首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The prediction accuracy of visible and near‐infrared (Vis‐NIR) spectroscopy for soil chemical and biological parameters has been variable and the reasons for this are not completely understood. Objectives were (1) to explore the predictability of a series of chemical and biological properties for three different soil populations and—based on these heterogeneous data sets—(2) to analyze possible predictive mechanisms statistically. A number of 422 samples from three arable soils in Germany (a sandy Haplic Cambisol and two silty Haplic Luvisols) of different long‐term experiments were sampled, their chemical and biological properties determined and their reflectance spectra in the Vis‐NIR region recorded after shock‐freezing followed by freeze‐drying. Cross‐validation was carried out for the entire population as well as for each population from the respective sites. For the entire population, excellent prediction accuracies were found for the contents of soil organic C (SOC) and total P. The contents of total N and microbial biomass C and pH were predicted with good accuracy. However, prediction accuracy for the other properties was less: content of total S was predicted approximately quantitatively, whereas Vis‐NIR spectroscopy could only differentiate between high and low values for the contents of microbial N, ergosterol, and the ratio of ergosterol to microbial biomass C. Contents of microbial biomass P and S, basal respiration, and qCO2 could not be predicted. Prediction accuracies were greatest for the entire population and the Luvisol at Garte, followed by the Luvisol at Hohes Feld, whereas the accuracy for the sandy Cambisol was poor. The poor accuracy for the sandy Cambisol may have been due to only smaller correlations between the measured properties and the SOC content compared to the Luvisols or due to a general poor prediction performance for sandy soils. Another reason for the poor accuracy may have been the smaller range of contents in the sandy soil. Overall, the data indicated that the accuracy of predictions of soil properties depends largely on the population investigated. For the entire population, the usefulness of Vis‐NIR for the number of chemical and biological soil properties was evident by markedly greater correlation coefficients (measured against Vis‐NIR predicted) compared to the Pearson correlation coefficients of the measured properties against the SOC content. However, the cross‐validation results are valid only for the closed population used in this study.  相似文献   

2.
The presence of relatively inert organic materials such as char has to be considered in calibrations of soil C models or when calculating C‐turnover times in soils. Rapid and cheap spectroscopic techniques such as near‐infrared (NIRS) or mid‐infrared spectroscopy (MIRS) may be useful for the determination of the contents of char‐derived C in soils. To test the suitability of both spectroscopic techniques for this purpose, artificial mixtures of C‐free soil, char (lignite, anthracite, charcoal, or a mixture of the three coals) and forest‐floor Oa material were produced. The total C content of these mixtures (432 samples) ranged from 0.5% to 6% with a proportion of char‐derived C amounting to 0%, 20%, 40%, 50%, 60%, or 80%. All samples were scanned in the visible and near‐IR region (400–2500 nm). Cross‐validation equations for total C and N, C and N derived from char (Cchar, Nchar) and Oa material were developed using the whole spectrum (first and second derivative) and a modified partial least‐square regression method. Thirty‐six samples were additionally scanned in the middle‐IR and parts of the near‐IR region (7000–400 cm–1 which is 1430–25,000 nm) in the diffuse‐reflectance mode. All properties investigated were successfully predicted by NIRS as reflected by RSC values (ratio of standard deviation of the laboratory results to standard error of cross‐validation) > 4.3 and modeling efficiencies (EF) ≥ 0.98. Near‐infrared spectroscopy was also able to differentiate between the different coals. This was probably due to structural differences as suggested by wavelength assignment. Mid‐IR spectroscopy in the diffuse‐reflectance mode was also capable to successfully predict the parameters investigated. The EF values were > 0.9 for all constituents. Our results indicated that both spectroscopic techniques applied, NIRS and MIRS, are able to predict C and N derived from different sources in soil, if closed populations are considered.  相似文献   

3.
森林凋落物分解研究进展   总被引:15,自引:0,他引:15  
 森林凋落物分解是森林生态系统养分生物循环的重要环节,而分解过程中所释放的CO2是全球碳素收支的重要组分,开展森林凋落物分解研究是充分认识森林生态系统结构和功能的基础。研究认为:凋落物分解的预测指标可分为3类,即环境指标(如实际蒸散量)、凋落物物理质量(如叶抗张强度)和化学质量指标(如C/N比、木质素/N比和C/P比等);凋落物分解过程中养分释放机制极其复杂,养分动态模式主要有淋溶—释放、淋溶—富集—释放和富集—释放3种,并因凋落物种类、分解阶段和元素本身性质的不同而异;凋落物混合分解并非单一树种分解的简单叠加,因树种组成和比例不同,基质的化学组成会发生变化,从而影响分解者的多样性、丰富度和生理活性,进而直接和间接地影响其分解速率;凋落物混合分解中可能存在无效应、促进效应和抑制效应;现有的研究结果显示,凋落物混合分解的适宜比例应与群落中不同树种的种群比例相一致;CO2浓度升高不仅影响凋落物的化学性质,而且与分解环境中土壤的生物活性密切相关,但CO2浓度升高并不改变凋落物质量与分解速率之间的关系;越来越多的研究显示,CO2浓度升高的环境下,植物群落的物种组成会产生变化,这种变化对养分循环速率的影响远大于单纯大气CO2浓度变化的影响。  相似文献   

4.
The aim of this study was to determine the influence of leaf‐litter type (i.e., European beech—Fagus sylvatica L. and European ash—Fraxinus excelsior L.) and leaf‐litter mixture on the partitioning of leaf‐litter C and N between the O horizon, the topsoil, the soil microbial biomass, and the CO2 emission during decomposition. In a mature beech stand of Hainich National Park, Thuringia, Germany, undisturbed soil cores (?? 24 cm) were transferred to plastic cylinders and the original leaf litter was either replaced by 13C15N‐labeled beech or ash leaf litter, or leaf‐litter‐mixture treatments in which only one of the two leaf‐litter types was labeled. Leaf‐litter‐derived CO2‐C flux was measured every second week over a period of one year. Partitioning of leaf‐litter C and N to the soil and microbial biomass was measured 5 and 10 months after the start of the experiment. Ash leaf litter decomposed faster than beech leaf litter. The decomposition rate was negatively related to initial leaf‐litter lignin and positively to initial Ca concentrations. The mixture of both leaf‐litter types led to enhanced decomposition of ash leaf litter. However, it did not affect beech leaf‐litter decomposition. After 5 and 10 months of in situ incubation, recoveries of leaf‐litter‐derived C and N in the O horizon (7%–20% and 9%–35%, respectively) were higher than in the mineral soil (1%–5% and 3%–8%, respectively) showing no leaf‐litter‐type or leaf‐litter‐mixture effect. Partitioning of leaf‐litter‐derived C and N to microbial biomass in the upper mineral soil (< 1% of total leaf‐litter C and 2%–3% of total leaf‐litter N) did not differ between beech and ash. The results show that short‐term partitioning of leaf‐litter C and N to the soil after 10 months was similar for ash and beech leaf litter under standardized field conditions, even though mineralization was faster for ash leaf litter than for beech leaf litter.  相似文献   

5.
 This study tested whether urban land use can affect the chemistry and decomposability of Quercus rubra L. (red oak) leaf litter in forests within and near a large metropolitan area. Cities may affect the quality of leaf litter directly through foliar uptake of atmospheric pollutants, and indirectly through alterations in local climate and changes in soil fertility caused by pollutant loads and altered nutrient cycling regimes. Using a microbial bioassay, we tested whether red oak leaf litter collected from urban and suburban forests in and near New York City differed in decomposability from litter of the same species collected from rural forests 130 km from the city. We found that oak litter from the urban forests decayed 25% more slowly and supported 50% less cumulative microbial biomass in a laboratory bioassay than rural litter. Rural litter contained less lignin and more labile material than urban litter, and the amounts of these chemical constituents were highly correlated with the decay rate coefficients and integrated microbial growth achieved on the litter. The specific causes of the variation in litter chemistry are not known. The results of this study suggest that decomposer activity and nutrient cycling in forests near large cities may be affected both by altered litter quality and by altered biotic, chemical and physical environments. The sensitivity of the microbial bioassay makes it useful for distinguishing differences in within-species litter quality that result from natural or anthropogenic variation in the environment. Received: 7 January 1999  相似文献   

6.
The usefulness and limitations of near‐infrared reflectance spectroscopy (NIRS) for the assessment of several soil characteristics are still not sufficiently explored. The objective of this study was to evaluate the ability of visible and near‐infrared reflectance (VIS‐NIR) spectroscopy to predict the composition of organic matter in soils and litter. Reflectance spectra of the VIS‐NIR region (400–2500 nm) were recorded for 56 soil and litter samples from agricultural and forest sites. Spectra were used to predict general and biological characteristics of the samples as well as the C composition which was measured by 13C‐CPMAS‐NMR spectroscopy. A modified partial least‐square method and cross‐validation were used to develop equations for the different constituents over the whole spectrum (1st to 3rd derivation). Near‐infrared spectroscopy predicted well the C : N ratios, the percentages of O‐alkyl C and alkyl C, the ratio of alkyl C to O‐alkyl C, and the sum of phenolic oxidation products: the ratios of standard deviation of the laboratory results to standard error of cross‐validation (RSC) were greater than 2, the regression coefficients (a) of a linear regression (measured against predicted values) ranged from 0.9 to 1.1, and the correlation coefficients (r) were greater than 0.9. Satisfactorily (0.8 ≤ a ≤ 1.2, r ≥ 0.8, and 1.4 ≤ RSC ≤ 2.0) assessed were the contents of C, N, and production of DOC, the percentages of carbonyl C and aromatic C and the ratio of alkyl C to aromatic C. However, the N‐mineralization rate and the microbial biomass were predicted unsatisfactorily (RSC < 1.4). The good and satisfactory predictions reported above indicate a marked usefulness of NIRS in the assessment of biological and chemical characteristics of soils and litter.  相似文献   

7.
Fourty‐one soil samples from the “Eternal Rye” long‐term experiment in Halle, Germany, were used to test the usefulness of near‐infrared spectroscopy (NIRS) to differentiate between C derived from C3 and C4 plants by using the isotopic signature (δ13C) and to predict the pools considered in the Rothamsted Carbon (RothC) model, i.e., decomposable plant material, resistant plant material, microbial biomass, humified organic matter, and inert organic matter. All samples were scanned in the visible‐light and near‐infrared region (400–2500 nm). Cross‐validation equations were developed using the whole spectrum (first to third derivative) and a modified partial least‐square regression method. δ13C values and all pools of the RothC model were successfully predicted by NIRS as reflected by RSC values (ratio between standard deviation of the laboratory results and standard error of cross‐validation) ranging from 3.2 to 3.4. Correlations analysis indicated that organic C can be excluded as basis for the successful predictions by NIRS in most cases, i.e., 11 out of 16.  相似文献   

8.
Mid‐infrared spectroscopy (MIRS) is assumed to be superior to near‐infrared spectroscopy (NIRS) for the prediction of soil constituents, but its usefulness is still not sufficiently explored. The objective of this study was to evaluate the ability of MIRS to predict the chemical and biological properties of organic matter in soils and litter. Reflectance spectra of the mid‐infrared region including part of the near‐infrared region (7000–400 cm–1) were recorded for 56 soil and litter samples from agricultural and forest sites. Spectra were used to predict general and biological characteristics of the samples as well as the C composition which was measured by 13C CPMAS‐NMR spectroscopy. A partial least‐square method and cross‐validation were used to develop equations for the different constituents over selected spectra ranges after several mathematical treatments of the spectra. Mid‐infrared spectroscopy predicted well the C : N ratio: the modeling efficiency EF was 0.95, the regression coefficient (a) of a linear regression (measured against predicted values) was 1.0, and the correlation coefficient (r) was 0.98. Satisfactorily (EF ≥ 0.70, 0.8 ≤ a ≤ 1.2, r ≥ 0.80) assessed were the contents of C, N, and lignin, the production of dissolved organic carbon, and the contents of carbonyl C, aromatic C, O‐alkyl C, and alkyl C. However, the N mineralization rate, the microbial biomass and the alkyl–to–aromatic C ratio were predicted less satisfactorily (EF < 0.70). Limiting the sample set to mineral soils did generally not result in improved predictions. The good and satisfactory predictions reported above indicate a marked usefulness of MIRS in the assessment of chemical characteristics of soils and litter, but the accuracies of the MIRS predictions in the diffuse‐reflectance mode were generally not superior to those of NIRS.  相似文献   

9.
Earthworms are recognized to play an important role in the decomposition of organic materials. To test the use of earthworms as an indicator of plant litter decomposition, we examined the abundance and biomass of earthworms in relation to plant litter decomposition in a tropical wet forest of Puerto Rico. We collected earthworms at 0–0.1 m and 0.1–0.25 m soil depths from upland and riparian sites that represent the natural variation in soils and decomposition rates within the forest. Earthworms were hand-sorted and weighed for both fresh and dry biomass. Earthworms were dominated by the exotic endogeic species Pontoscolex corethrurus Müller; they were more abundant, and had higher biomasses in the upland than in riparian sites of the forest. Plant leaf litter decomposed faster in the upland than riparian sites. We found that earthworm abundance in the upper 0.1 m of the soil profile positively correlated with decomposition rate of plant leaf litter. Ground litter removal had no effect on the abundance or biomass of endogeic earthworms. Our data suggest that earthworms can be used to predict decomposition rates of plant litter in the tropical wet forest, and that the decomposition of aboveground plant litter has little influence on the abundance and biomass of endogeic earthworms.  相似文献   

10.
Soil microbiological properties during decomposition of leaf litter of poplar (Populus deltoides) and eucalyptus (Eucalyptus tereticornis) were studied under laboratory conditions. Microbial biomass C and ninhydrin-N were measured at different intervals up to 90 days following incorporation of poplar and eucalyptus leaves separately @ 20 and 100t ha-1. In general, the net increase in total biomass C or ninhydrin N following amendment was larger in the soils which received poplar leaves than in the soils that received eucalyptus leaves. The amounts of biomass C, at day 90, in the soils which received eucalyptus leaves @ 20 and 100 t ha-1 was about half and one-third, respectively, that of the soils that received poplar leaves at the same rates. Similarly, the field soils naturally receiving eucalyptus leaf litter contained about half the amounts of biomass C or ninhydrin N of the soils that received poplar leaf litter. In contrast, the amounts of organic C and total N were more in soils which received eucalyptus leaves both in the laboratory experiment and under field conditions than in the soils that received poplar leaves, indicating that the decomposition of eucalyptus leaves in soils was slower than that of poplar leaves. The ratio of biomass C/soil organic C in soils receiving eucalyptus leaves was about 2–4 times lower than those in soils with no admendment or soils receiving poplar leaves. These results, therefore, suggest that the allelochemicals released into soil during decomposition of eucalyptus leaves had a toxic effect on soil microorganisms and may thus affect the nutrient cycling and hence soil fertility.  相似文献   

11.
12.
Background and aims: Plant‐derived, ester‐bound substituted fatty acids have been used for decades as biomarkers to identify input of plant materials in sediments and soils. However, the long‐term decomposition patterns of these biomarker compounds under natural conditions are not well understood, although this is a basic prerequisite for quantitative biomarker applications. Methods: For this study, we analyzed the decomposition patterns of root‐ and needle‐specific compounds of Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) in a litterbag study conducted over 3 years. Samples were analyzed by methanolic KOH extraction with previous removal of free extractable lipids. Results: The concentrations of most detectable compounds had decreased after three years of incubation. The observed changes of concentrations followed a non‐linear path and cannot be explained by microbial uptake and metabolism alone. Other factors controlling the breakdown of ester‐bound lipids, like lipid oxidation must play a role. Between similar plant parts and different plant parts of the same species, the observed degradation patterns were heterogeneous. The estimated ratio of remaining root and needle biomass that may arise with the choice of a particular biomarker varies in this study between 0.6 and 40 times after three years. Conclusion: This range of variation does not allow reliable conclusions about the contribution of roots and needles to decomposed organic matter based on biomarkers ratios.  相似文献   

13.
14.
Investigations on the mass loss of leaf litter were carried out between 1992 and 1994 using litter bags of 0.02 mm and 5 mm mesh sizes in a beech and a mixed forest in northern Germany. The two forests on moder humus differed in soil faunal composition, vegetation type, and nutrient supply. Mass loss and N and C concentrations were determined from the litter at bimonthly intervals. From subsamples macrofauna were sorted by hand and mesofauna was extracted by heat. The biomass and N content of the litter bag fauna was estimated. Mass loss, particularly that attributed to the fauna, was different between the two sites with highest rates in the mixed forest and lowest at the beech site. A significantly higher rate of N release was found for the litter extracted from 5 mm mesh size litter bags in the mixed forest but not in the beech forest. Collembola and Cryptostigmata changed in numbers during litter breakdown. Collembola reached high numbers in the beginning, whereas Cryptostigmata dominated later. The diversity of Cryptostigmata increased at both sites during litter breakdown, whereas collembolan diversity only increased in the beech forest and remained at the same level in the mixed forest. Several species of Collembola and Cryptostigmata occurred earlier in the mixed forest than in the beech forest. Mass loss rate attributable to the fauna did not correspond to total faunal biomass. Only Isopoda, Diplopoda and Cryptostigmata appeared to affect the mass loss positively, whereas the biomass of Lumbricidae was negatively correlated with mass loss, particularly in the beech forest. On the other hand, the release of N attributable to the fauna was positively correlated with the total faunal biomass in the beech forest and Lumbricidae in particular were positively correlated with N-release at both sites.  相似文献   

15.
Extensive studies have been conducted to evaluate the effect of soil fauna on plant litter decomposition in terrestrial ecosystems. However, scholars have reported inconsistent results on the direction and magnitude of the soil fauna effect. We present a global synthesis of 75 papers that cover 197 plant species with 543 cases of plant litter decomposition experiments and soil fauna effects on plant litter decomposition. By using a boosted regression tree model (BRT), we aim to provide a synthesis of existing data that comprehensively and quantitatively evaluates how climate, plant litter quality, and study methods interact with soil fauna in affecting plant litter decomposition. Global average effect size (ES) is −0.426, which indicates a 35% lower decomposition rate when soil fauna is excluded by physical or chemical exclusion techniques. The final model explains 32.3% of the variation in ES. The predictors that substantially account for the explained variation include mean annual temperature (MAT, 37.1%), mean annual precipitation (MAP, 9.7%), phosphorus (12.4%), nitrogen (5.6%), and lignin content (5.5%). By contrast, the heterogeneity of the study duration and soil fauna exclusion technique have negligible contributions (each <5%). Log effect size strongly decreases with both MAT and MAP. Plant litters with high quality have stronger soil fauna effect because the log effect size is negatively related to nitrogen and phosphorus content and positively related to lignin content. Our analysis demonstrates the critical role of climate and plant litter quality in determining the soil fauna effect on plant litter decomposition in terrestrial ecosystems. However, the large unexplained variation (67.7%) in ES in the BRT model indicates undiscovered mechanisms underlying the soil fauna effect in our analysis. We call for further studies on this topic in the future.  相似文献   

16.
In alley-cropping systems, hedgerow trees are regularly cut back. Losses of N released from the decomposing prunings are minimized when N release is synchronized with crop N demand. In this study, the sensitivity of the decomposition of Leucaena leucocephala, Senna siamea, and Dactyladenia barteri leaf litter to the nature of the rainfall regime is correlated with the residue quality. The litterbag technique was used to measure decomposition. Four periods of 115 days, each starting at a time when hedgerow trees are normally pruned, were selected and the rain that fell during each of these periods in 1986 was simulated on a day-to-day basis by applying irrigation water on the litterbags. The number of rainfall events was better correlated with the percentage dry matter loss than with the total amount of precipitation. The relationship consisted of two lines. The slope of the first line, indicative of the sensitivity of the decomposition to varying numbers of rainfall events, correlated well with the watersoluble fraction (P<0.05), the C:N ratio (P<0.05), and the polyphenol: N ratio (P<0.01) of the residues. The decomposition process was shown to be dominated by microbial catabolism, rather than leaching. Because the decomposition of the higher quality residues is affected by varying rainfall patterns and because rainfall may often be unpredictable in frequency and intensity, synchronization of N released from a significant part of the decomposing residue with crop N demand may require additional management practices.  相似文献   

17.
近红外光谱技术及其在农产品品质分析中的应用   总被引:1,自引:0,他引:1  
近红外光谱技术是一种高效、快速的现代分析技术,已在很多领域得到广泛应用。文章对近红外光谱分析的技术原理、技术方法、技术特点作了简要介绍,并对其在农产品品质分析中的应用现状和应用前景进行了综述。  相似文献   

18.
Summary We studied the fungal communities associated with decomposing common leaf litter (Quercus leucotrichophora A. Camus) placed in five forests of Central Himalaya between the elevations of 330 and 2150 m. During the initial period of decay, conciding with the rainy season, a progressive increase in fungal counts and species diversity was observed in all forest sites. The sal forest site had a greater weight loss and supported the largest fungal densities, whereas the pine forest had a lower weight loss and the smallest fungal densities. Deuteromycetes were the dominant group in all the forest sites. Most of the species isolated during the annual cycle of the forest sites were of the accidental type. Species diversity and fungal counts on the common leaf litter were markedly affected by the environmental changes brought about by the native leaf litter. This effect was most obvious in the chir pine forest site where the leaf litter of the native dominant species was distinctly more resistant to decay than those of the other sites, making the soil environment of the site markedly different from that of other sites. The pattern of fungal-species changes with progressive decay of the substrate was similar to that suggested by the tolerance model of Connel and Slatyer.  相似文献   

19.
Previous research has shown that the addition of flue‐gas desulphurization (FGD) gypsum to poultry litter decreases water‐soluble P. No information is currently available, however, on extractable P fractions in poultry litter and P availability as affected by gypsum. The first objective of this work was to evaluate the effect of incubation time and rate of gypsum addition to litter alone or litter mixed with soil on total P and inorganic P in sequential extracts of H2O, 0.5 m NaHCO3, 0.1 m NaOH and 1 m HCl. Poultry litter was mixed with 25, 50, or 75% gypsum (by weight) and incubated alone or mixed with soil for 63–93 days at 25 °C, with periodic sequential extractions. For litter alone or litter mixed with soil, adding gypsum decreased total P and inorganic P in the H2O fraction and increased both P forms in the NaHCO3 fraction. These changes did not affect plant P availability as measured by Mehlich‐1 P. Increasing incubation time decreased total P and inorganic P in the H2O fraction of litter alone or litter mixed with soil, which was apparently caused by P immobilization by fungi. A second objective of this study was to evaluate P in the H2O and NaHCO3 fractions of litter as affected by stacking time and depth. Litter was stacked to a height of 1.2 m with samples taken immediately after stacking and 31 days later to be sequentially extracted for total P and inorganic P. Stacking time did not affect P in the H2O fraction, but it increased P in the NaHCO3 fraction by 25%. These results suggest that stacking poultry litter may increase the amount of labile P.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号