solution. Salinity treatments were: 50 raM NaCl + 3 mM K2SO4 (EC 6.75), 50 mM NaCl + 1.5 mM orthophosphoric acid (EC = 7.18), 50 mM NaCl + 1.5 mM orthophosphoric acid + 3 mM R2SO4 (EC 7.29), and 50 mM NaCL (EC = 5.6). Treatments were applied daily commencing two weeks after transplanting. Data were collected on growth, and fruit yield and quality. Partitioning of mineral elements was determined in the vegetative tissue. The results obtained clearly show that concentrations of total soluble solids were increased in fruits treated with saline nutrients. Dry matter content of fruits exposed to salinity were higher than those from the control plants. Fruit acidity was increased with salinity, possibly due to a lower water content and increased organic acid accumulation. In the saline treatments, sodium (Na) content was decreased when potassium (K) was applied with NaCl but Na was higher in stems followed by root and leaf tissues. The partitioning of K followed a trend opposite to that for Na but with higher content in leaves. A similar situation was observed for calcium (Ca) and magnesium (Mg). Accumulation of phosphorus (P) was the lowest among all the ions. These results indicated that survival under saline conditions was accompanied by high ion accumulation. The study confirmed that saline nutrients are important for improving fruit quality of processing tomatoes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号