首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Resistance to four foliar diseases of sugar beet (Beta vulgaris ssp. vulgaris), virus yellows caused by Beet mild yellowing virus (BMYV) and Beet yellows virus (BYV), powdery mildew (Erysiphe betae) and Cercospora leaf spot (Cercospora beticola), was assessed in up to 600 accessions of closely related wild and cultivated Beta species. Most accessions were from the Section Beta, a taxon containing types most closely related to, and sexually compatible with, sugar beet and therefore most valuable for use in crop improvement. Between 1–12% of accessions were highly resistant (resistance scores of 2 on an international standardised resistance scale of 1–9) to these diseases. These levels, however, underestimate the potential number of resistant sources available from this section as some accessions with intermediate mean resistance scores contained a significant proportion of highly resistant plants within segregating populations. Variation in resistance to all diseases except BYV was observed within the Section Beta. Much higher levels of resistance were observed, and more frequently, in more distantly related sections of the genus Beta. Accessions of the Section Corollinae were highly resistant to both viruses (>62% of accessions tested), but less so to Cercospora (15%) and they were very susceptible to powdery mildew. Section Procumbentes accessions were highly resistant to BMYV and Cercospora (100%) but less so to powdery mildew (50%) and BYV (20%). However, sexual incompatibility between these sections and sugar beet make utilisation of these sources impractical using conventional breeding methods.  相似文献   

2.
Summary A geographically representative selection of germplasm of Beta vulgaris, section Beta has been assessed for characteristics important in sugarbeet breeding, including downy mildew resistance, resistance to aphid colonisation and infection by the beet virus yellow complex. The occurrence of maintainer lines for cytoplasmic male-steriles was also investigated. Desirable qualities were found in some accessions, including nothern European wild vulgaris ssp. maritima and some old multigerm cultivars of fodder beets.  相似文献   

3.
4.
Caused by Aphanomyces cochlioides Drechsler, Aphanomyces root rot is a serious disease of sugar beet (Beta vulgaris L.), for which sources of resistance are scarce. To identify the segregation pattern of the rare resistance trait found in Japanese sugar beet line ‘NK-310mm-O’, F1 and BC1F2 seedings, drawn from a cross between ‘NK-310mm-O’ and susceptible line ‘NK-184mm-O’, were inoculated with zoospores and their survival evaluated in the greenhouse. Resistance segregation followed was that of a single dominant gene, which was designated Acr1 (Aphanomyces cochlioides resistance 1). Molecular markers tightly linked to Acr1 were identified by bulked segregant analysis of two BC1F2 populations. Fourteen AFLP markers linked to Acr1 were identified, the closest located within ±3.3 cM. Three F5 lines and two BC2F1 lines, selected on the basis of their Acr1-AFLP markers, were tested for their resistance to Aphanomyces root rot in a highly infested field. Results indicated that Acr1 conferred significant resistance to Aphanomyces root rot at the field level. Based on its linkage with CAPS marker tk, a representative marker for chromosome III, Acr1 was located on this chromosome. The clear linkage between tk and Rhizomania resistance trait Rz1, suggests the clustering of major disease resistance genes on chromosome III.  相似文献   

5.
Between 580 and 700 accessions of related cultivated and wild species of the genus Beta were assessed for resistance to four soil-borne diseases of sugar beet: two seedling damping-off diseases caused by the fungi Aphanomyces cochlioides and Pythium ultimum and two diseases of more mature plants, Rhizoctonia root and crown rot, caused by the fungus R. solani, and Rhizomania, caused by Beet necrotic yellow vein virus (BNYVV), a furovirus transmitted by the plasmodiophorid Polymyxa betae. Analysis of resistance data (assessed on an international standardised 1–9 scale of Resistance Scores) indicated that the highest levels of resistance ({RS} 2) to A. cochlioides and P. ultimum were to be found amongst accessions of the more distantly related sections Corollinae (93% of accessions tested) and Procumbentes (10%), respectively; although useful levels could also be found in the more closely related, and sexually compatible, section Beta (1–6%). Resistance to Rhizoctonia was also found in section Beta (5–7%), depending on whether field or glasshouse tests were used, but there was little evidence of generally high levels of resistance to Rhizomania among accessions of this section. None of the accessions of sections Corollinae and Procumbentes exhibited any notable resistance to Rhizoctonia. However, all sections Procumbentes and some sections Corollinae (4%) accessions were highly resistant to Rhizomania. Individuals with high levels of resistance to Rhizomania were identified from within some section Beta and Corollinae accessions, in which there was evidence of segregation.  相似文献   

6.
Summary Experiments were carried out for adding the chromosome carrying resistance to beet root nematode (Heterodera schachtii) from the wild Beta species of the section Patellares (B. procumbens, B. webbiana and B. patellaris) to the genome of B. vulgaris. Preliminary experiments indicated that crosses between the wild species and B. vulgaris cultivars of the mangold type yielded on average more viable F1 hybrids than crosses with sugar and fodderbeet. However, crossability varied strongly between individual parental combinations. It was concluded that most types of B. vulgaris can be hybridized with the wild species of the section Patellares if a sufficient number of pair-crosses is made. Crosses between diploid cultivars or species of the section Vulgares and diploid wild species of the section Patellares yielded many hybrids which, however, were highly sterile. From crosses between tetraploid B. vulgaris and the wild species a great number of viable allotriploid and allotetraploid hybrids was obtained. In the backcross progenies of allotriploid hybrids 26% alien monosomic additions occurred, of which 4.1% carried the resistance bearing chromosome of B. procumbens or B. patellaris. The programme will be continued by sereening progenies of the resistant monosomic addition plants for the occurrence of resistant disomic introgression products.  相似文献   

7.
Summary Inheritance of resistance to beet necrotic yellow vein virus (BNYVV) was studied in segregating F2 and backcross families obtained from crosses between resistant plants of the sugar beet selection Holly-1-4 or the wild beet accession Beta vulgaris subsp. maritima WB42 and susceptible parents. Greenhouse tests were carried out, in which seedlings were grown in a mixture of sand and infested soil. Virus concentrations of BNYVV in the rootlets were estimated by ELISA. To discriminate resistant and susceptible plants, mixtures of normal distributions were fitted to log10 virus concentrations, estimated for segregating F1, F2 and BC populations of both accessions. The hypothesis that Holly-1-4 contained one single dominant major gene was accepted. For WB42, results fitted with the hypotheses that resistance was based on either one (or more) dominant major gene(s) showing distorted segregation, or two complementary dominant genes, which are both required for resistance. Resistance from WB42 appeared to be more effective against BNYVV than resistance from Holly-1-4.This research was carried out as part of a PhD study at the Graduate School Experimental Plant Sciences (EPS), Department of Virology, Wageningen, The Netherlands  相似文献   

8.
The tepary bean (Phaseolus acutifolius A. Gray) is a desirable genetic resource for incorporation of improved disease, pest, and stress resistance into common bean (P. vulgaris L.). Reproductive barriers separate the two species and the degree to which tepary genes may be introgressed into the common bean genome has not been well described. Greenhouse studies of gene introgression through recurrent back-crossing to common bean were performed using two first backcross (BC1) and nine second backcross (BC2) populations. The truncate primary leaf characteristic of tepary bean was readily observed but the short primary leaf petiole and narrow bract tepary traits were infrequently observed in both BC1 and BC2 populations. In one BC, population high frequencies of adaxial stomata (characteristic of P. acutifolius) and the presence of a 30 kD cotyledon polypeptide from P. acutifolius were also observed; however, a diapho-rase isozyme from P. acutifolius appeared to be eliminated from BC1 progeny at a high rate whereas 6-phosphogluconate dehydrogenase alleles appeared to be transmitted normally. The expression of tepary primary leaf truncate morphology and bract width were correlated with decreased fertility in one of the two BC1 populations. Given suitable parental genotypes and population sizes it should be possible to transfer genes from P. acutifolius to P. vulgaris, especially in regions of the genome which are not associated with inviability or sterility. It will be difficult to transfer factors from certain regions of the tepary genome which are preferentially eliminated during introgression.  相似文献   

9.
Summary Clones derived from Beta vulgaris and Beta maritima were assayed for their ability to detect restriction fragment length polymorphisms (RFLPs) in different beet accessions. The clones able to detect polymorphism were used as genetic markers to assess the degree of genetic variation existing between and within different species of the genus Beta. The data support the current taxonomy of the Beta vulgaris section, while the great genetic similarity found between Beta webbiana and Beta procumbens indicates that they could belong to the same species.Enough variation was found between Beta vulgaris cultivars, allowing the isolation of a sufficient number of genetic markers for the construction of detailed genetic maps.  相似文献   

10.
Summary Sugar beet is a relatively young crop, which supposedly has a narrow genetic base. Natural variation occurring in primitive beet varieties and in wild Beta species has been used for breeding sugar beet. This paper reviews information on desirable characteristics in Beta germplasm and the attempts made for the introgression of such characters into commercial breeding material. After an introduction on the availability of germplasm and the possibilities of hybridisation, attention is focussed on the mating system (especially male sterility), on morphological and physiological characteristics, including yield and sugar content, and on resistances to diseases and pests.  相似文献   

11.
Thirty-nine sea beet [Beta vulgaris L. ssp. maritima (L.) Arcang.] accessions of the Adriatic coast were screened genetically and for their adaptive morpho-functional root traits in order to identify new sources of abiotic resistances for sugar beet breeding programs. Genetic diversity was evaluated with 21 microsatellites markers that identified 44 polymorphic alleles. Sea beets grouped into two main clusters: the West and the East Adriatic coast groups, with the latter showing higher genetic diversity. Among sea beet accessions with desirable root traits, four accessions have proved to be interesting for sugar beet [B. vulgaris (L.) ssp. vulgaris] breeding aimed to improve tolerance to nutritional stresses. Lastovo (ID 29) and Zut (ID 34) accessions were characterized by the highest values of RER, TRL, FRL and RSA still maintaining a high value of RTD, while Grado (ID 21) an Portic (ID 23) accessions were characterized by the highest RTD, but with low values of RER, TRL, FRL and RSA parameters.  相似文献   

12.
Beta vulgaris genetic resources are essential for broadening genetic base of sugar beet and developing cultivars adapted to adverse environmental conditions. Wild beets (sea beets, B. vulgaris spp. maritima and their naturalized introgressions with cultivated beets known as ruderal beets) harbor substantial genetic diversity that could be useful for beet improvement. Here, we compared molecular and morpho-physiological traits of wild beets collected on the Adriatic coast of Italy with sugar beet using eight primer-pairs amplifying 194 polymorphic fragments and four root traits (glucose and fructose content in the root tip, root elongation rate, number of the of root tips, total root length and its distribution among diameters ranges). Genetic diversity was higher in the sea beet accession, which may be due to the highly variable selection pressures that occur in heterogeneous ecological niches, compared with the ruderal and cultivated beets. Sea and sugar beet accessions showed contrasting root patterns in response to sulfate deprivation: sugar beet showed an increase of reducing sugars in the root tips and higher root elongation rate, and the sea beet accession showed an increase in root tip number, total root length and fine root length (average diameter < 0.5 mm). The ruderal beet showed intermediary responses to sea and sugar beet accessions. AFLP and morpho-physiological cluster analyzes showed sea, ruderal and cultivated beets to be genetically distinct groups. The results of this study indicate variability in response to sulfate deprivation is present in undomesticated beets that could be deployed for sugar beet improvement.  相似文献   

13.
Growing sugar beet (Beta vulgaris L. ssp. vulgaris) as a winter crop in cool temperate climates is expected to increase yield potential. However, this requires bolting resistance after winter. One strategy to achieve complete bolting resistance is to accumulate genes for bolting delay from various genetic resources within the B. vulgaris gene pool. To identify such genes, a QTL mapping was performed in a segregating population derived from a biennial leaf beet with delayed bolting after winter. The population was tested for bolting delay after winter in two different experiments with natural or artificial vernalization. Three QTL for bolting delay were mapped on linkage groups 3, 5 and 9 affecting bolting time by up to 19 days. These QTL could be combined with recently reported bolting QTL to develop a winter sugar beet with complete bolting resistance.  相似文献   

14.
Summary Sugar beet-besides fodder beet, red beet, and chard-belongs to Beta vulgaris L. After it had been confirmed that the sugar of Beta beet is chemically identical with cane sugar, ACHARD started experiments on the production of sugar from fodder beet. He noticed that conical white beets seemed to have the highest sugar content. This first sugar beet, the Weiße Schlesische Rübe, is considered the ancestor of all sugar beets of today. It has been, and continues to be supposed that it had originated from crossings between typical fodder beet and chard. Hints in the literature about possibilities to resynthesize sugar beet by crossing fodder beet with chard were confirmed in the author's own trials; the F2 from the crossing fodder beet Rote Walze x chard Lukullus segregated forms and colour variants largely corresponding to sugar beet. Such new sugar beets are not only important from a theoretical point of view; breeders are interested in new types, too. The synthesis of sugar beet is interpreted from a genetic point of view.  相似文献   

15.
Summary Annual beets in the genus Beta section Beta represent an important genetic resource. Representative accessions of annual beets from a beet germplasm collection were analysed using RAPD to assess the patterns of variation and relationships among them. Using arbitrary primers, markers showing variation across accessions were identified. A dendrogram of similarity was produced using these molecular markers. All the accessions analysed were classified into three major groups corresponding to species or subspecies macrocarpa, adanensis and maritima. Macrocarpa was shown to be the most divergent group in this section. Using RAPD molecular markers, it was possible to ascribe an accession to one of three taxonomic groups and overcome much of the confusion encountered when morphological traits are used for identification. The group of maritima was found to be more polymorphic than either the group of macrocarpa or adanensis at both accession and subspecies levels.  相似文献   

16.
Herbicide resistance is a desired trait for sugar beet (Beta vulgaris L.) production because it is a low‐competitor crop that requires careful weed management. However, gene flow to weed beet (also B. vulgaris) could jeopardize the weed control strategy by causing the emergence of resistant weed beets; it could also lead to further adaptation of weed beet as a troublesome weed for other crops by selecting more competitive plants. To evaluate the hazard that such a selection process represents, apart the herbicide resistance, we investigated the morphology and reproduction of progeny of weed beets having inherited a herbicide resistance gene. First‐generation resistant weed beet exhibited traits likely counter‐selected. But such crop traits rapidly disappeared with backcrossing to weedy relatives: no biologically relevant difference was noted between resistant and susceptible near‐isogenic siblings in the various experiments. In the absence of resistance selection, our data indicate low chances for weed beet to evolve more competitive forms than present weed beet populations. However, they also suggest that there is no fitness cost limiting transgenes spread.  相似文献   

17.
W. Lange  Th. S. M.  de Bock 《Plant Breeding》1989,103(3):196-206
Accessions of Beta macrocarpa Guss., collected on the Canary Islands, were tetraploid (2n = 36). Three of these accessions were studied in detail. The plants were rather uniform in their morphological appearance, both within and between accessions, and were annual and fully self-compatible. Meiosis was completely diploidised, suggesting an alloploid nature of the tetraploid species. Crosses with diploid B. vulgaris yielded triploid hybrids which were sterile or nearly so; a few descendants of such hybrids were highly aneuploid. Crosses between tetraploid B. macrocarpa and autotetraploid cytotypes of B. vulgaris showed variable results, only part of these crosses yielded tetraploid hybrids. The tetraploid hybrids exhibited somewhat higher fertility than the triploids. An F2 generation showed partial hybrid dwarfness, partial fertility and segregation for carliness and coloration of the hypocotyl. All hybrids had multivalents at meiosis (averages: 2.5—5.4 multivalents per pollen mother cell), indicating suppression of the diploidised meiosis. The possibilities of application of the diploidised meiosis in breeding sugar beet are discussed.  相似文献   

18.
C. Halldén    T. Säll    K. Olsson    N.-O. Nilsson  A. Hjerdin 《Plant Breeding》1997,116(1):18-22
Bulked segregant analysis (BSA) was used to accumulate RAPD markers near the beet cyst nematode resistance locus Hslpro-1 of sugar beet (Beta vulgaris L.). Graphical genotypes constructed from RFLP data were utilized to select F2 individuals in (1) the construction of pools of plants used in the initial screening for polymorphisms, and (2) the selection of individual plants used to confirm the potential linkage. The pooled DNA samples were screened for polymorphisms using 668 RAPD primers. Forty-four candidate markers potentially linked to the region were analysed further using 14 segregating individuals. Close linkage was confirmed for 17 of the markers. Four of the RAPD markers were assigned map coordinates within the RFLP map. Three of these markers extended the RFLP map by 3cM. Altogether, the 8cM target interval contains 10 RFLP and 17 RAPD markers, corresponding to an average marker density of 0.3cM in the Hslpro-1 region.  相似文献   

19.
Beet mosaic virus (BtMV) is an aphid transmitted, viral disease of beet found worldwide. The Bm gene, a resistance gene effective against BtMV, was identified in the sugar beet line 8500 and backcrossed into a C37 background to produce line C719. Three populations were developed from the cross of line C719 with the susceptible line C37 with the intent of developing markers for use in marker‐assisted selection. The F2 progeny of three crosses were scored for resistance. Two of the three populations conformed to a 3 : 1 ratio, indicating a single gene trait. Sequence characterized amplified region (SCAR) markers were developed by using bulked segregant analysis combined with random amplified polymorphic DNA type markers. The markers showed close association to the Bm resistance gene and were effective in all three populations. The A1 allele for genetic male sterility also was found to be associated with Bm and the SCAR marker. Development of a single‐nucleotide polymorphism marker from the SCAR sequence was used to validate linkage to chromosome 1 using separate mapping populations. This marker will be useful for the introgression of the Bm gene into germplasm.  相似文献   

20.
In this study, the inheritance of resistance to Beet necrotic yellow vein virus (BNYVV) in accessions Holly-1-4and WB42 was investigated. Crosses between both resistant sources and susceptible parents were carried out and F1F2 and BC1 populations were obtained. Virus concentrations in WB42and its F1 populations were lower than in Holly-1-4. Observed ratios of susceptible and resistant plants in segregating populations of Holly-1-4 as well as WB42 were in agreement with hypothesis of one dominant major gene. Segregation of plants in F2 populations obtained from crosses betweenHolly-1-4 and WB42 revealed that the resistance genes in Holly-1-4 and WB42 were nonallelic and linked loci. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号