首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbial‐derived phospholipid fatty acids (PLFAs) can be used to characterize the microbial communities in soil without the need to isolate individual fungi and bacteria. They have been used to assess microbial communities of humus layers under coniferous forest, but nothing is known of their distribution in the deeper soil. To investigate the vertical distribution we sampled nine Podzol profiles on a 100‐m‐long transect in a coniferous forest and analysed for their microbial biomass and PLFA pattern to a depth of 0.4 m. The transect covered a fertility gradient from Vaccinium vitis‐idaea forest site type to Vaccinium myrtillus forest site type. The cores were divided into humus (O) and eluvial (E) layers and below that into 10‐cm sections and designated as either illuvial (B) or parent material (C), or as a combination (BC). Two measures of microbial biomass analyses were applied: substrate‐induced respiration (SIR) to determine microbial biomass C (Cmic), and the sum of the extracted microbial‐derived phospholipid fatty acids (totPLFA). The soil fertility had no effect on the results. The Cmic correlated well with totPLFA (r= 0.86). The microbial biomass decreased with increasing depth. In addition the PLFA pattern changed with increased depth as assessed with principal component analysis, indicating a change in the microbial community structure. The composition of the PLFAs in the O layer differed from that in the E layer and both differed from the upper part of the B layer and from the rest of the BC layers. The deeper parts of the B layer (BC1, BC2 and BC3) were similar to one other. The O layer had more 18:2ω6, a PLFA indicator of fungi, whereas the E layer contained relatively more of the PLFAs 16:1ω9, 18:1ω7 and cy19:0 common in gram‐negative bacteria. With increased depth the relative amount of 10Me18:0, the PLFA indicator for actinomycetes, increased. We conclude that the PLFA method is a promising discriminator between the microbial community structures of the horizons in Podzols.  相似文献   

2.
Soil incubations are often used to investigate soil organic matter (SOM) decomposition and its response to increased temperature, but changes in the activity and community composition of the decomposers have rarely been included. As part of an integrated investigation into the responses of SOM components in laboratory incubations at elevated temperatures, fungal and bacterial phospholipid fatty acids (PLFAs) were measured in two grassland soils contrasting in SOM quality (i.e. SOM composition), and changes in the microbial biomass and community composition were monitored. Whilst easily-degradable SOM and necromass released from soil preparation may have fuelled microbial activity at the start of the incubation, the overall activity and biomass of soil microorganisms were relatively constant during the subsequent one-year soil incubation, as indicated by the abundance of soil PLFAs, microbial respiration rate (r), and metabolic quotient (qCO2). PLFAs relating to fungi and Gram-negative bacteria declined relative to Gram-positive bacteria in soils incubated at higher temperatures, presumably due to their vulnerability to disturbance and substrate constraints induced by faster exhaustion of available nutrient sources at higher temperatures. A linear correlation was found between incubation temperatures and the microbial stress ratios of cyclopropane PLFA-to-monoenoic precursor (cy17:0/16:1ω7c and cy19:0/18:1ω7c) and monoenoic-to-saturated PLFAs (mono/sat), as a combined effect of temperature and temperature-induced substrate constraints. The microbial PLFA decay patterns and ratios suggest that SOM quality intimately controls microbial responses to global warming.  相似文献   

3.
Under temperate climate, the frequency of extreme weather events such as intensive freezing or frequent thawing periods during winter might increase in the future. It was shown that frost and subsequent thawing may affect the fluxes of C and N in soils. In a laboratory study, we investigated the effect of frost intensity and repeated freeze–thaw cycles on the quality and quantity of soil organic matter (SOM) in a Haplic Podzol from a Norway spruce forest. Undisturbed soil columns comprising O layer and top mineral soil were treated as followed: control (+5°C), frost at –3°C, –8°C, and –13°C. After a 2‐week freezing period, frozen soils were thawed at +5°C and irrigated with 80 mm water at a rate of 4 mm d–1. Lignin contents were not significantly affected by repeated freeze–thaw cycles. Phospholipid fatty acid (PLFA) contents decreased in the mineral soil, and PLFA patterns indicate that fungi are more susceptible to soil frost than bacteria. Amounts of both plant and microbial sugars generally decreased with increasing frost intensity. These changes cannot be explained by increased mineralization of sugars or by leaching with DOM nor by a decreased microbial activity and, thus, sugar production with increasing frost intensity. Also physical stabilization of sugars due to frost‐induced changes in soil structure can be ruled out as sugar extraction was carried out on ground bulk soil. Therefore, the only possible explanation for the disappearance of plant and microbial sugars upon soil freezing are chemical alterations of sugar molecules leading to SOM stabilization.  相似文献   

4.
Microbial biomass, respiratory activity, and in‐situ substrate decomposition were studied in soils from humid temperate forest ecosystems in SW Germany. The sites cover a wide range of abiotic soil and climatic properties. Microbial biomass and respiration were related to both soil dry mass in individual horizons and to the soil volume in the top 25 cm. Soil microbial properties covered the following ranges: soil microbial biomass: 20 µg C g–1–8.3 mg C g–1 and 14–249 g C m–2, respectively; microbial C–to–total organic C ratio: 0.1%–3.6%; soil respiration: 109–963 mg CO2‐C m–2 h–1; metabolic quotient (qCO2): 1.4–14.7 mg C (g Cmic)–1 h–1; daily in‐situ substrate decomposition rate: 0.17%–2.3%. The main abiotic properties affecting concentrations of microbial biomass differed between forest‐floor/organic horizons and mineral horizons. Whereas microbial biomass decreased with increasing soil moisture and altitude in the forest‐floor/organic horizons, it increased with increasing Ntot content and pH value in the mineral horizons. Quantities of microbial biomass in forest soils appear to be mainly controlled by the quality of the soil organic matter (SOM), i.e., by its C : N ratio, the quantity of Ntot, the soil pH, and also showed an optimum relationship with increasing soil moisture conditions. The ratio of Cmic to Corg was a good indicator of SOM quality. The quality of the SOM (C : N ratio) and soil pH appear to be crucial for the incorporation of C into microbial tissue. The data and functional relations between microbial and abiotic variables from this study provide the basis for a valuation scheme for the function of soils to serve as a habitat for microorganisms.  相似文献   

5.
Climate models predict an increase in global surface temperature and a change in precipitation intensity during this century. For Europe, extended drought periods followed by heavy rainfall are expected. The consequences for soil organic matter (SOM) dynamics are poorly understood. In this study, we investigated the effect of changing soil moisture regime on SOM quality under field conditions. For this purpose, a throughfall exclusion (TE) experiment was conducted in the summers 2006 and 2007 on a Haplic Podzol under a 140 years old Norway spruce stand using a roof installation followed by re-wetting compared to non-manipulated control plots. Total organic carbon, lignin (stable carbon pool), plant and microbial sugars (labile carbon pool) and microbial biomass (phospholipid fatty acids) were determined before, during and after the experiment in the L, O, A and B horizons. No significant treatment effects could be observed for SOM quantity. Amounts of lignin and soil microbial biomass were also not affected by the moisture regime but structure of soil microbial community. In the L and organic layers, gram + bacteria and actinomycetes were reduced during water stress, while gram- bacteria, fungi and protozoa increased during drought. Warmer and drier weather led to a dominance of fungi while a cooler and moister regime favoured bacteria, at least in the L horizon. An increasing PLFA (cy17:0 + cy19:0)/(16:1ω7c + 18:1ω7c) ratio in the O layer and A horizon suggests that the microbes suffered from water stress in these horizons. This agrees with a decreasing contribution of microbial sugars to SOM with decreasing water content in the O and A horizons. Although the original plant material exhibited increasing plant sugar content with increasing dryness, the contribution of the plant sugars to total soil organic carbon (SOC) generally decreased with decreasing water content. Physical-chemical changes of soil structure can theoretically change the sugar extractability from soils and/or chemical changes of sugars structure can probably affect the analysis. Therefore, chemical alteration and stabilization could be responsible for sugar decrease in soil with increasing dryness explaining the contrast compared to the original plant material.  相似文献   

6.
In this study, leguminous crops like Atylosia scarabaeoides, Centrosema pubescens, Calopogonium mucunoides, and Pueraria phaseoloides. grown as soil cover individually in the interspaces of a 19‐yr‐old coconut plantation in S. Andaman (India) were assessed for their influence on various microbial indices (microbial biomass C, biomass N, basal respiration, ergosterol, levels of ATP, AMP, ADP) in soils (0–50 cm) collected from these plots after 10 years. The effects of these cover crops on . CO2 (metabolic quotient), adenylate energy charge (AEC), and the ratios of various soil microbial properties viz., biomass C : soil organic C, biomass C : N, biomass N : total N, ergosterol : biomass C, and ATP : biomass C were also examined. Cover cropping markedly enhanced the levels of organic matter and microbial activity in soils after the 10‐yr‐period. Microbial biomass C and N, basal respiration, . CO2, ergosterol and levels of ATP, AMP, ADP in the cover‐cropped plots significantly exceeded the corresponding values in the control plot. While the biomass C : N ratio tended to decrease, the ratios of biomass N : total N, ergosterol : biomass C, and ATP : biomass C increased significantly due to cover cropping. Greater ergosterol : biomass C ratio in the cover‐cropped plots indicated a decomposition pathway dominated by fungi, and high . CO2 levels in these plots indicated a decrease in substrate use efficiency probably due to the dominance of fungi. The AEC levels ranged from 0.80 to 0.83 in the cover‐cropped plots, thereby reflecting greater microbial proliferation and activity. The ratios of various microbial and chemical properties could be assigned to three different factors by principal components analysis. The first factor (PC1) with strong loadings of ATP : biomass C ratio, AEC, and . CO2 reflected the specific metabolic activity of soil microbes. The ratios of ergosterol : biomass C, soil organic C : total N, and biomass N : total N formed the second factor (PC2) indicating a decomposition pathway dominated by fungi. The biomass C : N and biomass C : soil organic C ratios formed the third principal component (PC3), reflecting soil organic matter availability in relation to nutrient availability. Overall, the study suggested that Pueraria phaseoloides. or Atylosia scarabaeoides were better suited as cover crops for the humid tropics due to their positive contribution to soil organic C, N, and microbial activity.  相似文献   

7.
The influence of soil pH on the phospholipid fatty acid (PLFA) composition of the microbial community was investigated along the Hoosfield acid strip, Rothamsted Research, UK - a uniform pH gradient between pH 8.3 and 4.5. The influence of soil pH on the total concentration of PLFAs was not significant, while biomass estimated using substrate induced respiration decreased by about 25%. However, the PLFA composition clearly changed along the soil pH gradient. About 40% of the variation in PLFA composition along the gradient was explained by a first principal component, and the sample scores were highly correlated to pH (R2 = 0.97). Many PLFAs responded to pH similarly in the Hoosfield arable soil compared with previous assessments in forest soils, including, e.g. monounsaturated PLFAs 16:1ω5, 16:1ω7c and 18:1ω7, which increased in relative concentrations with pH, and i16:0 and cy19:0, both of which decreased with pH. Some PLFAs responded differently to pH between the soil types, e.g. br18:0. We conclude that soil pH has a profound influence on the microbial PLFA composition, which must be considered in all applications of this method to detect changes in the microbial community.  相似文献   

8.
Phospholipid fatty acid (PLFA) patterns were used to describe the composition of the soil microbial communities under 12 natural forest stands including oak and beech, spruce-fir-beech, floodplain and pine forests. In addition to the quantification of total PLFAs, soil microbial biomass was measured by substrate-induced respiration and chloroform fumigation-extraction. The forest stands possess natural vegetation, representing an expression of the natural site factors, and we hypothesised that each forest type would support a specific soil microbial community. Principal component analysis (PCA) of PLFA patterns revealed that the microbial communities were compositionally distinct in the floodplain and pine forests, comprising azonal forest types, and were more similar in the oak, beech and spruce-fir-beech forests, which represent the zonal vegetation types of the region. In the nutrient-rich floodplain forests, the fatty acids 16:1ω5, 17:0cy, a15:0 and a17:0 were the most prevalent and soil pH seemed to be responsible for the discrimination of the soil microbial communities against those of the zonal forest types. The pine forest soils were set apart from the other forest soils by a higher abundance of PLFA 18:2ω6,9, which is typical of fungi and may also indicate ectomycorrhizal fungi associated with pine trees, and high amounts of PLFA 10Me18:0, which is common in actinomycetes. These findings suggest that the occurrence of azonal forest types at sites with specific soil conditions is accompanied by the development of specific soil microbial communities. The study provides information on the microbial communities in undisturbed forest soils which may facilitate interpretation of data derived from managed or even damaged or degraded forests.  相似文献   

9.
We have compared the total microbial biomass and the fungal/bacterial ratio estimated using substrate-induced respiration (SIR) in combination with the selective inhibition technique and using the phospholipid fatty acid (PLFA) technique in a pH gradient (3.0-7.2) consisting of 53 mature broad-leaved forest soils. A fungal/bacterial biomass index using the PLFA technique was calculated using the PLFA 18:2ω6,9 as an indicator of fungal biomass and the sum of 13 bacterial specific PLFAs as indicator of the bacterial biomass. Good linear correlation (p<0.001) was found between the total microbial biomass estimated with SIR and total PLFAs (totPLFA), indicating that 1 mg biomass-C was equivalent to 130 nmol totPLFA. Both biomass estimates were positively correlated to soil pH. The fungal/bacterial ratio measured using the selective inhibition technique decreased significantly with increasing pH from about 9 at pH 3 to approximately 2 at pH 7, while the fungal/bacterial biomass index using PLFA measurements tended to increase slightly with increasing soil pH. Good correlation between the soil content of ergosterol and of the PLFA 18:2ω6,9 indicated that the lack of congruency between the two methods in estimating fungal/bacterial ratios was not due to PLFA 18:2ω6,9-related non-fungal structures to any significant degree. Several PLFAs were strongly correlated to soil pH (R2 values >0.8); for example the PLFAs 16:1ω5 and 16:1ω7c increased with increasing soil pH, while i16:0 and cy19:0 decreased. A principal component analysis of the total PLFA pattern gave a first component that was strongly correlated to soil pH (R2=0.85, p<0.001) indicating that the microbial community composition in these beech/beech-oak forest soils was to a large extent determined by soil pH.  相似文献   

10.
Rhizodeposits have received considerable attention, as they play an important role in the regulation of soil carbon (C) sequestration and global C cycling and represent an important C and energy source for soil microorganisms. However, the utilization of rhizodeposits by microbial groups, their role in the turnover of soil organic matter (SOM) pools in rice paddies, and the effects of nitrogen (N) fertilization on rhizodeposition are nearly unknown. Rice (Oryza sativa L.) plants were grown in soil at five N fertilization rates (0, 10, 20, 40, or 60 mg N kg?1 soil) and continuously labeled in a 13CO2 atmosphere for 18 days during tillering. The utilization of root-derived C by microbial groups was assessed by 13C incorporation into phospholipid fatty acids. Rice shoot and root biomass strongly increased with N fertilization. Rhizodeposition increased with N fertilization, whereas the total 13C incorporation into microorganisms, as indicated by the percentage of 13C recovered in microbial biomass, decreased. The contribution of root-derived 13C to SOM formation increased with root biomass. The ratio of 13C in soil pools (SOM and microbial biomass) to 13C in roots decreased with N fertilization showing less incorporation and faster turnover with N. The 13C incorporation into fungi (18:2ω6,9c and 18:1ω9c), arbuscular mycorrhizal fungi (16:1ω5c), and actinomycetes (10Me 16:0 and 10Me 18:0) increased with N fertilization, whereas the 13C incorporation into gram-positive (i14:0, i15:0, a15:0, i16:0, i17:0, and a17:0) and gram-negative (16:1ω7c, 18:1ω7c, cy17:0, and cy19:0) bacteria decreased with N fertilization. Thus, the uptake and microbial processing of root-derived C was affected by N availability in soil. Compared with the unfertilized soil, the contribution of rhizodeposits to SOM and microorganisms increased at low to intermediate N fertilization rates but decreased at the maximum N input. We conclude that belowground C allocation and rhizodeposition by rice, microbial utilization of rhizodeposited C, and its stabilization within SOM pools are strongly affected by N availability: N fertilization adequate to the plant demand increases C incorporation in all these polls, but excessive N fertilization has negative effects not only on environmental pollution but also on C sequestration in soil.  相似文献   

11.
Extended drought periods followed by heavy rainfall may increase in many regions of the Earth, but the consequences for the quality of soil organic matter and soil microbial communities are poorly understood. Here, we investigated the effect of repeated drying and re‐wetting on microbial communities and the quality of particulate and dissolved organic matter in a Haplic Podzol from a Norway spruce stand. After air‐drying, undisturbed soil columns were re‐wetted at different intensities (8, 20 and 50 mm per day) and time intervals, so that all treatments received the same amount of water per cycle (100 mm). After the third cycle, SOM pools of the treatments were compared with those of non‐dried control columns. Lignin phenols were not systematically affected in the O horizons by the treatments whereas fewer lignin phenols were found in the A horizon of the 20‐ and 50‐mm treatments. Microbial biomass and the ratio of fungi to bacteria were generally not altered, suggesting that most soil microorganisms were well adapted to drying and re‐wetting in this soil. However, gram‐positive bacteria and actinomycetes were reduced whereas gram‐negative bacteria and protozoa were stimulated by the treatments. The increase in the (cy 17: 0 + cy 19: 0)/(16:1ω7c + 18:1ω7c) ratio indicates physiological or nutritional stress for the bacterial communities in the O, A and B horizons with increasing re‐wetting intensity. Drying and re‐wetting reduced the amount of hydrolysable plant and microbial sugars in all soil horizons. However, CO2 and dissolved organic carbon fluxes could not explain these losses. We postulate that drying and re‐wetting triggered chemical alterations of hydrolysable sugar molecules in organic and mineral soil horizons.  相似文献   

12.
Projected future decreases in snow cover associated with global warming in alpine ecosystems could affect soil biochemical cycling. To address the objectives how an altered snow removal could affect soil microbial biomass and enzyme activity related to soil carbon and nitrogen cycling and pools, plastic film coverage and returning of melt snow water were applied to simulate the absence of snow cover in a Tibetan alpine forest of western China. Soil temperature and moisture, nutrient availability, microbial biomass and enzyme activity were measured at different periods (before snow cover, early snow cover, deep snow cover, snow cover melting and early growing season) over the entire 2009/2010 winter. Snow removal increased the daily variation of soil temperature, frequency of freeze–thaw cycle, soil frost depth, and advanced the dates of soil freezing and melting, and the peak release of inorganic N. Snow removal significantly decreased soil gravimetric water, ammonium and inorganic N, and activity of soil invertase and urease, but increased soil nitrate, dissolve organic C (DOC) and N (DON), and soil microbial biomass C (MBC) and N (MBN). Our results suggest that a decreased snow cover associated with global warming may advance the timing of soil freezing and thawing as well as the peak of releases of nutrients, leading to an enhanced nutrient leaching before plant become active. These results demonstrate that an absence of snow cover under global warming scenarios will alter soil microbial activities and hence element biogeochemical cycling in alpine forest ecosystems.  相似文献   

13.
Soil microbial communities mediate the decomposition of soil organic matter (SOM). The amount of carbon (C) that is respired leaves the soil as CO2 (soil respiration) and causes one of the greatest fluxes in the global carbon cycle. How soil microbial communities will respond to global warming, however, is not well understood. To elucidate the effect of warming on the microbial community we analyzed soil from the soil warming experiment Achenkirch, Austria. Soil of a mature spruce forest was warmed by 4 °C during snow-free seasons since 2004. Repeated soil sampling from control and warmed plots took place from 2008 until 2010. We monitored microbial biomass C and nitrogen (N). Microbial community composition was assessed by phospholipid fatty acid analysis (PLFA) and by quantitative real time polymerase chain reaction (qPCR) of ribosomal RNA genes. Microbial metabolic activity was estimated by soil respiration to biomass ratios and RNA to DNA ratios. Soil warming did not affect microbial biomass, nor did warming affect the abundances of most microbial groups. Warming significantly enhanced microbial metabolic activity in terms of soil respiration per amount of microbial biomass C. Microbial stress biomarkers were elevated in warmed plots. In summary, the 4 °C increase in soil temperature during the snow-free season had no influence on microbial community composition and biomass but strongly increased microbial metabolic activity and hence reduced carbon use efficiency.  相似文献   

14.
The effect of a lack of snow cover in winter was investigated in two soils, beneath larch and meadow, in NW Italy (Vallée d'Aoste Region). During the late 1980s and early 1990s and 2000s, this region experienced extreme climatic conditions including a low snow pack and lack of snow cover for extended periods with important effects on soil temperature and nutrient dynamics. In particular, the mountain belt in the Alps may be extremely sensitive to these phenomena, in relation to the rise in average snowline projected under a warmer global climate. The study area is located at an elevation of 1450 m asl in the Italian Alps (Mont Mars Natural Reserve). During the winter 2003/04, snow was continuously removed in a treatment plot while a reference plot was maintained undisturbed. Soil temperature was measured at 10 cm depth by data loggers (UTL‐1). Soil N transformations in the topsoil (10 cm depth) were determined by the buried‐bag technique. The removal of the snow cover caused a significant decrease in soil temperature, related to concurrent decreases in air temperature. The lowest soil temperatures recorded were –4.3°C and –4.5°C beneath larch and meadow, respectively, on January 31, 2004. Soil temperature in the undisturbed plots was maintained above the freezing point when the snow cover was present. The snow removal caused significant increases in net ammonification in both soils and net nitrification only under meadow, but did not affect microbial biomass N which decreased in both plots. Our results suggest that the lower temperature reached in the plot without snow favored the production of inorganic N by physical rather than microbial degradation of soil organic matter (SOM). Soil freezing could enhance soil‐aggregate disruption releasing physically protected SOM and fragmentation of OM itself.  相似文献   

15.
Our aim was to determine whether the smaller biomasses generally found in low pH compared to high pH arable soils under similar management are due principally to the decreased inputs of substrate or whether some factor(s) associated with pH are also important. This was tested in a soil incubation experiment using wheat straw as substrate and soils of different pHs (8.09, 6.61, 4.65 and 4.17). Microbial biomass ninhydrin-N, and microbial community structure evaluated by phospholipid fatty acids (PLFAs), were measured at 0 (control soil only), 5, 25 and 50 days and CO2 evolution up to 100 days. Straw addition increased biomass ninhydrin-N, CO2 evolution and total PLFA concentrations at all soil pH values. The positive effect of straw addition on biomass ninhydrin-N was less in soils of pH 4.17 and 4.65. Similarly total PLFA concentrations were smallest at the lowest pH. This indicated that there is a direct pH effect as well as effects related to different substrate availabilities on microbial biomass and community structure. In the control soils, the fatty acids 16:1ω5, 16:1ω7c, 18:1ω7c&9t and i17:0 had significant and positive linear relationships with soil pH. In contrast, the fatty acids i15:0, a15:0, i16:0 and br17:0, 16:02OH, 18:2ω6,9, 17:0, 19:0, 17:0c9,10 and 19:0c9,10 were greatest in control soils at the lowest pHs. In soils given straw, the fatty acids 16:1ω5, 16:1ω7c, 15:0 and 18:0 had significant and positive linear relationships with pH, but the concentration of the monounsaturated 18:1ω9 PLFA decreased at the highest pHs. The PLFA profiles indicative of Gram-positive bacteria were more abundant than Gram-negative ones at the lowest pH in control soils, but in soils given straw these trends were reversed. In contrast, straw addition changed the microbial community structures least at pH 6.61. The ratio: [fungal PLFA 18:2w6,9]/[total PLFAs indicative of bacteria] indicated that fungal PLFAs were more dominant in the microbial communities of the lowest pH soil. In summary, this work shows that soil pH has marked effects on microbial biomass, community structure, and response to substrate addition.  相似文献   

16.
Soil organic matter (SOM) biomarker methods were utilized in this study to investigate the responses of fungi and bacteria to freeze-thaw cycles (FTCs) and to examine freeze-thaw-induced changes in SOM composition and substrate availability. Unamended, grass-amended, and lignin-amended soil samples were subject to 10 laboratory FTCs. Three SOM fractions (free lipids, bound lipids, and lignin-derived phenols) with distinct composition, stability and source were examined with chemolysis and biomarker Gas Chromatography/Mass Spectrometry methods and the soil microbial community composition was monitored by phospholipid fatty acid (PLFA) analysis. Soil microbial respiration was also measured before and during freezing and thawing, which was not closely related to microbial biomass in the soil but more strongly controlled by substrate availability and quality. Enhanced microbial mineralization (CO2 flush), considered to be derived from the freeze-thaw-induced release of easily decomposable organic matter from microbial cell lyses, was detected but quickly diminished with successive FTCs. The biomarker distribution demonstrated that free lipids underwent a considerable size of decrease after repeated FTCs, while bound lipids and lignin compounds remained stable. This observation indicates that labile SOM may be most influenced by increased FTCs and that free lipids may contribute indirectly to the freeze-thaw-induced CO2 flush from the soil. PLFA analysis revealed that fungal biomass was greatly reduced while bacteria were unaffected through the lab-simulated FTCs. Microbial community shifts may be caused by freezing stress and competition for freeze-thaw-induced substrate release. This novel finding may have an impact on carbon and nutrient turnover with predicted increases in FTCs in certain areas, because fungi and bacteria have different degradation patterns of SOM and the fungi-dominated soil community is considered to have a higher carbon storage capacity than a bacteria-dominated community.  相似文献   

17.
A natural‐13C‐labeling approach—formerly observed under controlled conditions—was tested in the field to partition total soil CO2 efflux into root respiration, rhizomicrobial respiration, and soil organic matter (SOM) decomposition. Different results were expected in the field due to different climate, site, and microbial properties in contrast to the laboratory. Within this isotopic method, maize was planted on soil with C3‐vegetation history and the total CO2 efflux from soil was subdivided by isotopic mass balance. The C4‐derived C in soil microbial biomass was also determined. Additionally, in a root‐exclusion approach, root‐ and SOM‐derived CO2 were determined by the total CO2 effluxes from maize (Zea mays L.) and bare‐fallow plots. In both approaches, maize‐derived CO2 contributed 22% to 35% to the total CO2 efflux during the growth period, which was comparable to other field studies. In our laboratory study, this CO2 fraction was tripled due to different climate, soil, and sampling conditions. In the natural‐13C‐labeling approach, rhizomicrobial respiration was low compared to other studies, which was related to a low amount of C4‐derived microbial biomass. At the end of the growth period, however, 64% root respiration and 36% rhizomicrobial respiration in relation to total root‐derived CO2 were calculated when considering high isotopic fractionations between SOM, microbial biomass, and CO2. This relationship was closer to the 50% : 50% partitioning described in the literature than without fractionation (23% root respiration, 77% rhizomicrobial respiration). Fractionation processes of 13C must be taken into account when calculating CO2 partitioning in soil. Both methods—natural 13C labeling and root exclusion—showed the same partitioning results when 13C isotopic fractionation during microbial respiration was considered and may therefore be used to separate plant‐ and SOM‐derived CO2 sources.  相似文献   

18.
Tropical subsoils contain large reservoirs of carbon (C), most of which is stored in soil organic matter (SOM). Subsoil OM is thought to be particularly stable against microbial decomposition due to various mechanisms and its position in the soil profile, potentially representing a long-term C sink. However, few experiments have explicitly investigated SOM stability and microbial activity across several orders of magnitude of soil C concentrations as a function of soil depth. The objective of this study was to evaluate the biological stability of SOM in the upper 1.4 m of tropical forest soil profiles. We did so by measuring CO2 evolution during a 90-day laboratory incubation experiment on a sample set that was previously characterized for C and nutrient concentrations and microbial biomass. We concurrently measured the energy content of SOM using differential scanning calorimetry (DSC) as an index of the energy available for microbial metabolism, with the hypothesis that the biological stability of SOM would be inversely related to the energy contained within it. Cumulative CO2 evolution, mean respiration rates, and the energy density of SOM (energy released during combustion normalized to soil C) all declined with soil depth (P < 0.01). Biological indices of C stability were well correlated with measures of SOM energy. There was no change in the mean respiration rate as a function of depth when normalized to soil C, and a trend toward increased respiration per-unit microbial biomass (P = 0.07). While reduced microbial respiration in subsoils suggests an increase in the biological stability of SOM, we suggest this is driven principally by concurrent declines in energy availability as measured by DSC and the size of the microbial biomass pool. On a per-unit biomass basis, subsoil OM may be as prone to decomposition and destabilization as surface SOM.  相似文献   

19.
采用室内恒温培养方法,研究了不同施肥处理对水稻长期肥料试验中不施肥区(CK)和全肥区(NPK)土壤酶活性及微生物群落结构的变化。结果表明,施肥处理(单施化肥、施猪粪和施秸杆)可以显著提高土壤的微生物量碳以及脲酶、酸性磷酸酶的活性,施用有机肥的效果明显大于单施化肥; 有机肥在无肥区(CK)的施用效果与在全肥区(NPK)的效果接近。PLFA分析表明,施肥使无肥区(CK)土壤微生物群落结构发生了显著的变化,施用有机肥显著增加了土壤微生物群落结构的多样性。与不施肥和单施化肥相比,施有机肥主要增加了细菌和真菌的特征脂肪酸如不饱和脂肪酸、环状脂肪酸cy19∶0等的相对含量,而降低了放线菌标记性脂肪酸10Me18∶0的相对含量。  相似文献   

20.
We combined microbial community phospholipid fatty acid (PLFA) analyses with an in situ stable isotope 13CO2 labelling approach to identify microbial groups actively involved in assimilation of root-derived C in limed grassland soils. We hypothesized that the application of lime would stimulate more rapid 13C assimilation and turnover in microbial PLFAs. Four and 8 d after label application, 18:1ω9, 18:2ω6,9 (fungal biomarkers) and 16:1ω7, 18:1ω7, 19:0cy (Gram-negative bacterial biomarkers) showed the most 13C enrichment and rapid turnover rates. This suggests that these microorganisms were assimilating recently-photosynthesized root C inputs to soils. Contrary to our hypothesis, liming did not affect assimilation or turnover rates of 13C-labelled C. 13C stable isotope pulse-labelling technique paired with analyses of PLFA microbial biomarkers shows promise for in situ investigations of microbial function in soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号