首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
评价城市土壤磷素淋溶风险的化学指标   总被引:8,自引:0,他引:8  
Soils from urban and suburban areas are normally enriched with phosphorus (P). Sixteen urban soils with a wide range of total P concentrations under typical urban land uses were sampled and analyzed for extractable P concentrations using water, sodium bicarbonate and citric acid. Meanwhile the soils were artificially leached in columns and P concentrations in the leachates were determined. With linear regression a two-stage linear relationship was found to exis tbetween concentrations of P in the leachates and soil P contents obtained by various chemical measurements, i.e., there was a “change-point” denoting the critical threshold value for extractable P between the regression lines, above which concentrations of P in leachates increased substantially. These threshold “change-point” values were 1.5 mg kg^-1 for water-soluble P and CaCl2-P, 25 mg kg^-1 for Olsen-P, and 250-350 mg kg^-1 for citric acid-P with the sharpest change and the best predictor [τ2 (upper) = 0.928, τ2 (lower) = 0.807] appearing for Olsen-P. These “change-points” were considered important criteria in assessing the risk of P leaching from urban soils and could be used as standards to delineate and target hazardous areas in urban and suburban areas.  相似文献   

2.
Leaching with deep drainage is one of the loss pathways of carbon (C) and nitrogen (N) in cropping fields. However, field studies in irrigated row cropping systems are sparse. A 3‐year investigation on C and N leaching associated with deep drainage was overlaid on a long‐term experiment on tillage practices and crop rotations in Australia. The treatments included cotton (Gossypium hirsutum L.) monoculture and cotton–wheat (Triticum aestivum L.) or maize (Zea maize L.) rotations with maximum or minimum tillage. The deep drainage C and N concentrations at 0.6 and 1.2 m depth were measured after furrow irrigation with ceramic cup samplers during the 2014–15, 2015–16 and 2016–17 cotton seasons. Pre‐planting dissolved organic carbon (DOC) concentration in soil at 0.6–1.2 m depth during 2016–17 was 64 mg kg?1 for maximum tilled cotton monoculture, 36 mg kg?1 for minimum tilled cotton monoculture and 39 mg kg?1 for cotton–wheat, and in maize and cotton subplots 51 and 41 mg kg?1, respectively. Post‐harvest DOC values in soil were similar in all treatments (average of 32 mg DOC kg?1). Total organic carbon (TOC) losses in deep drainage were equal to 2%–30% of TOC gained in irrigation water. Oxidized N losses in deep drainage ranged from 0.7% to 12% of applied N (260 kg ha?1). NOx‐N concentrations in leachate under maize systems (20 mg L?1) were up to 73% lower than those in cotton systems (75 mg L?1). Maize sown in rotation with cotton can improve cotton yield, reduce N leaching and improve N use efficiency of subsequent cotton.  相似文献   

3.
农业氮磷淋溶已经成为地下水污染最普遍和突出的问题。为揭示氮磷在包气带不同土层的淋溶特征,以典型褐土的5个土壤发生层(耕层、淋溶层、钙积层、黏化层和母质层)为研究对象,采用室内土柱模拟淋溶试验,在施肥量相同的条件下分析不同形态氮磷淋溶量,研究氮磷在不同土壤发生层中的迁移特征及其影响因素。结果表明:1)进行5次淋溶,耕层、淋溶层、钙积层、黏化层和母质层淋溶液中可溶性总氮总量分别为2412.63 mg·L-1、3028.94 mg·L-1、244.16 mg·L-1、3648.99 mg·L-1和3356.51 mg·L-1,淋溶层、黏化层和母质层可溶性总氮淋溶量显著高于耕层,而钙积层可溶性总氮淋溶量较耕层显著减少;耕层淋溶液中可溶性总磷总量为0.52 mg·L-1,且显著高于其他4层。2)在试验初期,耕层、淋溶层的硝态氮、可溶性总氮和正磷酸盐淋溶量显著高于黏化层和母质层,进行到第4、5次淋溶,黏化层、母质层的硝态氮和可溶性总氮淋溶量显著高于其他3层,而各发生层间正磷酸盐淋溶量无显著差异;单次淋溶黏化层和母质层铵态氮淋溶量均显著高于其他3层,而耕层可溶性总磷淋溶量始终显著高于其他各层。3)耕层和钙积层的淋溶液中硝态氮是氮素淋溶的主要形态,占可溶性总氮比例分别为69.0%和85.4%,而在淋溶层、黏化层和母质层中分别为41.3%、5.1%和4.6%;在可溶性磷中,以无机态正磷酸盐为主,最高占可溶性总磷的75.9%。4)土壤有机质含量、阳离子交换量、黏粒含量对土壤氮磷的迁移转化有明显主导作用。有机质与氮磷淋溶量呈显著正相关关系,有机质含量高,会增加淋溶初期氮磷的淋溶风险;而阳离子交换量和黏粒含量则与氮磷淋溶呈显著负相关关系,阳离子交换量大和黏粒多能减少氮磷素的淋溶风险。该试验结果说明,由于5种发生层土壤理化性质不同,各发生层氮磷淋溶特征及其淋溶形态也有差异,并且氮磷的淋溶受土壤本身阳离子交换量、黏粒和有机质含量的影响。  相似文献   

4.
Appropriate management of P from slurry can increase crop production and decrease nutrient loss to water bodies. The present study examined how the application of different size fractions of dairy slurry influenced the quantity and composition of P leached from grassland in a temperate climate. Soil blocks were amended (day 0 = start of the experiment) with either whole slurry (WS), the > 425 μm fraction (coarse slurry fraction, CSF), the < 45 μm slurry fraction (fine liquid slurry fraction, FLF), or not amended, i.e., the control soil (CON). Deionized water was added to the soil blocks to simulate six sequential rainfall events, equivalent to 250 mm (day 0.2, 1.2, 4.2, 11.2) or 500 mm of rainfall (day 18.2 and 25.2), with leachates collected the following day. The results showed that total dissolved P (TDP), dissolved reactive P (DRP), dissolved unreactive P (DUP), orthophosphate, phosphomonoester, and pyrophosphate concentrations generally decreased with the increasing number of simulated rain events. Total dissolved P was leached in the following order WS > FLF ≈ CSF > CON. Dissolved organic C was correlated with TDP, DRP, and DUP in leachates of all treatments. The highest concentrations of dissolved phosphomonoesters and pyrophosphate (147 μg P L–1 and 57 μg P L–1, respectively) were detected using solution 31P‐NMR spectroscopy in the WS leachates. Overall, there were significant differences observed between slurry treatments (e.g., relative contributions of inorganic P vs. organic P of dissolved P in leachates). Differences were independent from the rate at which slurry P was applied, because the highest dissolved P losses per unit of slurry P applied were measured in the FLF, i.e., the treatment that received the smallest amount of P. We conclude that the specific particle‐size composition of applied slurry influences dissolved P losses from grassland systems. This information should be taken in account in farm‐management approaches which aim to minimizing dissolved slurry P losses from grassland systems.  相似文献   

5.
Understanding phosphorus (P) release under different climatic or moisture regimes will facilitate effective management of plant nutrition. The objective of this study is to evaluate the effect of two soil moisture regimes on P release from Ogun rock phosphate (ORP) and Sokoto rock phosphate (SRP) in two soil types. Soil was poured into soil columns to form lower and top layers. Top layer was mixed with 400 kg ha?1 P from ORP, SRP, single super phosphate (SSP) and leached with 35.4 cm3 water representing low moisture regime (LMR; 400 mm rainfall) and 106.1 cm3 water for high moisture regime (HMR; 1200 mm rainfall). P concentrations of leachates, available P in soil and soil pH were determined. Cumulative P leached was higher under HMR than LMR in both soils. There was more leaching with SSP (0.41–0.97 mg P) than both phosphate rocks (0.008–0.19 mg P) indicating leaching potential of SSP. Cumulative P leached from SSP treated Olokemeji soils was twice that of acidic Sapoba under LMR while they were similar (Olokemeji, 0.97 mg P; Sapoba, 0.94 mg P) under HMR suggesting that LMR enhances fixation of P in acidic soils. Irrigation of P fertilized soils may reduce P sorption in acidic soils.  相似文献   

6.
Abstract

Based on the problems that arises from the presence of cationic impurities in rock phosphates for fertilizer production, a greenhouse experiment consisting of two consecutive corn crops was conducted in order to evaluate the plant availability of phosphorus (P) in the fraction soluble only in neutral ammonium citrate (NAC) and also in the NAC+H2O fraction of acidulated phosphate fertilizers produced from Brazilian raw materials with different amounts of cationic impurities. The experiment was conducted with samples of a Red‐Yellow Latosol (Typic Hapludox) in a completely randomized design with four replications. Four acidulated phosphates obtained by sulfuric acid (H2SO4) solubilization of different Brazilian raw materials were studied. Monocalcium phosphate [Ca(H2PO4)H2O] (MCP) was included as a standard source of P as well as samples which were previously leached to remove the water‐soluble P, and therefore, contained essentially the NAC‐soluble fraction. The fertilizers were thoroughly mixed with the whole soil in the pots (mixed application), or with only 1% of its volume (localized application), at the rates of 50 and 100 mg P kg‐1, based on the calculated content of P soluble in NAC+H2O. Corn (Zea mays L.) was the test crop grown in two sequences of 35 days. After each 35‐day period, dry matter yield and P accumulated in the plant tops were determined. Results were evaluated by analysis of variance considering the factors, (i) acidulated phosphates, (ii) rate of P application, (iii) leaching, and (iv) methods of application. In a second analysis, the leached phosphates were considered as additional levels of the phosphate factor as well as for MCP. The Tukey test at the 0.05 significance level was utilized for mean separation. Results from this study clearly demonstrated that increasing the amounts of cationic impurities in the raw materials decreased the concentration of water‐soluble P and NAC+H2O‐soluble P as well as water‐soluble P and NAC+H2O‐soluble P ratio of the fertilizer obtained. From the results in the first corn cropping, the P in the NAC fraction for the studied Brazilian phosphate was not as available to plants as was the P in the NAC+H2O fraction or in the pure MCP. The NAC+H2O method was not an adequate index for evaluating the P availability of the studied sources. No interaction between P sources, leaching, and method of application was found in the second corn cropping.  相似文献   

7.
Root proliferation and greater uptake per unit of root in the nutrient‐rich zones are often considered to be compensatory responses. This study aimed to examine the influence of plant phosphorus (P) status and P distribution in the root zone on root P acquisition and root and shoot growth of wheat (Triticum aestivum L.) in a split‐root soil culture. One compartment (A) was supplied with either 4 or 14 mg P (kg soil)–1, whereas the adjoining compartment (B) had 4 mg P kg–1 with a vertical high‐P strip (44 mg kg–1) at 90–110 mm from the plant. Three weeks after growing in the split‐root system, plants with 4 mg P kg–1 (low‐P plants) started to show stimulatory root growth in the high‐P strip. Two weeks later, root dry weight and length density in the high‐P strip were significantly greater for the low‐P plants than for the plants with 14 mg P (kg soil)–1. However, after 8 weeks of growth in the split‐root system, the two P treatments of compartment A had similar root growth in the high‐P strip of compartment B. The study also showed that shoot P concentrations in the low‐P plants were 0.6–0.8 mg g–1 compared with 1.7–1.9 mg g–1 in the 14 mg P kg–1 plants after 3 and 5 weeks of growth, but were similar (1.1–1.4 mg g–1) between the two plants by week 8. The low‐P plants had lower root P concentration in both compartments than those with 14 mg P kg–1 throughout the three harvests. The findings may indicate that root proliferation and P acquisition under heterogeneous conditions are influenced by shoot P status (internal) and soil P distribution (external). There were no differences in the total root and shoot dry weight between the two P treatments at weeks 3 and 5 because enhanced root growth and P uptake in the high‐P strip by the low‐P plants were compensated by reduced root growth elsewhere. In contrast, total plant growth and total root and shoot P contents were greater in the 14 mg P kg1 soil than in the low‐P soil at week 8. The two P treatments did not affect the ratio of root to shoot dry weight with time. The results suggest that root proliferation and greater P uptake in the P‐enriched zone may meet the demand for P by P‐deficient plants only for a limited period of time.  相似文献   

8.
Microbial decomposition of extracted and leached dissolved organic carbon (DOC) and nitrogen (DON) was demonstrated from three pasture soils in laboratory incubation studies. DOC concentration in water extracts ranged between 29 and 148 mg C L?1 and DON concentration ranged between 2 and 63 mg N L?1. Between 17 and 61 % of the DOC in the water extracts were respired as CO2 by microbes by day 36. DON concentrations in the extracts declined more rapidly than DOC. Within the first 21 days of incubation, the concentration of DON was near zero without any significant change in the concentration of NO3 ? or NH4 +, indicating that microbes had utilized the organic pool of N preferentially. Decomposition of leached DOC (ranged between 7 and 66 mg C L?1) and DON (ranged between 6 and 11 mg N L?1) collected from large lysimeters (with perennial pasture; 50 cm diameter?×?80 cm deep) followed a similar pattern to that observed with soil extracts. Approximately 28 to 61 % of the DOC in leachates were respired as CO2 by day 49. The concentration of DON in the leachates declined to below 1 mg N L?1 within 7–14 days of the incubation, consistent with the observations made with extractable DON. Our results clearly show that DOC and DON components of the dissolved organic matter in pasture soils, whether extracted or leached, are highly decomposable and bioavailable and will influence local ecosystem functions and nutrient balances in grazed pasture systems and receiving water bodies.  相似文献   

9.
The effects of wheat, potato, sunflower, and rape residues and calcite were evaluated in soil that received sodic water. These materials were added to a sandy‐loam soil at a rate of 5%, after which the treated soils were incubated for 1 month at field‐capacity moisture and a temperature of 25°C–30°C. Column leaching experiments using treated soils were then conducted under saturated conditions using water with three sodium‐adsorption ratios (SAR) (0, 10, 40) with a constant ionic strength (50 mmol L–1). The results indicated that the application of plant residues to soils caused an increase in cation‐exchange capacity and exchangeable cations. Leaching experiments indicated that the addition of plant amendments led to increased Na+ leaching and decrease in exchangeable‐sodium percentage (ESP). The ESP of the control soil, after leaching with solutions with an SAR of 10 and 40, increased significantly, but the level of sodification in soils treated with plant residue was lower. Such decreases of soil ESP were greatly affected by the type of plant residues, with the order of: potato‐treated soil > sunflower‐treated soil > rape‐treated soil > wheat‐treated soil > calcite‐treated soil > control soil.  相似文献   

10.
Manganese (Mn) release in 18 soil–water suspensions after their equilibration for 24 and 240 h periods at 25°C was studied in a laboratory experiment. Total dissolved Mn released into the soil solution was observed to increase from a range of 0.03–0.41 mg L?1 (mean = 0.13 mg L?1) to a range of 0.45–44.44 mg L?1 (mean = 22.40 mg L?1) with the increase in incubation periods from 24 to 240 h, respectively. The increase in Mn released was observed to be related with the redox potential (pe) induced by incubation conditions. After 24 h of equilibration period, pe of soil–water suspension ranged from ?1.75 to 0.77 (mean = ?0.24). Increasing the incubation period to 240 h, pe of soil–water suspensions declined in the range of ?4.49 to ?2.74 (mean = ?3.29). Laboratory results of redox pe and corresponding dissolved manganese concentrations of some soil–water equilibrated systems were compared with the leaf Mn content in wheat and rice plants grown in the fields, from where soil samples were collected for laboratory experiment. These results demonstrated that decline in pe due to longer equilibration period (240 h) of soil–water systems in the laboratory experiment or keeping standing water for a couple of weeks in the fields for cultivation of rice crop results in higher release of Mn and eventually its higher uptake in rice than in wheat plants. Leaf manganese content in rice ranged from 94 to 185 mg kg?1, which was markedly higher than its range from 25 to 62 mg kg?1 found in the wheat grown at 10 different sites. Pourbaix diagrams were drawn for different soil–water systems containing carbonate, phosphate, or sulfate along with manganese. The presence of carbonate and phosphate anions along with manganese oxides minerals in the soil–water systems of all soils results in its precipitation as MnCO3 and MnHPO4, respectively, in both oxidized and reduced soil field environment. In Punjab, wheat and rice crops are generally cultivated on soils heavily fertilized with P fertilizers. The presence of phosphate anion with manganese oxides minerals in the soil–water systems of all soils results in the precipitation MnHPO4 in both oxidized and reduced soil field environment. Thus, in P-fertilized soil, MnHPO4 compound is even more predominant than aqueous Mn2+ and its solubility actually controlled the availability of Mn2+ to plants.  相似文献   

11.
The rate of phosporus (P) release from soils can significantly influence P fertility of soils. The objectives of this study were to investigate the effects of land‐use types on the kinetics of P release under different management practices and the relationship between kinetic parameters and soil physical and chemical properties from calcareous soils. The kinetics of P release in 0.01 M CaCl2 was studied in surface samples of 30 calcareous soils planted to garlic, garden, pasture, potato, vegetables, and wheat. Trend in P‐release kinetics was similar between land‐use types. Significantly different quantities of P were released under different land use. The maximum amount (average of five soils) (46.4 mg kg–1) of P was released in soil under potato and the minimum amount (10.4 mg kg–1) under pasture. The kinetics of P release from soils can be described as an initial rapid rate followed by a slower rate. Different models were used to describe P release. In general, parabolic diffusion and power equation were found to be appropriate for modeling P release. The P‐release rate for the soils was estimated by parabolic equation for the studied land‐use types. The constant b was lower for pasture and wheat than for garlic and potato. The relationship between the rate of P release with Olsen‐P was linear, while it was curved with respect to the CaCl2‐P, indicating that release of P was diffusion‐controlled. When the kinetic parameters of models were regressed on soil properties, CaCl2‐P and CaCO3 appeared to be the most important soil properties influencing P‐release rates in these soils.  相似文献   

12.
It has been suggested that surface applications of animal manure can ameliorate both top and subsoil acidity. For that reason, the effects of surface incorporation (0–5 cm) of a high rate of poultry manure to an acid soil on pH and exchangeable and soluble Al in the top‐ and subsoil were investigated in a leaching column study. During the experimental period of 108 d, columns received a total of 875 mm with leaching events occurring after 9, 37, 58, and 86 d. Incorporation of poultry manure into the surface 5 cm resulted in a large rise in pH measured in both 1M KCl and in soil solution. This liming effect was attributed primarily to the substantial CaCO3 content of poultry manure. In the 15–45 cm layer, pHKCl was not significantly different between poultry manure and control treatments but surprisingly, soil‐solution pH was substantially less in the poultry‐manure treatments. Exchangeable Al was significantly less in poultry manure than in control in all soil layers although the effect was most marked in the 0–5 cm layer. However, although concentrations and activities of monomeric Al (Almono), and the proportion of total Al present as Almono, in soil solution were lower under poultry manure than in control in the 0–5 cm layer, the reverse was, in fact, the case in lower soil horizons. This was attributed to a soluble‐salt effect, originating from the large cation content of poultry manure, displacing exchangeable Al3+ and H+ back into soil solution. Indeed, electrical conductivity and concentrations of Ca2+, Mg2+, K+, and Na+ in soil solution were substantially higher in the poultry‐manure than in the control treatments at all soil depths. Poultry‐manure applications also resulted in substantial increases in the concentrations of Ca2+, Mg2+, K+, Na+, Almono, NH , and NO in leachates, particularly at the fourth leaching. It was concluded that although surface application of poultry manure can raise soil pH in the topsoil, increases in soluble‐salt concentrations in soil solution can greatly modify this effect in the subsoil.  相似文献   

13.
Soil and water samples were analysed for trace metals and As in two watercourses and 14 sampling plots in a salt marsh polluted by mine wastes in SE Spain. Groundwater levels, soil pH and Eh were measured ‘in situ’ for a 12-month period in each sampling plot, and total calcium carbonate was also determined. Low concentrations of soluble metals (maximum Mn 1.089 mg L?1 and maximum Zn 0.553 mg L?1) were found in the watercourses. However, total metal contents were extremely high in the soils of a zone of the salt marsh (maximum 1,933 mg kg?1 of Mn, 62,280 mg kg?1 of Zn, 16,845 mg kg?1 of Pb, 77 mg kg?1 of Cd, 418 mg kg?1 of Cu and 725 mg kg?1 of As), and soluble metals in the pore water reached 38.7 mg L?1 for Zn, 3.15 mg L?1 for Pb, 48.0 mg L?1 for Mn, 0.61 mg L?1 for Cd and 0.29 mg L?1 for As. Variable concentrations with depth indicate a possible re-mobilisation of the metals, which could be related to spatial and temporal variations of water table level, pH and Eh and to the presence of calcium carbonate. A tendency for the Eh to decrease in the warmest months and to increase in the coldest ones was found, especially, in plots that received water with a high content of dissolved organic carbon. Hence, the existence of nutrient effluent-enriched water may modify the physical–chemical conditions of the soil–water system and influence metal mobility.  相似文献   

14.
伴随阴离子对马铃薯种植冲击土中钾素固持与淋溶的影响   总被引:1,自引:0,他引:1  
V. SHARMA  K. N. SHARMA 《土壤圈》2013,23(4):464-471
A column study was carried out to assess the influence of accompanying anions on potassium (K) leaching at potato growing sites with different soil textures (sandy loam and clay loam) in northwestern India. Potassium was applied in the top 15 cm layer of soil column at 30 and 60 mg K kg-1 through different sources having different accompanying anions (Cl-, SO42-, NO3- and H2PO4-). Maximum K was retained in the top 0--15 cm layer with a sharp decrease in K content occurring in 15--30 cm layer of the soil column. The trend was similar for both levels of applied K as well as frequency of leaching and soil type. The decrease of K content in soil column after four leaching events was maximum in case of Khanaura sandy loam, while only minor decrease was observed in Hundowal clay loam when K was applied at 60 mg K kg-1, indicating higher potential of clay rich soil to adsorb K. In general, the K leaching in presence of the accompanying anions followed the order of SO42- ≤ H2PO42- < NO3- = Cl-. Highest 1 mol L-1 CH3COONH4-extractable K was retained when K was applied along with SO42- and H2PO4- anions, and the least was retained when accompanying anion was Cl-1. The influence of anions was more pronounced in the light textured soil and at high amounts of K application. Higher levels of K application resulted in higher losses of K, especially in sandy loam soil as observed from the leachate concentration. Among the different K sources, the maximum amount of K leaching was noticed in the soil column amended with KCl. After four leachings, the maximum amount of K leached out was 6.40 mg L-1 in Hundowal clay loam and 9.29 mg L-1 in Khanaura sandy loam at 60 mg K kg-1 of soil application through KCl. These concentrations were lower than the recommended guideline of the World Health Organisation (12.00 mg L-1).  相似文献   

15.
Seasonal variability of Cu, Pb, and Zn concentrations in litter leachates and soil solutions was examined in an afforested zone surrounding a copper smelter in SW Poland. Litter leachates (with zero‐tension lysimeters) and soil solutions (with MacroRhizon suction‐cup samplers, installed at a depth of 25–30 cm) were collected monthly at three sites differing in contamination levels in the years 2009 and 2010 (total Cu: 2380, 439, and 200 mg kg–1, respectively). Concentrations of Cu in the litter leachate were correlated with dissolved organic C (DOC), whereas Zn and Pb were mainly related to leachate pH. Metal concentrations in the soil solution were weakly influenced by their total content in soils and the monthly fluctuations reached 300, 600, and 700% for Cu, Pb, and Zn, respectively. Metal concentrations in soil solutions (Cu 110–460 μg L–1; Zn 20–1190 μg L–1; Pb 0.5–36 μg L–1) were correlated with their contents in the litter leachates. Chemical speciation, using Visual Minteq 3.0, proved organically‐complexed forms even though the correlations between metal concentrations and soil solution pH and DOC were statistically insignificant. The flux of organically‐complexed metals from contaminated forest floors is believed to be a direct and crucial factor affecting the actual heavy metal concentrations and their forms in the soil solutions of the upper mineral soil horizons.  相似文献   

16.
土壤深度对土磷素淋失的影响   总被引:1,自引:0,他引:1  
利用渗漏池设施,研究了冬小麦-夏玉米轮作条件下不同土壤深度对土磷素淋失的影响。种植8季作物结果表明,对深度小于80 cm 的渗漏池,淋出土体的累积渗滤液量和累积全磷量随化学磷肥施用量的增加而减少; 随土层深度的增加,淋出土体的渗滤液和磷量均减少,且二者的减少率都很接近,表明磷素淋失主要受通过土体的土壤水分控制。相对于深度小于80 cm的土层,供试土壤的粘化层有效地减少了土壤渗滤液和磷素淋失。各深度渗漏池渗滤液中的磷以可溶态为主,约占全磷的70%左右,颗粒磷约占30%。合理施肥并加强水分管理是土区减少磷素向土壤深层迁移的有效手段。  相似文献   

17.
The bioavailability and plant uptake of heavy metals (HM), as well as finding the most reliable methods for the prediction of availability, continues to be one of the most crucial problems in agricultural and environmental studies. In agricultural soils from two regions in Kosovo, known for its metal pollution, we collected 60 soil and plant samples (wheat, corn, potatoes, and grass). Heavy metals were extracted from soil with aqua regia (pseudototal concentration), NH4OAc‐EDTA (potential bioavailable), and NH4NO3 (mobile fraction), plant samples were digested with HNO3/H2O2 (microwave assisted extraction). The pseudo total content of Cd, Pb, and Zn showed high value in Mitrovice (mean: Cd–2.92, Pb–570.15, and Zn–522.86 mg kg?1), whereas in Drenas region Ni and Cr showed high value with a mean 258.54 and 203.22 mg kg?1. Also, the potential bioavailability and mobile form of these metals were increased in Mitrovice (mean: Cd–1.59, Pb–217.05, Zn–522.86 mg kg?1, respectively Cd–0.17, Pb–0.64, and Zn–15.45 mg kg?1), compared to Drenas. Cd and Pb were elevated in potato tubers (mean Cd–0.48 and Pb–0.85 mg kg?1). The TF was higher for micronutrients (Zn and Cu) than for non‐essential metals (Cd and Pb). Multiple regression analysis showed a good model for prediction of Cd, Pb and Zn content in plant with significance 99.9%, whereas this model was not significant for Cu, Cr, and Ni. Soil pH played a significant role in the content of Cd and Zn in wheat and potato plants. Clay content also showed significance in Cd concentration in wheat and potato plants, while carbon content was significant for Cd in grass plants, as well as for Zn in wheat and grass plants.  相似文献   

18.
Abstract

Water treatment residuals (WTR) can adsorb tremendous amounts of phosphorus (P). A soil that had biosolids applied eight times over 16 years at a rate of 6.7 Mg ha?1 y?1 contained 28 mg kg?1 ammonium–bicarbonate diethylenetriaminepentaacetic acid (AB‐DTPA), 57 mg kg?1 Olsen, 95 mg kg?1 Bray‐1, and 53 mg kg?1 Mehlich‐III extractable P. To 10 g of soil, WTRs were added at rates of 0, 0.1, 1, 2, 4, 6, 8, and 10 g, then 20 mL of distilled deionized H20 (DI) were added and the mixtures were shaken for 1 week, filtered, and analyzed for soluble (ortho‐P) and total soluble P. The soil–WTR mixtures were dried and P extracted using DI, AB‐DTPA, Olsen, Bray‐1, and Mehlich‐III. Results indicated that all methods except AB‐DTPA showed reduced extractable‐P concentrations with increasing WTR. The AB‐DTPA extractable P increased with increasing WTR rate. The water‐extractable method predicted P reduction best, followed by Bray‐1 and Mehlich‐III, and finally Olsen.  相似文献   

19.
Lead (Pb) from the traffic accumulates in roadside soils, which are usually vegetated to control erosion. Plants release soluble organic substances that bind Pb. Root macropores also create preferential pathways through which water can flow. Both these processes may enhance Pb mobility. We used large lysimeters to investigate the transport of Pb in a contaminated (445 mg Pb kg?1) soil under vegetation (Phacelia tanacetifolia). Despite the high soil pH (7.2), Pb leached into the drainage water during the 5‐month experiment. The fast response of the system to intense rainfall events indicated the presence of preferential flow. By comparing Pb concentrations in filtered and unfiltered leachates, we found that Pb was leaching primarily on suspended material. An increase in Pb concentration in the leachate at the end of the experiment indicated the remobilization of Pb, possibly by decaying vegetation. We parameterized the dual‐porosity MACRO model using the experimental results. The simple parameterization of MACRO used to simulate the Pb concentrations in the drainage water produced an overall model efficiency of 0.81: MACRO simulated the Pb concentrations well, but it failed to predict the observed increase of Pb in the leachate at the end of the experiment. The model gave the best prediction of Pb concentrations with a small partition coefficient (kd= 150 cm3 g?1). Long‐term simulations of Pb mobility showed that for our specific conditions preferential flow was the main process determining the fate of Pb.  相似文献   

20.
砂质土壤积累的铜和锌的可提取性与移动性研究   总被引:7,自引:0,他引:7  
An investigation was conducted to study problems of determining a reasonable percentage for ecological water-use in the Haihe River Basin of China. Three key aspects for the ecological water requirement (EWR) were analyzed, involving i) the EWR for river system, ii) the EWR for wetlands and lakes, and iii) the EWR for discharge into the sea to maintain the estuary ecological balance of the Haihe River. The Montana method and related water level-flow relationships, and the statistic approach based on hydrological records were applied to estimate different components of EWR. The results showed that the total ecological water demand in the region, was about 3.47-14.56 billion m^3. Considering flow regime change and uncertainty, the ecological water demand could be estimated by the hydrological frequency approach. Preliminary analysis showed that for different annual runoff under the frequencies of 20%, 50%, 75% and 95%, the ecological water demand approached 12%-50%, 18%-74%, 24%-103%, 35%-148% and 16%-66%, respectively. By further analysis to balance ecological water-use and socioeconomic water-use, the rational percentage of ecological water-use was estimated as 35%-74%, that provides useful information to judge whether the allocation of water resources is reasonable, and was proved to be satisfactory by comparing with the practical condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号