首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
"Strong column with weak beam","strong beam with weak column" and"column & beam with equal strength"can be existed in one-storey prestressed concrete frames and the top storey of mult-storey prestressed concrete frames.Through the test of four prestressed concrete frames under vertical load,three kinds of prestressed concrete frames performances are studied,such as ultimate load,deflection,displacement ductility,redistribution of internal force.When the relative height of equivalent compression zone is smaller enough,the test proves that three kinds of prestressed concrete frames can realize full redistribution of internal force and have better displacement ductility,the width of cracks and deflections can satisfy the rules of code for design of concrete structures.  相似文献   

2.
Through the test of two concrete frames under vertical load and nonlinear finite programme analysis,the performances of strong beam with weak column and equal strength column and beam are studied,such as ultimate load,deflection,displacement ductility,redistribution of internal force.When the reinforcement is proper,the research proved that strong beam with weak column" and "equal strength column and beam" have better displacement ductility and can realize full redistribution of internal force,the width of cracks and deflections can satisfy the rules of code for design of concrete structures.  相似文献   

3.
High-strength concrete has been widely used in civil structures for advantages of higher-strength, earlier curing strength and smaller deformation in applications. However, relatively weak ductility in structures in seismic zones prevented it from further application. The ductility of the structure can be improved by reinforcing reasonably rebars in correct details. A high strength RC frame model with twelve floors and two bays is numerically analyzed by using DRAIN-2DX program. It was shown that this worked fairly well in simulation of the process of structural damage and energy dissipation capacity. It also showed that this kind of frame structure has good ductility and dissipation capacity as well as great seismic performance. The proposed method can be applied in high-strength concrete structures in seismic zone.  相似文献   

4.
To investigate the mechanical behavior of reinforced concrete structure subjected to fire, the incremental thermo elastic plastic creep constitutive equations of steel and concrete in consideration of temperature and creep deformation were obtained based on different yield rules and the elastic plastic theories. The nonlinear analysis for reinforced concrete simply supported slab was carried out with consideration the variation of the mechanical properties of steel and concrete with temperature. The effectiveness and applicability of the constitutive equations were verified with the test results from relevant literature. The nonlinear analysis was employed for one bay one storey reinforced concrete frame under fire and the variation of displacement at partial nodes was analysed. It was found that the reinforced concrete structure at a high temperature would have a significant deformation. And the displacement change curves of beam column joints of reinforced concrete frame were not monotonous trend and there were inflexion points. The vertical displacement values of beam column joints were less than those at midspan of cross beam.  相似文献   

5.
The bending capacity tests on ten simple supported beams were conducted to investigate the damage characteristics, prestress increment, beading capacity and displacement ductility of unbounded prestressed concrete beams with HRBF500 steel bars. The results show that the HRBF500 steel bars has yielded before the limit state. The concrete in compression zone crushes upon the broken of the beams, which shows a sudden damage mode. The measured ultimate stress increments of unbounded tendons are in linear relationship with the comprehensive reinforcement ratio index, while the values of the ultimate stress increments are obviously higher than those values specified in the code GB50010-2010, and the average ratio of predicted values to testing values is about 0.35. The mid span deflection upon yielding of the beams is large, while the displacement ductility is bad and the average value of the displacement ductility ratio is 1.67. The displacement ductility ratio decreases with the increases of the comprehensive reinforcement ratio index. Based on the experimental results, the proposed calculation formula of ultimate stress increments of unbounded tendons was established, and it is in good agreement with the experimental results when the testing value is less than 450 MPa.  相似文献   

6.
A finite element model based on the flexibility method and a fiber section model of nonlinear beam column elements was adopted within the OpenSees framework. A typical multistory reinforced concrete 3D frame designed in accordance with the Chinese building code and a representative plane frame parallel to the X axis were used as examples. The relationships of the responses obtained from the plane and 3D models were studied by comparing global and local seismic responses of the frame, and by taking the responses of the 3D model under unidirectional earthquake action as a medium for comparison. Because the results show the global responses of the plane model are similar to those of the 3D model, it is reasonable to replace the 3D model with the plane model when examining global seismic responses. The local responses are evidently different. For the plane model under unidirectional action, numerous plastic hinges develop at the beam ends. Many more plastic hinges at column ends exist than in beams for the 3D model under bi directional action. Column ductility demands obviously exceed those of beams. The frame tends to develop a column sway mechanism, implying that simplified plane analysis model significantly underestimates the seismic responses of the 3D frame column.  相似文献   

7.
Seismic performance of SRC-RC transfer column was analyzed based on experiment of 12 specimens of transfer columns and 1 RC specimen under low cyclic reversed loading, which mainly focused on the extension length of shape steel. Analysis and comparison on skeleton curves of specimens was carried out. Analysis was completed for ductility, bearing capacity, energy dissipation capacity and degeneration ratio of strength. Displacement ductility changes with the increase of extension length of shape steel, enhancing at first, then reducing, and reaching peak value when extension length is close to three fifths of column height. Extension length of shape steel has little effect on bearing capacity. Energy dissipation capacity of transfer columns has relationship with many factors. Three fifths of column height is rational for extension length of shape steel, and specimens have not only advanced performance of energy dissipation but also good stability of stiffness and strength in this condition. The bond performance between concrete and shape steel decreases with the increment of extension length of shape steel, and hence stability of strength decreases.  相似文献   

8.
In this paper, a study is carried out on large-span prestressed concrete structure system in residence analyzed by specially - shape column equivalent frame model. Applying fiber model column-beam element and shell element, a large amount of comparative analyses about large-span prestressd concrete structure under horizontal and vertical load is carried out. The parameter of the equivalent frame is confirmed based on comparison with the result of the man-sized structural experiment. It is proved that the equivalent frame model has high efficiency and precision especially for nonlinear analysis.  相似文献   

9.
The design method of parameter optimization of nonlinear viscous dampers for dissipation structure was analyzed based on response surface methods. The method included experimental design, finite element analysis, fitting the response surface function and parameter optimization. Taking a reinforced concrete frame structure for an instance, the mathematical model of parameter optimization of viscous dampers for dissipation structure was established by taking the minimum all damping force as objective function and taking the interlayer maximum displacement less than limits as constraints, and then the damper parameters were optimized using the method of nonlinear programming optimization. The results show that the method of parameter optimization of viscous dampers based on response surface method can ensure the structural displacement is less than limit and the construction cost can be reduced.  相似文献   

10.
To achieve sustainable development of construction industry, the application of HRB500 reinforcement with high strength and high ductility in RC structures is being promoted in civil and structural engineering in China. But few studies focus on seismic behaviors of RC structures reinforced with HRB500 bars. In this analysis, three RC frame structures on the Zone of Fortification Intensity 8 (0.3g) in China reinforced with HRB500, HRB400 and HRB335 bars respectively, are designed confirming to the latest draft of the revising Code for the Design of Concrete Structures. Then inelastic seismic response analyses of the three frames with multiple inputs of ground motions are conducted. The seismic response rules and seismic performances of the RC frame reinforced with HRB500 bars are compared with those frames reinforced with HRB400 and HRB335 bars. The analytical results indicate that under ground motions in rare earthquake level, the maximum displacements of the frame reinforced with HRB500 bars are roughly the same as those of the frames reinforced with HRB400 and HRB335 bars, while the rotation ductility demand of elements in the former structure is smaller than those of elements in the latter structures. It is also found that the frame reinforced with HRB500 bars develops a plastic energy dissipation mechanism that is dominated by beam hinges under major earthquake, and the maximum inter storey drift of the frame can satisfy the requirement in the Code for the RC Frame Structures.  相似文献   

11.
Considered strength classes of concrete, ratio of structural steel to concrete, ratio of steel tube to concrete and eccentricity ratio of load, 6 test specimens of steel tubular columns filled with structural and concrete are designed. The damage phenomena of specimens are described in detail and the failure mechanism is analyzed. The results show the initial failure of the specimens are began from the yield of steel tube, the ultimate failure are ended from the buckling of steel tube caused by the expansion of core concrete. Due to the existence of structural steel, the ductility of specimens is superior to steel tubular columns. Before the yield of steel tube, the plane cross-section assumption of specimens can be put into use. The ultimate bearing capacity of specimens is increased with the increase of strength classes of concrete, ratio of structural steel to concrete and ratio of steel tube to concrete. But the ultimate bearing capacity and ductility are decreased with the increase of eccentricity ratio.  相似文献   

12.
Yield Displacement Calculation Method of High-Strength Concrete Shear Wall   总被引:1,自引:0,他引:1  
It is assumed that concrete compressive stress of the cross-section compression zone is linear distribution when the cross-section of high-strength concrete shear wall reaches yield situation. Based on the plane section assumption, the yield curvature formula of shear wall section is obtained by using moment - curvature analysis method. The parameters affecting yield curvature of high-strength concrete shear wall are studied by using the yield curvature formula. The results show that longitudinal reinforcement yield strain is the most vital factor of the yield curvature in addition to axial load ratio. When axial load ratio is larger, both wing walls of shear wall section have larger impact. The yield curvature formula is presented, considering the impact of axial load ratio, boundary reinforcement yield stress and both ends of wing walls of shear wall section based on the regression analysis of calculation results. On this basis, the vertex yield displacement formula of high-strength concrete shear wall is proposed, and the calculation results of formula correspond well to the vertex yield displacement experimental values of the 12 high-strength concrete cantilever wall. The formula is also suited for the vertex yield displacement of comment concrete shear wall.  相似文献   

13.
Seven reinforced concrete Beam-Column sandwich joint specimens were tested under cyclic load. The performances of these specimens consisting of loads resistance, deflection, ductility, displacement, energy dissipation could satisfy the requirement of structures for seismic design. The phenomena that concrete in joint region was crushed by axial load or eccentric load were never observed,and final failure for a multitude of specimens occurred by shear force. Though a few of performances such as beam bar anchorage capacity were not as well as those of traditional joints ,it is feasible for sandwich joints used while establishing structures.  相似文献   

14.
为研究箍筋约束再生混凝土的单轴受压应力应变全曲线,对9个直径为500 mm、高度为1 500 mm的再生混凝土圆形柱进行试验,采用20 000 kN伺服液压试验机进行位移控制加载。试验参数主要为纵筋率、箍筋间距与直径、加载应变速率。试验结果表明,箍筋间距、配箍率对试件延性影响较大。当加载应变速率由0.000 003/s增大到0.003 3/s时,试件的峰值应力增大1.14倍。分析表明,再生混凝土应力应变全曲线与普通混凝土类似,但下降段较普通混凝土陡峭,脆性更为明显。  相似文献   

15.
In this pager, four full-scale corner joint assemblies of reinforced concrete frame beam and column with different detail structure are tested under low cycle loading, The process of damage development and the characteristics of break of the assemblies in the course of alternately increasing positive and negative bending deformation are learned Strength, stiffness and ductility of assemblies and the various regulations of energy consumption are also studied. Compared with these properties, the anti-seismic behavior is tentatively commented. Besides, the test results of the strain distribution of beam and column longitudinal bars and stress state of joint stirrups are analyzed.  相似文献   

16.
Using the software, ABAQUS, accurate simulations of seismic behavior of 2 coupled wall specimens and 2 cantilever structure wall specimens using high performance fiber reinforced concrete (FRC) in plastic hinge under quasi static cyclic loading were carried out. The analysis model proves to be effective with the accordance between results of computation and experiment, then it can be used to analyze the seismic behavior of coupled wall system with FRC coupling beams. By using the verified numerical model, the ability of FRC coupling beams instead of RC coupling beams to provide acceptable performance was discussed. In addition, the impact of coupling ratio on seismic behavior of coupled walls was studied. The results show that coupled walls in which FRC coupling beams are used instead of traditional RC beams have good energy dissipation and ductility, and its initial stiffness is increased and stiffness degradation is slow. And as the coupling ratio of coupled wall structures increases, the stiffness and strength increase. But if the coupling ratio is too large, the ductility and energy dissipation capacity will be significantly reduced.  相似文献   

17.
A fiber beam-column element in conjunction with zero-length elements attached to its ends was proposed to simulate the flexural and shear mechanism respectively. Based on the Limit State Material model and the Shear Limit Curve model provided by OpenSees, the nonlinear shear effect of reinforced concrete column and its coupling with the flexural effect were defined. The reliability of the proposed model was validated by means of comparisons with existing test results. Finally, a plane frame from in-situ pushover test was simulated. It is shown that the proposed method, by taking the nonlinear shear effect into account, produces satisfactory results for frame columns with shear strength and stiffness degradation, while the conventional fiber beam-column element can hardly simulate actual flexure-shear failure mechanism for columns characterized by insufficient transverse reinforcement. The proposed method is applicable for nonlinear analysis of reinforced concrete frame structures with shear deficiencies.  相似文献   

18.
According to the theory of truss-arch model, the shear mechanism of reinforced concrete beam was analyzed, and formula of shear bearing capacity was proposed. In this formula, softening effect of concrete and the arch function were taken into account, and the coefficients in the formula were amended with experimental data. When the performance difference between the structural material and the original material is huge, the code formula of shear bearing capacity calculation is inapplicable. After the computation, the ratio of the results calculated by truss-arch model theory formula and the results calculated by the current code formula was close to 1, and the standard deviation coefficient and coefficient of variation were smaller than those of standard formula results, and the results calculated by truss-arch model formula were in good agreement with the experimental results. The collected experimental data was calculated with the shear capacity formula in ACI318-08, and the calculation results showed that United States building code was more conservative than the standard of China. The results indicate that the shear bearing capacity formula based on truss-arch model can be used for computation of shear bearing capacity of reinforced concrete beams.  相似文献   

19.
By the experimental study on a full-dimensioned prestressed frame of two spans, the relative factors are analyzed such as relative height of equivalent compression zone in critical section, secondary moment, ratio of beam rigidity to column and development of cracks in the top of columns etc., which influence the moment distribution of the post-tensioned prestressed concrete frame from the side of internal force redistribution. It is believed that that the factors of relative height of concrete equivalent compression zone and secondary moment influence the moment modulation in most degree, and ratio of column rigidity to beam also plays a part in the moment modulation to some extent. Second, the plastic joints of frame with excessive spans exit in the span which endure the whole load, at last the whole frame is destroyed because of the destruction of the loading frame, the influence to the non-loading span is little.  相似文献   

20.
Because high material strength and composite load-bearing are emphasized in constructing members for high-rise steel frame structures, in a composite connection, steel strength has a dramatic influence on both the bearing performance and the composite action of the concrete slab. Based on a finite element analysis, we discuss the composite effect and the connection breaking mode, focusing on the performance change of the composite effect in adopting high strength steel. It can be found from the results that, along with the improvement of the steel strength, the elastic and plastic ultimate strength of the composite connection will increase, the ductility will decrease to a certain extent, and the composite effect of the concrete slab will diminish. The collapse of the concrete in a positive moment side contacting the column flange is viewed as the limiting state of the connection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号