首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
This study was conducted to investigate the particulate passage rate, nutrient characteristics and fermentation parameters across the gastrointestinal tract (GIT) in lactating dairy cows fed cereal straws in comparison with alfalfa hay. Eighteen multiparous Holstein cows were randomly assigned to one of three experimental diets consisting of 55% concentrate, 15% corn silage and 30% different forage sources as follows (% of dry matter [DM]): (i) 23% alfalfa hay and 7% Chinese wild rye hay (AH); (ii) 30% corn stover (CS); and (iii) 30% rice straw (RS). The Cr‐mordanted corn silage‐neutral detergent fibre was used to estimate the passage flow at week 14. After 14‐week feeding, the animals were slaughtered to collect the gastrointestinal digesta. Dietary forage sources had little effect on the fractional passage rates in the rumen (range from 5.05 to 6.25%/hr) or hindgut (range from 4.49 to 5.24%/hr). Total volatile fatty acid (VFA) concentration in the caecum was highest, followed by the rumen, colon and rectum, and the lowest in the abomasum and duodenum, indicating that the large intestines, especially caecum, are the important positions for carbohydrate degradation. Greater proportion of propionate and butyrate and lower acetate were found in the AH compared to CS or RS in colon, but higher acetate in abomasum was found in the cows fed CS or RS compared to AH. In conclusion, cereal straw diets did not change the particulate passage rate in the rumen and hindgut which might be mainly due to the similar DM intake among these three diets. Different forage source diets significantly changed VFA proportion in the abomasum and colon, indicating the existence of different digestion or absorption rates in these tracts among the experimental diets.  相似文献   

2.
Optimizing the amino acid (AA) profile of rumen undegradable protein (RUP) can positively affect the amount of milk protein. This study was conducted to improve knowledge regarding the AA profile of rumen undegradable protein from corn stover, rice straw and alfalfa hay as well as the total mixed ratio diets (TMR) based on one of them as forage source [forage‐to‐concentrate ratio of 45:55 (30% of corn stover (CS), 30% of rice straw (RS), 23% of alfalfa hay (AH) and dry matter basis)]. The other ingredients in the three TMR diets were similar. The RUP of all the forages and diets was estimated by incubation for 16 hr in the rumen of three ruminally cannulated lactating cows. All residues were corrected for microbial colonization, which was necessary in determining the AA composition of RUP from feed samples using in situ method. Compared with their original AA composition, the AA pattern of forages and forage‐based diets changed drastically after rumen exposure. In addition, the extent of ruminal degradation of analysed AA was not constant among the forages. The greatest individual AA degradability of alfalfa hay and corn stover was Pro, but was His of rice straw. A remarkable difference was observed between microbial attachment corrected and uncorrected AA profiles of RUP, except for alfalfa hay and His in the three forages and TMR diets. The ruminal AA degradability of cereal straws was altered compared with alfalfa hay but not for the TMR diets. In summary, the AA composition of forages and TMR‐based diets changed significantly after ruminal exposure, indicating that the original AA profiles of the feed cannot represent its AA composition of RUP. The AA profile of RUP and ruminal AA degradability for corn stover and rice straw contributed to missing information in the field.  相似文献   

3.
In this study, we aimed to evaluate the effects of six levels of orchardgrass hay (GH) proportion (0%, 10%, 20%, 30%, 40% or 50% of dry matter) in finely chopped corn silage (CS)‐based diets on digesta kinetics of CS and GH in the rumen. Six non‐lactating, rumen‐cannulated Holstein cows were used in a 6 × 6 Latin square design. Ruminal digesta kinetics was measured by ruminal dosing of feed particle markers (dysprosium for CS, erbium for GH) followed by fecal sampling. The increase of GH proportion had a quadratic effect (P < 0.01) on total tract digestibility of neutral detergent fiber (NDF) and acid detergent fiber. The proportion of GH did not affect the particle size distribution of rumen digesta, total weight of dry matter or NDF in the rumen. The rates of large particle size reduction in the rumen for CS tended to increase linearly with increasing GH proportion (P = 0.077). A quadratic effect (P < 0.05) was found with increasing the GH proportion for the ruminal passage rate of small GH particles, but not for CS particles. The results suggested that associative effects between CS and GH could be generated on rumen digesta kinetics when cows were fed a CS‐based diet with an increased proportion of GH.  相似文献   

4.
The objective of this experiment was to investigate the possibility of estimating the outflow of nutrients and microbial protein from the rumen based on sampling reticular contents as an alternative to duodenal sampling. Microbial protein flow estimates were also compared with a third method based on sampling of ruminal contents. Reticular and duodenal digesta and ruminal contents were recovered from 4 cows used in a 4 x 4 Latin square design experiment, in which the ruminal effects of 4 exogenous enzyme preparations were studied. Large and small particulate and fluid markers were used to estimate digesta flow in a triple-marker model; 15N was used as a microbial marker. Reticular and duodenal digesta were segregated into small and large particles (SP and LP, respectively) and a fluid phase, and ruminal digesta was segregated into particulate and fluid phases. Compared with digesta recovered at the duodenum, reticular digesta had lower OM and greater NDF contents. The proportion of microbial N was notably greater in the fluid phase of reticular digesta. Ruminal outflow of DM and OM was greater (by 17 and 28%) and that of NDF was lower (by 14%) when estimated from duodenal compared with reticular samples. There was no difference in the estimated flow of starch and nonammonia and microbial N between the reticular and duodenal techniques. Microbial N flow estimated based on ruminal sampling was similar to those based on duodenal and reticular sampling. The ruminal method, however, grossly overestimated flow of DM, OM, and NDF. This study supports the concept that microbial protein outflow from the rumen can be measured based on sampling of ruminal or reticular digesta. The reticular sampling technique can also provide reliable estimates for ruminal digestibility of OM, N, and fiber fractions. These findings need to be confirmed in experiments with basal diets varying in structure and forage-to-concentrate ratios.  相似文献   

5.
The objective of the current study was to evaluate the effect of unrepresentative sampling of digesta particulate matter entering the omasal canal on the accuracy of fiber flow measurements. The experimental design comprised one period, one diet, and three cows as experimental units. Within each cow, the physical and chemical composition of digesta particulate matter was assessed at seven sites within the digestive tract. Three Finnish Ayshire dairy cows, equipped with ruminal and simple-T duodenal cannulas, in extended lactation were offered grass silage twice daily on an ad libitum basis. Digesta samples were collected from the rumen (dorsal and ventral sac), reticulum, omasal canal, omasum, duodenum, and rectum to determine particle size distribution in digesta, chemical composition of various particle size fractions, and distribution of two flow markers (Cr-labeled straw and indigestible NDF [INDF]) among particle size fractions. Digesta samples were wet-sieved using sieves of 2.50, 1.25, 0.630, 0.315, 0.160, and 0.080 mm. Particulate matter was analyzed for OM, NDF, and Cr concentrations, and INDF concentration was determined based on 12-d ruminal incubation. The particle size of digesta entering the omasal canal was larger compared with the omasum or the duodenum, suggesting that omasal canal samples were not representative of particle size distribution truly escaping the rumen. The concentration of potentially digestible NDF (PDNDF) decreased with decreasing particle size. The PDNDF concentration of particulate matter retained on all sieves was greatest in the rumen and gradually decreased along the digestive tract. From the reticulorumen to the omasum, the decrease was associated with decreased particle size, reflecting selective passage of particulate matter. In contrast, from the omasum to the duodenum and rectum, the PDNDF concentration decreased within each particle size fraction without effect on particle size, indicating a nonselective passage of particulate matter between these sites. Variation between particle size fractions was slightly greater for Cr concentration than for INDF concentration, indicating that unrepresentative sampling of particulate matter had a greater effect on Cr concentration compared with that of INDF. Owing to unrepresentative sampling, NDF entering the omasal canal was overestimated by 5% using INDF and underestimated by 7% using Cr as a particle phase marker. Of total NDF digestibility, proportionally 0.90, 0.07, and 0.03 occurred in the reticulorumen, omasum, and intestines, respectively. The current results indicate that, despite unrepresentative sampling of digesta particulate matter entering the omasal canal, the errors in determined NDF flow were small. The omasum may have a greater role in postruminal NDF digestion than the intestines.  相似文献   

6.
The aim of the present study was to examine the effects of feeding Fusarium toxin-contaminated wheat to dairy cows on nutrient utilization in the rumen and on duodenal flow of deoxynivalenol (DON), zearalenone (ZON) and their metabolites. Six dairy cows fitted with a large rumen cannula and a simple T-shaped cannula at the proximal duodenum was used in two experiments. The experiments included a control period in which the uncontaminated control wheat was fed and a period in which the control wheat was replaced by the Fusarium toxin-contaminated wheat (8.05 and 7.15 mg DON/kg and 0.26 and 0.1 mg ZON/kg in Expts 1 and 2 respectively). The wheat portion of the daily ration amounted to 50% on a dry matter (DM) basis and rations were completed with hay or grass silage. Five of the six cows were non-lactating and the total daily DM-intake ranged between 4 and 12 kg. The pH-values and the concentration of volatile fatty acids in ruminal fluid were not significantly influenced by feeding the contaminated wheat. In contrast, the postprandial ammonia concentration was consistently higher when the mycotoxin-contaminated wheat was fed. Moreover, the flow of microbial protein and utilizable protein at the duodenum were reduced at the same time. The concentrations of DON and ZON and of their metabolites in freeze-dried duodenal digesta were either not detectable or negligible during the control periods whereas distinct concentrations were measured during the periods where the contaminated wheat was fed. DON was nearly completely metabolized to de-epoxy-DON and the flow at the duodenum ranged between 4% and 28% of DON-intake. The ZON metabolites alpha-zearalenol (ZOL) and beta-ZOL were recovered at the duodenum beside the parent toxin ZON. Their recovery as a percentage of ZON-intake ranged between 43% and 132%. In conclusion, feeding of Fusarium toxin-contaminated wheat altered the ruminal protein utilization. The question of whether this effect was a result of the mycotoxin being present in the rumen or of Fusarium growth-related structural (cell wall) changes of the wheat grain needs to be clarified. The low recovery of DON at the duodenum would indicate either a nearly complete degradation of the molecule in the rumen or an absorption by the mucosa of the rumen, whereas the higher ZON recovery would suggest a lower degradation of the parent toxin in the rumen and/or recovery of some bile-originating entero-hepatic cycling ZON/metabolites.  相似文献   

7.
The hydrolysis of ochratoxin A (OA) and the corresponding formation of its hydrolysis product, alpha ochratoxin (O alpha), by ruminal digesta and in the rumen of hay-fed and grain-fed sheep were compared. Ruminal contents from sheep fed diets with hay or with grain hydrolyzed OA in vitro; the majority of the activity was associated with the particulate fraction of the ruminal contents. The rate of hydrolysis of OA by ruminal fluid that was adjusted to different pH values was not influenced (P greater than .6) by the pH of the samples (pH was from 5.5 to 7.0). Ruminal fluid obtained from hay-fed animals (pH 7.0) was able to hydrolyze OA in vitro and to produce the hydrolyzed product, O alpha, at a much greater rate (fivefold) than ruminal fluid obtained from grain-fed animals (pH 5.5) (P less than .01). Ochratoxin A was administered intraruminally at a concentration of .5 mg/kg of BW to hay-fed and grain-fed sheep. The half-lives for disappearance of OA from the rumen of sheep fed grain (normal feed intake, rumen pH 5.7), fed grain at a low level (30% of normal feed intake, pH 6.5), and fed hay (pH 7.1) were 3.6, 1.3, and .6 h, respectively. The results suggest that OA is hydrolyzed much faster in the rumen of sheep fed hay than in sheep fed grain, presumably because of the different ruminal microbial population, which in turn influenced the rate of hydrolysis of OA.  相似文献   

8.
本试验旨在研究稻草或玉米秸秆替代苜蓿对奶牛氮代谢、血清生理生化指标及肝脏和肾脏组织形态变化的影响。选择45头泌乳中期的经产健康荷斯坦奶牛,随机分成3组,每组15头牛。各组饲喂含不同粗饲料的饲粮,分别为苜蓿组(23%苜蓿干草+7%羊草,AH组)、玉米秸秆组(30%玉米秸秆,CS组)和稻草组(30%稻草,RS组),饲粮精粗比均为55∶45。试验期12周。结果表明:CS组和RS组奶牛的粪氮排泄量显著高于AH组(P0.05),RS组奶牛的尿氮排泄量显著高于AH组和CS组(P0.05)。RS组奶牛的血清尿素氮和肌酸酐含量显著高于AH组(P0.05)。RS组奶牛的血清总胆固醇含量显著高于AH组和CS组(P0.05)。CS组奶牛的血清谷丙转氨酶活性显著高于AH组(P0.05),而血清谷草转氨酶活性显著高于AH组和RS组(P0.05)。各组奶牛的肝脏、肾脏组织切片结构清晰,未见明显异常。由此可见,饲喂玉米秸秆或稻草粗饲料的奶牛粪氮、尿氮排泄量的增加导致奶牛氮的利用效率降低。各组奶牛肝脏和肾脏的组织形态无显著变化,但饲喂玉米秸秆或稻草饲粮可导致奶牛血清中反映肝脏、肾脏健康功能的指标升高。  相似文献   

9.
We used DNA probes to study dietary effects on the prokaryotic population in the rumen. Procedures used to isolate and quantify prokaryotic 16S ribosomal RNA (rRNA) from the rumen using universal and species-specific DNA probes were evaluated. In this experiment, three ruminally fistulated steers were fed orchard-grass hay, and ruminal digesta were collected at 0, 3, and 9 h after offering hay (0800). Samples of ruminal digesta were taken from the interior portion of the digesta mat and from the fluid below the mat in the dorsal rumen. Freezing (-65 degrees C) and blending samples both increased (P less than .07) the yield of 16S rRNA from ruminal digesta. Extraction of prokaryotic rRNA was greater (P less than .04) when phenol buffered with sodium acetate was used than when it was buffered with hydroxymethyl-amino-methane. Prokaryotic 16S rRNA concentration of the fluid phase was similar (P greater than .10) at 0, 3, and 9 h after offering hay. Prokaryotic 16S rRNA concentration of the mat phase increased up to the 9 h after feeding. The proportion of Fibrobacter succinogenes remained constant in both digesta phases at all times measured. From these data we concluded that DNA probes can be used to monitor bacterial population shifts in the rumen.  相似文献   

10.
The influence of the feeding ratio of a non‐forage fiber source and hay on ruminal mat characteristics and chewing activity was evaluated in dairy dry cows. Cows were fed four different diets: the ratios of alfalfa hay (AH) to beet pulp (BP) were 8:2 (dry matter basis, A8B2) and 2:8 (A2B8), and those of grass hay (GH) to BP were 8:2 (G8B2) and 2:8 (G2B8). Total eating time was decreased with increasing BP content (P < 0.01). Total rumination time for AH was shorter than that for GH (P < 0.01), and it decreased with increasing BP content (P < 0.01). The ruminal mat was detected by using a penetration resistance test of the rumen digesta. Penetration resistance value (PRV) of ruminal mat was highest with the G8B2 diet and PRV decreased with increasing BP content (P < 0.05) and feeding AH (P < 0.05). Thickness of the ruminal mat was greater for increasing BP content (P < 0.05). Simple linear regression of ruminal mat PRV on total rumination time resulted in a high positive correlation (r = 0.744; P < 0.001; n = 16). The results demonstrated that increasing the PRV of the ruminal mat stimulated rumination activity and a ruminal mat could be formed, although it was soft even when cows were offered a large quantity of BP.  相似文献   

11.
Four Holstein steers fitted with duodenal cannula were used in a 4 × 4 Latin square design to investigate the effect of the combination of corn silage (CS) and alfalfa hay (AH) in different ratios on the ruminal and intestinal digestion of carbohydrates and feed particle passage rate. Steers were fed mixed diets containing both CS and AH in ratios of 80:20, 60:40, 40:60 and 20:80 on a dry matter basis at 95% of ad libitum feed intake. The increase of AH proportion in diets increased dry matter intake and ruminal digestion of dry matter, non-fiber carbohydrate, neutral and acid detergent fiber linearly. Ruminal digestibility of neutral detergent fiber showed a quadratic response, and total digestibility increased linearly with increasing AH proportion. Digestibility of acid detergent fiber in the rumen was not affected by the dietary treatments, but the total tract digestibility increased as the AH proportion increased. Mean retention time of feed particles in total compartment increased when the AH proportion increased from 20% to 60%, but decreased with further increase of the AH proportion. These results indicate that moderate combinations of CS and AH have an associative effect on ruminal fiber digestion, modifying particle movement in the rumen.  相似文献   

12.
Six ruminal-cannulated nonlactating Holstein Friesian cows (mean body weight:660 ± 42.9 kg) were used to investigate the effect of soybean meal (SBM) supplementation on voluntary rice straw (RS) intake, feed particle size reduction, and passage kinetics in the rumen. They were allocated to two dietary treatments: RS alone or RS supplemented with SBM. Voluntary dry matter intake of RS and total tract fiber digestibility was increased by SBM supplementation (p < 0.05). Supplementation with SBM decreased rumination time per dietary dry matter (DM) and neutral detergent fiber (NDFom) intake (p < 0.01). Particle size distribution in the rumen and total ruminal NDFom digesta weights were not affected by SBM supplementation. However, the disappearance rates of total digesta and large and small particles from the rumen were increased by SBM supplementation (p < 0.01). Moreover, SBM supplementation increased the rate of size reduction in ruminal particles (p < 0.05). In situ disappearance of DM and NDFom of RS in the rumen was greater in SBM-supplemented cows than in nonsupplemented cows (p < 0.05). This study clearly showed that increased ruminal RS particle size reduction, passage, and fermentation due to SBM supplementation accelerated the RS particle clearance from the rumen and resulted in increased voluntary RS intake of dairy cows.  相似文献   

13.
A 2(3) factorial arrangement of treatments was used to study main effects and interactions between particle size of prairie hay (chopped vs ground), two levels of feed intake (60 and 90% of ad libitum) and ruminal degradability of protein sources [dry corn gluten feed (DCGF) vs dry distillers grains (DDG)] on ruminal and total tract digestion in eight ruminal- and duodenal-cannulated steers. Steers were fed every 2 h to approach steady-state feeding conditions. Steers fed ground hay diets digested higher (P less than .05) percentages of total digestible organic matter (OM) and neutral detergent fiber (NDF) in the rumen and had lower (P less than .05) nonammonia-nonbacterial N (NANBN) flows to the duodenum than did those fed chopped hay, probably because greater surface area of ground hay allowed more extensive ruminal fermentation. Protein source X intake interactions were noted for ruminal OM and NDF digestion when expressed as percentages of total digestion. At low intakes, steers fed DCGF had higher (P less than .05) percentages of total digestible OM and NDF disappearing in the rumen than did those fed DDG. Steers fed DCGF had lower total N, NANBN and total amino acid (AA) flows at the duodenum than did those fed DDG, indicating that less DCGF protein escaped ruminal degradation. Steers fed DDG had greater (P less than .05) total tract NDF digestion, suggesting that escape protein from DDG may stimulate hindgut fermentation and thereby affect site and extent of nutrient digestion. Regression analysis indicated that extent of ruminal fermentation and efficiency of microbial growth in vivo are associated with ruminal rates of passage within individual animals. When steers were fed at high-intake levels (1.6% of body weight), ruminal dilution rates were not increased (P less than .05) due to forage particle size or level of intake treatments, accounting, in part, for the lack of expected treatment differences in efficiency of bacterial growth and duodenal N flow, and for the low number of interactions between main effects.  相似文献   

14.
To determine the site of 3-methylindole (3MI) and indole absorption in cattle after ruminal administration of L-tryptophan (TRP), 4 Holstein steers were given 0.4 g of TRP/kg of body weight directly into the rumen through ruminal cannulas. Chromium EDTA and ruthenium phenanthroline were added to feedings of orchard grass hay twice a day for measurement of fluid and particulate flow to the duodenum, respectively. Passage of 3MI and indole (products of ruminal fermentation of TRP) to the duodenum was determined by the products of digesta flow rate and concentration in duodenal contents. Ruminal fluid, duodenal contents, and jugular blood were sampled at postdosing hours (PDH) 0, 6, 12, 18, 24, 36, and 72 for analysis of 3MI, indole, and digesta flow markers. Ruminal, duodenal, and jugular plasma concentrations of 3MI and indole peaked at PDH 12 to 24 at 152.4 and 25.9; 15.5 and 1.0; and 8.7 and 2.2 mg/L, respectively. Most 3MI and indole reaching the duodenum were associated with the particulate phase of the digesta. On a molar basis, total passage of 3MI to the duodenum during 72 hours amounted to 1.0% of the TRP dose for 3MI and 0.1% of the TRP dose for indole. Absorption of 3MI and indole in these steers was almost entirely proximal to the duodenum.  相似文献   

15.
Six mature Holstein cows in late lactation and fitted with permanent ruminal, duodenal and ideal cannulae were used in a double 3 X 3 Latin-square design to study the effect of roasting or extruding of cottonseed on protein degradation in the rumen and availability of amino acids in the small intestine. Raw whole cottonseed (CS), extruded whole cottonseed (ECS), and roasted whole cottonseed (RCS) were fed in diets containing 17% crude protein and composed of 42% whole cottonseed, 26% corn grain and 29% hay supplemented with dry molasses, vitamins and minerals. The diets were isocaloric and contained 1.86 Mcal NEL/kg. Acid detergent lignin was used as a digesta marker, and diaminopimelic acid as a bacterial marker. Ruminal ammonia concentration was higher (P less than .05) for CS than for ECS and RCS (15.7, 12.7 and 10.2 mM). Concentrations of isobutyrate (1.3 vs 0.8 and 0.8 mM) and isovalerate (1.8 vs 1.1 and 1.1 mM) were higher (P less than .05) for CS compared with ECS and RCS. Non-ammonia nitrogen flow to the duodenum (g/d) was 248, 300 and 350 for CS, ECS, and RCS, with RCS higher (P less than .05) that in CS. Apparent absorption of total amino acids in the small intestine was .80, 1.01, and 1.24 kg/d, for CS, ECS, and RCS, respectively, with RCS higher (P less than .05) than CS. Apparent absorption of essential and non-essential amino acids was 376, 425; 458, 548;610 and 628 g/d for CS, ECS and RCS respectively, with RCS higher (P less than .05) than CS.  相似文献   

16.
The present study examined the effects of substituting kraft pulp (KP) with corn silage (CS) on dry matter intake (DMI), ruminal mat and rumen fermentation characteristics, and rumination. Four non‐lactating, rumen‐cannulated Holstein cows were fed a CS diet comprising 36% grass silage (GS) and 64% CS or a KP diet comprising 36% GS, 57% KP, and 7% soybean meal. DMI was significantly lower in cows fed the KP diet than in those fed the CS diet (< 0.05), whereas rumination time did not significantly differ between the treatments. Dry matter content in the rumen immediately before and 3 h after feeding was significantly higher in cows fed the KP diet than in those fed the CS diet (< 0.05). The consistency and thickness of the ruminal mat did not significantly differ between the treatments. The ruminal mean retention time of feed particles tended to be longer in cows fed the KP diet than in those fed the CS diet (p < 0.10). The ruminal digestion rate of KP was comparable to that of GS and CS. Because ruminal mat was formed and rumination was stimulated, KP was considered to have the equivalent physical effectiveness as CS.  相似文献   

17.
Background: Original rumen digesta, rumen liquid and solid fractions have been frequently used to assess the rumen bacterial community. However, bacterial profiles in rumen original digesta, liquid and solid fractions vary from each other and need to be better established.Methods: To compare bacterial profiles in each fraction, samples of rumen digesta from six cows fed either a high fiber diet(HFD) or a high energy diet(HED) were collected via rumen fistulas. Rumen digesta was then squeezed through four layers of cheesecloth to separate liquid and solid fractions. The bacterial profiles of rumen original digesta, liquid and solid fractions were analyzed with High-throughput sequencing technique.Results: Rumen bacterial diversity was mainly affected by diet and individual cow(P 0.05) rather than rumen fraction. Bias distributed bacteria were observed in solid and liquid fractions of rumen content using Venn diagram and LEf Se analysis. Fifteen out of 16 detected biomarkers(using LEf Se analysis) were found in liquid fraction, and these 15 biomarkers contributed the most to the bacterial differences among rumen content fractions.Conclusions: Similar results were found when using samples of original rumen digesta, rumen liquid or solid fractions to assess diversity of rumen bacteria; however, more attention should be draw onto bias distributed bacteria in different ruminal fractions, especially when liquid fraction has been used as a representative sample for rumen bacterial study.  相似文献   

18.
Eight Angus x Gelbvieh heifers (445 +/- 74.5 kg) fitted with ruminal and duodenal cannulas were used in a 4 x 4 Latin square double double-crossover designed experiment to assess the effect of restricted forage intake on site and extent of digestion and flow of essential AA amino acids to the small intestine. Heifers were fed chopped (2.54 cm) bromegrass hay (9.2% CP, 64% NDF on an OM basis) at one of four percentages of maintenance (30, 60, 90, and 120%). Experimental periods were 21 d in length, with 17 d of adaptation followed by 4 d of intensive sample collection, after which maintenance requirements and subsequent level of intake were adjusted for BW change. True ruminal OM, NDF, and N digestion (g/d) decreased linearly (P < 0.001) with decreasing forage intake. When expressed as a percentage of OM intake, true ruminal OM and N digestibility were not affected (P = 0.23 to 0.87), whereas ruminal NDF digestibility tended to increase (P = 0.09) as forage intake decreased. Total and microbial essential amino acid flow to the duodenum decreased linearly (P = 0.001) from 496.1 to 132.1 g/d and 329.1 to 96.0 g/d, as intake decreased from 120 to 30% of maintenance intake, respectively. Although the profile of individual essential amino acids in duodenal digesta (P = 0.001 to 0.07) and isolated ruminal microbes differed (P = 0.001 to 0.09) across treatment, the greatest difference noted for total and microbial essential amino acid profile was only 0.3 percentage units. Because total and microbial flow of essential amino acids to the small intestine decreased as OM intake decreased, but true ruminal degradability of individual essential amino acids (P = 0.17 to 0.99) and digesta essential amino acid profile were comparable across treatments, total essential amino acid supply to the small intestine was predicted using OM intake as the independent variable. The resulting simple linear regression equation was: total essential amino acid flow = (0.055 x OM intake) + 1.546 (r2 = 0.91). The model developed in this experiment accounted for more of the variation in the data set than the current beef cattle NRC model, which under-predicted total flow of essential amino acids to the duodenum. The prediction equation developed herein can be used to estimate the supply of essential amino acids reaching the small intestine when formulating supplements to compensate for potential amino acid deficiencies resulting from restricted forage intake.  相似文献   

19.
Ruminal crude protein (CP) degradability of four commercially available soybean meal (SBM) types--untoasted (U), toasted (T), heat-treated (H) and formaldehyde-treated (F)--was studied by the use of in sacco and in vivo techniques with lactating German Friesian cows cannulated in the rumen, duodenum and ileum. In two in sacco experiments three cows were fed a diet based either on grass hay plus ear-maize silage or on barley whole plant silage. Ruminal degradation rate of CP was estimated as percent nitrogen (N) disappearance from polyester bags incubated in the rumen for 2, 4, 6, 8, 12 and 24 h. Ruminal degradation rate of CP varied among the four SBM types as well as between the two basal diets. N disappearance from the bags after 12 h of incubation averaged 96, 67, 37, and 23% for the U, T, H, and F SBM types, respectively, in the cows fed the hay/ear-maize silage diet vs 99, 86, 58 and 41% for the four SBM types, respectively, in the cows fed the barley whole plant silage diet. In the in vivo experiment, four cows were fed diets based on meadow hay and ear-maize silage in a 4 x 4 Latin square design. The effect of SBM treatment on the flow rate of non-ammonia N (NAN) into the duodenum, and its relationship with the ruminal degradation rate of CP of the four SBM types, was studied. Formaldehyde treatment increased the amount of NAN entering the duodenum (P less than .05): 485 g cow-1 day-1 compared to 383, 418 and 428 g for U, T and H, respectively. Calculated ruminal CP degradabilities were 93, 75, 71 and 38% for SBM types U, T, H and F, respectively.  相似文献   

20.
Six single‐flow continuous culture fermenters were used to determine fermentation profile, microbial growth and amino acid (AA) flow promoted by olive leaves supplemented with barley grains and faba beans (OLSUP), and alfalfa hay (AH). Two incubation runs were carried out with three fermenters inoculated with ruminal fluid from wethers and three from goats. The inoculum source did not affect (p = 0.059 to 0.980) any of the parameters. Daily volatile fatty acid (VFA) production and carbohydrate digestibility were greater (p = 0.009 and 0.024, respectively) for AH, therefore the pH values were lower (p = 0.015) than for OLSUP. Acetate was greater (p < 0.001) and isobutyrate, isovalerate and caproate lower (p < 0.001 to 0.006) for AH with greater acetate/propionate (p = 0.014) and ‘VFA/digested carbohydrate’ (p = 0.026) ratios. Daily microbial N flow and efficiency were greater (p = 0.016 and p = 0.041) for diet AH. Individual AA flows were greater (p < 0.001 to 0.016) for AH, but microbial essential AA proportion was greater for OLSUP (p = 0.015). The results indicate that OLSUP promoted lower bacterial growth and AA flow than AH, which could have been partially due to a limitation of N availability to ruminal microbes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号