首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In sub‐Saharan Africa, urban and peri‐urban food production has been identified as an important resource for meeting the challenges of rapidly growing cities, and the positive aspects of such production have been well documented in the literature. This paper examines some of the health and environmental concerns associated with urban and peri‐urban agriculture (UPA). Empirical evidence from the city of Kano in northern Nigeria suggests that there is currently much reason for concern as industrial and domestic toxins are reaching dangerously high levels. As soils and water channels become increasingly polluted, the sustainability of urban and peri‐urban food production is questioned. Since the health implications of long‐term exposure to toxins are unclear, it is suggested that coordinated longitudinal research involving urban planners, agricultural scientists and health specialists is urgently needed. In addition, it remains crucial that government and institutional actors effectively monitor and enforce both environmental and zoning by‐laws, if the health and environmental constraints of UPA are to be overcome, and the future sustainability of production is to be assured. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
Urban and periurban agriculture (UPA) contributes significantly to meeting increasing food demand of rapidly growing urban populations in West African cities. The often intensive high‐input vegetable production within UPA results in large positive nutrient balances, being presumably linked to strong nutrient leaching which needs quantification. This study aimed at estimating leaching losses of mineral N and P in three representative urban gardens of Niamey, Niger, using ion‐exchange‐resin cartridges installed below the crop rooting zone at 0.6 m soil depth. In 2007, a year with below‐average annual rainfall (425 mm as compared to 542 mm), mean leaching of mineral N amounted to 5.9 and 7.3 kg N ha–1 for two gardens with > 80% sand fraction and only 2.2 kg N ha–1 for a garden with 40% silt and clay. Apparent annual P leaching was 0.7 kg P ha–1 in all three gardens. Additional multiannual studies are necessary to assess the effect of inter‐ and intraannual variation in precipitation on nutrient leaching in intensive UPA vegetable production of semiarid West Africa.  相似文献   

3.
A field experiment was conducted for 5 years (2004–2005 to 2009–2010) covering 10 crop seasons [five wet (WS; Kharif) and five dry (DS; Rabi)] at the Directorate of Rice Research farm, Hyderabad, India, to compare the influence of organic and conventional farming systems on productivity of fine grain rice varieties, cumulative partial nutrient balance, and soil health/quality in terms of nutrient availability, physical and biological properties, and sustainability index. Two main plot treatments were with and without plant protection measures, and four subplot treatments were (1) control (CON), (2) inorganic fertilizers (CF), (3) organics (OF), and (4) inorganics + organics (integrated nutrient management, INM). During wet season, grain yields with CF and INM were near stable (5.0 to 5.5 t ha?1) and superior to organics by 15–20% during the first 2 years, which improved with OF (4.8 to 5.4 t ha?1) in the later years to comparable levels with CF and INM. However, during DS, CF and INM were superior to OF for 4 consecutive years and OF recorded yields on par with CF and INM in the fifth year. The partial nutrient balance over 10 crop seasons for N and P was positive and greater with OF and INM over CF and for K it was positive with OF alone and negative with CF and INM. There were increases in SOC and available N, P, and K by 50–58%, 3–10%, 10–30%, and 8–25% respectively, with OF, over CF at the end of 5 years. The sustainability index (SI) of the soil system was maximum with organics (1.63) and CF recorded 1.33, which was just above the minimum sustainability index of 1.30 after 5 years. Thus, organic farming needs more than 2 years to stabilize rice productivity and bring about perceptible improvement in soil quality and sustainability in irrigated rice.  相似文献   

4.
Urban and peri‐urban agriculture (UPA) is an important livelihood strategy for the urban poor in sub‐Saharan Africa and contributes to meeting increasing food demands in the rapidly growing cities. Although in recent years many research activities have been geared towards enhancing the productivity of this land‐use system, little is known about turnover processes and nutrient efficiency of UPA. The aim of our study therefore was to determine horizontal fluxes of N, P, K, and C as well as gaseous N and C emissions in urban vegetable gardens of Bobo‐Dioulasso, Burkina Faso. Two gardens referred to as “Kodéni” and “Kuinima” were selected as representative for urban and peri‐urban systems classified as: (1) “commercial gardening + field crops and livestock system” and (2) “commercial gardening and semicommercial field crop system”, respectively. A nutrient‐balance approach was used to monitor matter fluxes from March 2008 to March 2009 in both gardens. Ammonia (NH3), nitrous oxide (N2O) and carbon dioxide (CO2) emissions from the respective soils were measured during the coolest and the hottest period of the day using a closed‐chamber system. Annual partial balances amounted to 2056 kg N ha–1, 615 kg P ha–1, 1864 kg K ha–1, and 33 893 kg C ha–1 at Kodéni and to 1752 kg N ha–1, 446 kg P ha–1, 1643 kg K ha–1, and 21 021 kg C ha–1 at Kuinima. Emission rates were highest during the hot midday hours with peaks after fertilizer applications when fluxes of up to 1140 g NH3‐N ha–1 h–1, 154 g N2O‐N ha–1 h–1, 12 993 g CO2‐C ha–1 h–1 were recorded for Kodéni and Kuinima. Estimated annual gaseous N (NH3‐N + N2O‐N) and C (CO2‐C + CH4‐C) losses reached 419 kg N ha–1 and 35 862 kg C ha–1 at Kodéni and 347 kg N ha–1 and 22 364 kg C ha–1 at Kuinima. For both gardens, this represented 20% and 106% of the N and C surpluses, respectively. Emissions of NH3, largely emitted after surface application of manure and mineral fertilizers, accounted for 73% and 77% of total estimated N losses for Kodéni and Kuinima. To mitigate N losses nutrient‐management practices in UPA vegetable production of Bobo‐Dioulasso would greatly benefit from better synchronizing nutrient‐input rates with crop demands.  相似文献   

5.
Abstract

The weekly nitrogen (N), phosphorus (P), and potassium (K) release from 17 polymer‐coated controlled‐release fertilizer (CRF) formulations of Nutricote, Apex Gold, Osmocote, and a 9‐month Macrocote were measured at 30.6±0.8°C and 40.0±1.5°C. Five grams of each CRF were placed at a depth of 50 mm in 280x50 mm acid washed then rinsed silica sand columns which were leached with deionized water three times each week until nutrient recovery ceased. The volume of leachate was recorded each week and subsampled for ammonium‐N, nitrate‐N, phosphate‐P, and K analyses. Each CRF treatment was replicated three times at each temperature. Nutrient release profiles were determined. Longevities, measured as weeks to 90% nutrient recovery, were considerably shorter than the nominated release periods for all formulations. Within each CRF product group, the longevity of 9 and 12 month formulations were similar with Apex Gold 12–14 month high nitrate having the longest (38 weeks for N at 30°C) and Osmocote 8–9 month the shortest (23 weeks for N at 30°C). There were consistent trends in the nutrient release periods across all CRFs with P>K>N and with differences of around 10% in duration between nutrients. The P:N release ratio exceeded 0.10 for most CRFs during the early release period indicating an adequate P supply for most plant species. The mean reduction in longevity for Nutricote, Apex Gold, and Osmocote formulations for an increase in incubation temperature from 30°C to 40°C was 19–21 % for N, 13–14% for P, and 14–15% for K. All CRFs released nutrients unevenly with the highest rate occurring during the early part of the release period. This pattern was accentuated at 40°C and by the shorter term release formulations. The nutrient release rates of all CRFs declined steadily after their maxima.  相似文献   

6.
Soil organic nitrogen mineralization rates and possible predictors thereof were investigated for vegetable‐growing soils in Belgium. Soil organic matter (SOM) was fractionated into sand (> 53 μm) and silt+clay (< 53 μm) fractions. The latter fraction was further separated into 6%NaOCl‐oxidation labile (6%NaOCl‐ox) and resistant N and C and subsequently into 10%HF‐extractable (mineral bound) and resistant (recalcitrant) N and C. The N mineralization turnover rate (% of soil N/year) correlated with several of the investigated N or C fractions and stepwise linear regression confirmed that the 6%NaOCl‐ox N was the best predictor. However, the small (0.42) of the regression model suggests that soil parameters other than the soil fractions isolated here would be required to explain the significant residual variation in N mineralization rate. A next step could be to look for alternative SOM fractionations capable of isolating bioavailable N. However, it would appear that the observed relationships between N fractions and N mineralization may not be causal but indirect. The number of vegetable crops per rotation did not influence N mineralization, but it did influence 6%NaOCl‐ox N, probably as an effect of differences in crop residues returned and organic manure supply. However, the nature of this relation between management, SOM quality and N mineralization is not clear. Explanation of correlations between N mineralization and presumed bioavailable N fractions, like the 6%NaOCl‐ox N, requires further mechanistic elucidation of the N mineralization process.  相似文献   

7.
Traditional irrigation and nitrogen (N) fertilization in North China may elevate water drainage and nitrate concentrations in soil and groundwater. A field experiment was conducted in an intensively irrigated vegetable (cauliflower, amaranth, and spinach) field for three consecutive years (1999–2002). The main objective was to test to what extent an improved water and fertilizer management, based on the maintenance of field capacity a defined range of the water content in the 0–50 cm soil layer and an N expert system, could reduce drainage and nitrate leaching without impairing vegetable yield. Rates of water drainage and related nitrate leaching were calculated based on measurements of soil water potential and soil‐water nitrate concentrations. Soil water potential was monitored with tensiometers at depths of 75 cm and 105 cm. Nitrate concentrations were analyzed in soil leachates collected at 90 cm soil depth using ceramic suction cups. The results revealed that the average annual drainage related to the cultivation season for cauliflower, amaranth, and spinach was reduced from 275 mm in the traditional system to 29 mm with improved management practice. The average annual cumulative nitrate leaching during the vegetable‐growing period amounted to 301 kg ha–1 and 13 kg ha–1 in the traditional and improved management practices, respectively. Vegetable yields were not significantly different under the traditional and improved management practices.  相似文献   

8.
Urban waste disposal occurred on fenland to the west of Manchester, England, between 1900 and 1964. The reclaimed fenland, Chat Moss, is now used for mixed arable farming. A total of 1.92 Mt of waste including privy midden, street sweepings, clinkers and slaughterhouse refuse was incorporated into the moss resulting in a modified topsoil with raised pH and reduced organic matter content compared with the subsoil. Elevated levels of potentially toxic elements (PTEs) are observed in the topsoil beyond the typical depth of atmospheric contamination; Cd and As concentrations exceed soil guideline values (SGVs) at 1.8 and 43 mg/kg, respectively. Sequential extraction indicates that waste‐derived Pb, Zn and Ni remain predominantly in the residual fraction, whereas Cu was mainly organically bound. Arsenic was predominately found in oxide and organic matter fractions with Cd in carbonate, oxide, organic matter and residual fractions. Pot trials indicated limited uptake of PTEs by vegetables grown on the waste‐amended soil, with the exception of Cd uptake by lettuce (0.22 mg/kg FW) and Pb uptake by radish (0.16 mg/kg FW), which exceeded current EU limits of 0.2 and 0.1 mg/kg FW, respectively. Hazard quotients (HQs) identified no risks to adults from consumption of vegetables grown in these soils with the exception of lettuce consumption with a HQ of 1.4. Risks to children were slightly greater with HQs >1 for Cd in lettuce, spinach, carrots and onion, As in lettuce, parsley and onion and for Zn in spinach.  相似文献   

9.
On the basis of long‐term fertilization experiments in Skierniewice, being conducted since 1923 at the Experimental Field of Warsaw Agricultural University, the fate (or balance) of nitrogen for a period of 35 years and that of phosphorus and potassium for 20 years, was studied. The balance includes N, P and K rates applied in mineral fertilizers and farmyard manure (FYM), uptake of these nutrients by the crop plants and the changes in the content of total N and total P and of slow release K in the soil during that time. The nitrogen balance shows a loss of this nutrient of 11—14 kg N ha—1 y—1, which corresponds to 15% of the applied ammonium nitrate on fields without FYM but to 23% on fields with FYM, in spite of crop yields being considerably greater on fields treated with FYM. The phosphorus balance indicated that in the 0—70 cm soil layer less than 4% of P from superphosphate was not found. In the treatment not fertilized with potassium for many years, the plants took up 49 kg K ha—1 y—1 from slow release forms because the fraction of available K did not change during that period. When calculating the potassium balance only 1.6% of K from potash salt were not found in plots without FYM but 12.3% of the applied KCl were not recovered in treatments with FYM. The comparison of the P‐ and K‐uptake from organic and mineral fertilizer in the two crop rotations indicates a higher P‐ and K‐efficiency from FYM than from inorganic fertilizer.  相似文献   

10.
A long‐term fertilizer experiment, over 27 years, studied the effect of mineral fertilizers and organic manures on potassium (K) balances and K release properties in maize‐wheat‐cowpea (fodder) cropping system on a Typic Ustochrept. The treatments consisted of control, 100% nitrogen (100% N), 100% nitrogen and phosphorus (100% NP), 50% nitrogen, phosphorus, and potassium (50% NPK), 100% nitrogen, phosphorus, and potassium (100% NPK), 150% nitrogen, phosphorus, and potassium (150% NPK), and 100% NPK+farmyard manure (100% NPK+FYM). Nutrients N, P, and K in 100% NPK treatment were applied at N: 120 kg ha—1, P: 26 kg ha—1, and K: 33 kg ha—1 each to maize and wheat crops and N: 20 kg ha—1, P: 17 kg ha—1, and K: 17 kg ha—1 to cowpea (fodder). In all the fertilizer and manure treatments removal of K in the crop exceeded K additions and the total soil K balance was negative. The neutral 1 N ammonium acetate‐extractable K in the surface soil (0—15 cm) ranged from 0.19 to 0.39 cmol kg—1 in various treatments after 27 crop cycles. The highest and lowest values were obtained in 100% NPK+FYM and 100% NP treatments, respectively. Non‐exchangeable K was also depleted more in the treatments without K fertilization (control, 100% N, and 100% NP). Parabolic diffusion equation could describe the reaction rates in CaCl2 solutions. Release rate constants (b) of non‐exchangeable K for different depth of soil profile showed the variations among the treatments indicating that long‐term cropping with different rates of fertilizers and manures influenced the rate of K release from non‐exchangeable fraction of soil. The b values were lowest in 100% NP and highest in 100% NPK+FYM treatment in the surface soil. In the sub‐surface soil layers (15—30 and 30—45 cm) also the higher release rates were obtained in the treatments supplied with K than without K fertilization indicating that the sub‐soils were also stressed for K in these treatments.  相似文献   

11.
Farmers in Ghana use a variety of soil‐fertility management practices to optimize the benefits of shifting cultivation and/or to intensify their production. The research question was to analyze the relationship between these practices and the availability of the production factors land, labor, and capital. A farm survey along a gradient through SW Ghana showed that there is only a weak link between the intensification of traditional farming systems, population pressure, and reduced fallow periods as long as shifting cultivation is possible and common. Even where fallow periods reach a cut‐off point, farmers might look for land in remoter areas or invest in off‐farm activities. Only where market proximity supports the production of high‐value crops, investment flows are used to maintain continuous cultivation on favorable production sites, especially those with water access. The results verify the validity of the framework of agricultural‐systems dynamics in W Africa, developed by the International Institute of Tropical Agriculture (IITA) and the importance to distinguish between population‐driven and market‐driven situations. Both meet in periurban areas, which make them hot spots for research and development, while support for intensification is likely to fail where markets are far and shifting cultivation still an option.  相似文献   

12.
Human activity in the environment has great impact on soil ecology. However recent knowledge on properties of anthropogenic soils is still scarce. For this reason the purpose of this paper is to deliver data on the soil organic matter (SOM) properties of urban soils with an example from the city of Rostock (Northeast Germany) and to describe the environmental consequences of severe anthopogenic actvity. The results suggest that SOM of urban settings is significantly different in their chemical nature of humic compounds and their coal contents. The lower content of alkyl C and the simultaneously higher contents of aromatic C moieties in urban soils compared to their natural counterparts suggest a substantially different biochemical behavior against environmental hazardous compounds and microbial activity. This knowledge is essential for a qualitative assessment of important biochemical mechanisms in urban soils.  相似文献   

13.
14.
The impact of different logging techniques on nutrient losses in burnt eucalyptus and pine forests in northern Portugal was investigated. A variety of logging techniques is used in the region resulting in varying amounts of slash debris on the slopes. The efficacy of this litter in reducing soil erosion is well established but less is known about the impact on nutrient losses. Small bounded plots were used to examine the impact of varying amounts of slash debris and pine‐needle cover on nutrient losses in overland flow and adsorbed to eroded sediment over 19 months during the first two–three years after fire. Nutrient losses in solution and adsorbed to eroded sediment were substantially higher on burnt terrain due to increased erosion and overland flow generation and high nutrient concentrations at the soil surface in the burned forests. Post‐fire logging techniques in eucalyptus forests resulting in large amounts of litter debris on the slopes are effective at reducing eroded sediment nutrient losses but less effective at reducing losses in solution. In pine forests, litter is largely ineffective in reducing solute and sediment nutrient losses. However, a covering of pine needles was shown to be highly effective in reducing eroded sediment nutrient losses and to a lesser extent solute losses. Conservational methods of logging are suggested for both eucalyptus and pine forests in the region. In the absence of such measures, the sustainability of short‐rotation eucalyptus forestry is questioned in northern Portugal. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

15.
Freezing and thawing may substantially influence the rates of C and N cycling in soils, and soil frost was proposed to induce NO losses with seepage from forest ecosystems. Here, we test the hypothesis that freezing and thawing triggers N and dissolved organic matter (DOM) release from a forest soil after thawing and that low freezing temperatures enhance the effect. Undisturbed soil columns were taken from a soil at a Norway spruce site either comprising only O horizons or O horizons + mineral soil horizons. The columns were subjected to three cycles of freezing and thawing at temperatures of –3°C, –8°C, and –13°C. The control columns were kept at constant +5°C. Following the frost events, the columns were irrigated for 20 d at a rate of 4 mm d–1. Percolates were analyzed for total N, mineral N, and dissolved organic carbon (DOC). The total amount of mineral N extracted from the O horizons in the control amounted to 8.6 g N m–2 during the experimental period of 170 d. Frost reduced the amount of mineral N leached from the soil columns with –8°C and –13°C being most effective. In these treatments, only 3.1 and 4.0 g N m–2 were extracted from the O horizons. Net nitrification was more negatively affected than net ammonification. Severe soil frost increased the release of DOC from the O horizons, but the effect was only observed in the first freeze–thaw cycle. We found no evidence for lysis of microorganisms after soil frost. Our experiment did not confirm the hypothesis that soil frost increases N mineralization after thawing. The total amount of additionally released DOC was rather low in relation to the expected annual fluxes.  相似文献   

16.
Field experiments over a 3 y period were conducted in a winter wheat‐maize double‐cropping system at the Dongbeiwang Experimental Station, Beijing, China. Three different treatments of irrigation (sprinkler “suboptimal” and “optimized”; conventional flood irrigation) and N fertilization (none, according to Nmin soil tests, conventional) were studied with respect to effects on soil water balance, nitrate leaching, and grain yield. Under sprinkler irrigation, evaporation losses were higher due to a more frequent water application. On the other hand, in this treatment nitrate leaching was smaller as compared to flood irrigation, where abundant seepage fluxes >10 mm d–1 along preferential flow paths occurred. For quantifying nitrate leaching, passive samplers filled with ion‐exchange resins appeared to be better suited than a method which combined measurements of suction‐cup concentrations with model‐based soil water fluxes. As a result of the more balanced percolation regime (compared to that under conventional flood irrigation), there was a tendency of higher salt load of the soil solution in the rooting zone. Given a seepage rate of 50 mm, a winter wheat grain production of 5–6 t ha–1 required a total water addition of about 430 mm. Fertilizer treatments >100 kg N ha–1 did not result in any additional yield increase. An even balance between withdrawing and recharge of groundwater cannot be achieved with “optimized” irrigation, but with a reduction of evapotranspiration losses, adapted cropping systems, and/or by tapping water resources from reservoirs in more distant areas with surpluses.  相似文献   

17.
In many forest ecosystems chronically large atmospheric deposition of N has caused considerable losses of inorganic N by seepage. Freezing and thawing of soil may alter the N turnover in soils and thereby the interannual variation of N seepage fluxes, which in turn makes it difficult to evaluate the N status of forest ecosystems. Here, we analyzed long‐term monitoring data of concentrations and fluxes of dissolved inorganic N (DIN) in throughfall and seepage from a Norway spruce stand at the Fichtelgebirge (SE Germany) between 1993 and 2004. Despite constant or even slightly increasing N inputs in throughfall, N losses with seepage at 90 cm declined from 15–32 kg N ha–1 y–1 in the first years of the study period (1993–1999) to 3–10 kg N ha–1 y–1 in 2000 to 2004. The large N losses in the first years coincided with extreme soil frost in the winter of 1995/96, ranging from –3.3°C to –1.0°C at 35 cm soil depth. Over the entire observation period, maximum fluxes of nitrate and ammonium were observed in the mineral soil following thawing of the soil. The elevated ammonium and nitrate fluxes resulted apparently from increased net ammonification and nitrification rates in the mineral soil, whereas mineral‐N fluxes in the O horizon were less affected by frost. Our data suggest that (1) extreme soil frost may cause substantial annual variations of nitrate losses with seepage and that (2) the assessment of the N status of forest ecosystems requires long periods of monitoring. Time series of biogeochemical data collected over the last 20–30 y include years with extreme cold winters and warm summers as well as unusual precipitation patterns. Analysis of such long‐term monitoring data should address climate extremes as a cause of variation in N outputs via leaching. The mean loss of 14.7 kg N with seepage water during 12 y of observation suggests that the forest ecosystem was saturated with N.  相似文献   

18.
Balanced plant nutrition is essential to achieve high yields of canola (Brassica napus L.) and get the best economic return from applied fertilizers. A field study was conducted at nine site‐years across eastern Canada to investigate the effects of nitrogen (N), sulfur (S) and boron (B) fertilization on canola nutrient uptake, nutrient balance, and their relationship to canola yields. The factorial experiment consisted of four N rates of 0 (N0), 50 (N50), 100 (N100), and 150 (N150) kg ha?1, two S rates of 0 (S0) and 20 (S20) kg ha?1, and three B treatments of 0 (B0), 2 kg ha?1 at preplant (B2.0P), and 0.5 kg B ha?1 foliar‐applied at early flowering stage (B0.5F). Each site‐year used the same experimental design and assigned treatments in a randomized complete block design with four replications. Fertilizer S application greatly improved seed yields at six out of nine site‐years, and the highest N use efficiency was in the N150+S20 treatment. Sulfur application generally increased seed S concentration, seed S removal, and plant total S uptake, while B fertilization mainly elevated straw B concentration and content, with minimal effect on seed yields. At the early flowering stage, plant tissue S ranged from 2.2 to 6.6 mg S g?1, but the N : S ratio was over or close to the critical value of 12 in the N150+S0 combination at five site‐years. On average across nine site‐years, canola reached a plateau yield of 3580 kg ha?1 when plants contained 197 kg N ha?1, 33 kg S ha?1 and 200 g B ha?1, with a seed B content of 60 g B ha?1. The critical N, S, and B values identified in this work and their potential for a posteriori nutrient diagnosis of canola should be useful to validate fertilizer requirements for canola production in eastern Canada.  相似文献   

19.
The role of anthropogenic activity is increasingly recognized as an agent of environmental change. Photographs, taken more than 130 years ago in KwaZulu‐Natal, South Africa, show a very different landscape to that viewed today. In attempting to understand some of the dynamics behind the changes in the landscape, we explored the history of land‐use in communal rangelands in KwaZulu‐Natal from the arrival of Iron Age man through to modern practices. Communal farming is frequently cited as a major cause of environmental degradation. Traditional lifestyles have been eroded by social, political and economic changes since the arrival of European explorers and settlers in the early 1800s. This may have contributed to encroachment by woody plants into the open savannas and grasslands of KwaZulu‐Natal in recent times because of increased grazing pressure and, perhaps reduced fires. Furthermore, there is decreasing dependence on wood for everyday needs due to the increased availability of electricity. Interviews with a number of community members indicate that they have noted a change in climate and in vegetation structure. Their observations have been confirmed by climate data and historic photographs. Environmental planners need to view change in a holistic manner, taking cognisance not only of the physical changes but also of the history of land‐use and human needs and to give credence to community perceptions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Kochia sieversiana (Pall.) C. A. Mey is a forage plant in the family Chenopodiaceae, which can grow in extremely alkalinized grasslands at pH levels of 10 or higher. Kochia sieversiana often contains a large amount of oxalic acid. In the present study, seedlings of K. sieversiana were exposed to the following conditions: nonstress, salt stress (molar ratio of NaCl : Na2SO4 = 1:1, salinity: 200 mM), and alkali stress (molar ratio of NaHCO3 : Na2CO3 = 1:1, salinity: 200 mM). By determining and analyzing various physiological factors such as the concentrations and distribution of different organic acids (including oxalic acid) in various parts of K. sieversiana, the concentrations of inorganic ions (K+, Na+, Cl, SO$ _4^{2-} $ , etc.), the organic solutes (proline, betaine, and soluble sugar) in shoots, and the accumulation and distribution of oxalic acid in K. sieversiana, the physiological contribution of oxalic acid to K. sieversiana adaptability to saline and alkaline conditions was investigated. Results show that oxalic acid mainly accumulated in shoots, and that its concentration was highest in mature functional leaves where photosynthesis productivity was based and lowest in old stems and roots, regardless of plant treatment (nonstress, salt, or alkali conditions). Under nonstress, salt, and alkali conditions, the concentrations of oxalic acid in mature leaves were 8%, 10%, and 12% of their dry weights, respectively, and were 1%, 0.7%, and 0.6% of dry weights, respectively, in roots. There were varying effects of salt and alkali conditions on oxalic acid concentrations in different parts of K. sieversiana. Oxalic acid concentration increased in leaves, did not change significantly in young stems, and decreased in old stems and roots. The present analysis shows that oxalic acid exists as an organic anion in K. sieversiana. Consequently, oxalic acid not only plays a crucial role in osmoregulation and pH adjustment, but it also is the dominant contributor of negative charge, playing a key role in maintaining ionic balance in vivo. Oxalic acid in K. sieversiana shoots is a key substance on which the adaptation to saline and alkaline conditions is based.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号