首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Milk fatty acid (FA) profiles were determined in Holstein cows (n = 27) fed total mixed rations (TMR) ad libitum (G0) or diet composed by TMR (50% dry matter [DM] offered) plus grazing of pasture with 6 hr of access time to paddock in one session (G1) or 9 hr in two sessions (G2) at 45 days in milk (DIM). Moreover, milk FA was determined at 65 DIM when G0 cows turned out to G1 diet without adaptation period (Post‐G0), G1 remained as controls. Milk FA was quantified using gas chromatography and mass spectrometry. Preformed FA at 45 DIM was greater (+27%) for G2 than G0 cows (p < .05). Stearic acid (C18:0) was 30% greater for G2 cows (p < .05). De novo FA was lowest for G2 cows (p < .05). Conjugated linoleic acid (CLA) did not differ (p < .12), while vaccenic acid (C18:1trans) was twofold greater for grazing treatments (p < .01). Linolenic acid [C18:3(n‐3)] was greatest for G2 and lowest for G0 cows (p < .01). Omega 6 FA was greater for G0 than grazing cows, mainly due to linoleic acid [18:2cis(n‐6); p < .05]. These results determined that n‐6/n‐3 ratio was almost threefold greater for G0 than grazing cows (p < .001). When diet of G0 cows changed to include pasture (Post‐G0), preformed FA increased (p < .05), explained mainly by the increase (p < .05) of stearic (C18:0) and C18:1trans, while de novo FA tended to decrease (p < .1). Moreover, the amount of CLA and C18:3(n‐3) tended to increase (p < .1) in Post‐G0 cows. Offering 50% of dietary DM from pasture modified milk FA profile in early lactation potentially beneficial for human health. When TMR‐fed cows were turned out to 50% pasture, milk FA profile reflected dietary change without need of an adaptation period.  相似文献   

2.
This study was carried out to evaluate the impact of including Acacia mearnsii tannin extract (TA) as a feed additive on nutrition and productive performance of dairy cows grazing a high‐quality temperate pasture and receiving supplementation with a concentrate feedstuff. Fourteen multiparous Holstein cows were assigned to either of the following treatments: concentrate without or with 20 g TA/kg dry matter (DM). Concentrate intake accounted for 32% of the total DM intake. Tannin addition increased the herbage DM intake by 22% (p < .05). There was no effect of TA inclusion on milk yield, milk composition, milk nitrogen (N) excretion, milk and plasma urea‐N concentration, urinary excretion of total N, urea‐N, and purine derivatives. However, TA inclusion increased the N intake and retention, total N excretion in manure, fecal N to urine N ratio, and decreased the dietary N efficiency for milk production and the percentage of ingested N excreted in urine (p < .05). In conclusion, supplementing dairy cows grazing a high‐quality temperate pasture with a concentrate containing 20 g TA/kg DM showed the potential of decreasing the proportion of ingested N excreted in urine without affecting the productive performance.  相似文献   

3.
The challenge for sustainable organic dairy farming is identification of cows that are well adapted to forage‐based production systems. Therefore, the aim of this study was to compare the grazing behaviour, physical activity and metabolic profile of two different Holstein strains kept in an organic grazing system without concentrate supplementation. Twelve Swiss (HCH; 566 kg body weight (BW) and 12 New Zealand Holstein‐Friesian (HNZ; 530 kg BW) cows in mid‐lactation were kept in a rotational grazing system. After an adaptation period, the milk yield, nutrient intake, physical activity and grazing behaviour were recorded for each cow for 7 days. On three consecutive days, blood was sampled at 07:00, 12:00 and 17:00 h from each cow by jugular vein puncture. Data were analysed using linear mixed models. No differences were found in milk yield, but milk fat (3.69 vs. 4.05%, = 0.05) and milk protein percentage (2.92 vs. 3.20%, < 0.01) were lower in HCH than in HNZ cows. Herbage intake did not differ between strains, but organic matter digestibility was greater (= 0.01) in HCH compared to HNZ cows. The HCH cows spent less (P = 0.04) time ruminating (439 vs. 469 min/day) and had a lower (= 0.02) number of ruminating boli when compared to the HNZ cows. The time spent eating and physical activity did not differ between strains. Concentrations of IGF‐1 and T3 were lower ( 0.05) in HCH than HNZ cows. In conclusion, HCH cows were not able to increase dry matter intake in order to express their full genetic potential for milk production when kept in an organic grazing system without concentrate supplementation. On the other hand, HNZ cows seem to compensate for the reduced nutrient availability better than HCH cows but could not use that advantage for increased production efficiency.  相似文献   

4.
Feeding dairy cows indoors or on pasture affects not only labour, machinery and housing costs, but also animals’ performance and metabolism. This study investigates the effects of indoor feeding (IF) with a partial‐mixed ration (PMR) versus pasture‐based feeding (PF) on milk production, fertility, backfat thickness (BFT), body weight (BW) loss and energy metabolism of Brown Swiss (BS) dairy cows with similar genetic production potential. The IF herd consisted of 13 cows fed a PMR composed of maize and grass silage plus protein concentrate according to each cow's requirements. The PF herd consisted of 14 cows offered barn‐ventilated hay ad libitum after calving from January until March and grazed on semi‐continuous pastures during the vegetation period. The IF cows produced more energy‐corrected milk (ECM) per standard lactation (9,407 vs. 5,960 kg; p < .01), more milk fat (378 vs. 227 kg; p < .01) and milk protein (326 vs. 215 kg; p < .01). The calving interval (377 vs. 405 days; p < .01) and time empty (86 vs. 118 days; p < .01) were shorter in the PF compared to IF, possibly also due to different selection criteria for maintaining the respective seasonal calving rhythm. The empty body fat loss calculated according to BCS until its nadir was higher in IF cows (IF: 10.4 vs. PF: 4.8 MJ/day; p < .01), but no differences were noted in total body fat loss estimated via BFT (p = .24). However, PF had lower blood glucose concentration at all investigated time points, but no differences occurred in serum non‐esterified fatty acid and β‐hydroxybutyrate concentrations post‐partum. In conclusion, BS cows were equally well suited for the IF with PMR and the PF system investigated here without developing a prominent metabolic load despite differences in nutrient supply. As such, investigated BS dairy cows in our trial seem to have a high capacity for metabolic adaptation to different production systems.  相似文献   

5.
Low plasma total cholesterol (TC) concentrations are characteristic during the negative energy balance in early lactating dairy cows. The objective was to investigate short-term effects of different TC concentrations during an aggravated energy deficiency through a 1-week concentrate withdrawal on adaptations of metabolism and milk production. Multiparous Holstein cows (n = 15) were investigated during 3 week beginning at 24 ± 7 DIM (mean ± SD). Cows were kept on pasture and received additional concentrate in experimental week 1 and 3, while in week 2, concentrate was withdrawn. Blood was sampled once and milk twice daily. Based on their average TC concentration during week 1 (prior to concentrate withdrawal), cows were retrospectively assigned into a high (H-Chol; n = 8, TC ≥ 3.36 mmol/L) and a low TC groups (L-Chol; n = 7, TC < 3.36 mmol/L). Concentrations of phospholipids and lipoproteins were higher in H-Chol compared to L-Chol throughout the study (p < 0.05). During concentrate withdrawal, milk yield, glucose and insulin concentrations decreased similarly in both groups, while milk fat, milk acetone and plasma BHB were higher in H-Chol compared to L-Chol (p < 0.05). Compared to initial values, plasma NEFA, TAG and VLDL increased in both groups within 2 days after concentrate withdrawal (p < 0.05). Concentrations of NEFA during week 2 were greater in L-Chol compared to H-Chol (p < 0.05). Despite reintroduction of concentrate, milk yield in H-Chol remained lower for two more days compared to week 1 (p < .05), whereas milk yield recovered immediately in L-Chol. Activity of aspartate aminotransferase was higher in H-Chol compared to L-Chol in week 2 (p < 0.05). Greater plasma TC concentrations were associated with a reduced increase of NEFA. Further research is warranted if TC concentrations are related to adipose tissue mobilization and fatty acid turnover.  相似文献   

6.
This study investigated the effects of grain source and lucerne hay (LH) particle length on eating behaviour, chewing activity, and milk production of lactating dairy cows. Eight Holstein dairy cows (175 ± 21 days in milk) were used in a replicated 4 × 4 Latin square design with four 21‐days periods. The experiment was a 2 × 2 factorial arrangement of treatments with barley grain alone or equal blend of barley and maize grains combined with short (15 mm) and long (30 mm) LH. Diets were fed ad libitum as total mixed ration with a concentrate to forage ratio of 60:40. Interactions between grain source and LH particle length on feed particle distributions, sorting index, chewing activity, and milk production were minimal. Partially replacing barley grain with maize in the diet overall did not change diurnal distributions of particles retained on the sieves of Penn State Particle Separator but reduced the proportion of particles on 1.18‐sieve and increased that of particles on pan (p < 0.05). Grain source did not affect sorting index and chewing activity. However, feeding long LH increased (p < 0.01) intakes of long particles retained on 19‐ and 8‐mm of sieve, prolonged (p < 0.05) eating time, and lowered eating rate (p < 0.05). Interestingly, cows fed with long LH ate more coarse particle during critical‐early time post feeding (i. e. 1.5 h), where eating time increased and eating rate decreased (p < 0.05). Increasing particle length of dietary LH tended to increase milk fat‐to‐protein ratio (p = 0.08). The results suggested that the increased eating time and decreased eating rate as a result of marginally increasing LH particle length would be beneficial to alleviate reduction of ruminal pH and milk fat percentage following the ingestion of highly fermentable diets.  相似文献   

7.
Changes in ACTH challenge test characteristics in dairy cows changing their physiological status at different lactational stages and different feeding levels were not investigated in terms of repeatability yet. In 23 multiparous Holstein cows (10 cows fed a sole fresh herbage diet without concentrate, 13 cows fed with concentrate), three ACTH challenge tests were performed: once during pregnancy shortly prior to drying off ( T1 ), and in week 3 ( T2 ) and 8 ( T3 ) after parturition. Test characteristics were correlated to performance and metabolic parameters: DMI, BW, energy balance (EB), plasma concentrations of free fatty acids (NEFA) and beta‐hydroxybutyrate (BHB). Basal plasma cortisol concentrations were higher at T1 compared with T2 and T3 (p < .05). The adrenal cortex sensitivity (expressed as total AUC (AUCt) of cortisol response after ACTH application) was lowest at T2 compared with T1 and T3 (p < .05). Ranking of the individual animals’ responses was not repeatable between time points of the ACTH tests. Enhancing the energy deficiency during early lactation by omission of concentrate did not affect baseline cortisol concentrations in plasma, but decreased peak height at T2 (p < .05). Baseline plasma cortisol concentrations were positively correlated with cortisol peak values after ACTH application, previous lactation performance, milk yield and BW (p < .05). The AUCt was positively correlated with baseline cortisol concentrations, EB and DMI. Cortisol release after ACTH injection was lower in animals with high plasma concentrations of NEFA, BHB and with higher contents of fat and free fatty acids in milk (p < .05). Cortisol peak height after ACTH administration was higher in cows with a more positive EB, higher DMI and lower plasma concentrations of NEFA and BHB. In summary, cortisol responses to ACTH challenges in this study were not repeatable in dairy cows changing their physiological status.  相似文献   

8.
Mao pomace meal (MPM) contains condensed tannins and saponins at 92 and 98 g/kg, respectively, and these substances can be used to manipulate ruminal fermentation in ruminant. Four multiparous lactating Holstein cows with 45 ± 5 days in milk were randomly assigned according to a 4 × 4 Latin square design to receive four different levels of MPM supplementation at 0, 100, 200, and 300 g/head/day, respectively. Cows were fed with concentrate diets at 1:1.5 of concentrate to milk yield ratio and urea‐treated (3%) rice straw was fed ad libitum. The results revealed that feed intake, nutrient digestibility, blood urea nitrogen, and hematological parameters were not affected by MPM supplementation (> 0.05). However, ruminal pH and propionate were increased quadratically (< 0.05) in cows receiving MPM whereas acetate, acetate to propionate ratio and estimate methane production were decreased (p < 0.05). Supplementation of MPM linearly decreased ruminal ammonia nitrogen and protozoal population at 4 hr postfeeding (p < 0.05). Milk production and milk composition were similar among treatments (p > 0.05). In conclusion, supplementation of MPM at 200 g/head/day could modify ruminal fermentation and reduce methane production without adverse effect on feed intake, digestibility, hematological parameters, and milk production in dairy cows.  相似文献   

9.
Purulent vaginal discharge (PVD) is a prevalent uterine disease of dairy cows during the puerperium that affects the milk production and affects the profitability of farms. The objectives of this study were to evaluate the biochemical profile, the body condition score, the milk production of cows with PVD and the effects PVD on reproductive performance. A total of 338 Holstein dairy cows aged from 3 to 5 years, from three commercial dairy farms, from Brazil, were used. Blood samples were collected within 25 ± 3 days post‐partum from Holstein dairy cows without PVD (control cows, n = 242) and cows with PVD (n = 96), based on scoring of the vaginal discharge. The body condition score and milk production were recorded on the day of sampling. The biochemical profile encompassed albumin, urea, gamma‐glutamyl transferase, calcium, fibrinogen and cholesterol concentrations. The number of services per pregnancy was lower (p < 0.01), and the number of days until first insemination and the median time to pregnancy were higher in cows with PVD (p < 0.01) when compared with control cows. Milk production and body condition score were lower (p < 0.01) in cows with PVD than in control group. Cows with PVD had lower (p < 0.05) serum albumin, urea, calcium and cholesterol concentrations, and higher serum gamma‐glutamyl transferase activity and fibrinogen concentration than cows without PVD. Our results show that cows with PVD have changes in the biochemical profile and negative effects on production and reproduction performance.  相似文献   

10.
Two experiments were conducted to elucidate the effect of increased concentrate allotment before evening grazing on herbage intake, nitrogen utilization and rumen fermentation in dairy cows. In experiment 1, nine lactating cows were grazed in the morning and evening sessions (2.5 h each). The cows were allocated to treatments of three concentrate allotment levels before the evening grazing session by altering proportions to daily total offered; 25%, 50% and 75%. Daily herbage dry matter intake quadratically decreased with increasing the concentrate allotment levels (P < 0.05). Nitrogen utilization was similar among treatments. To investigate diurnal changes in rumen fermentation, a second experiment was conducted where six ruminally cannulated non‐lactating dairy cows grazed in the morning and evening sessions (3 h each) were subjected to the same treatments as experiment 1. Total volatile fatty acid concentration in the rumen linearly increased with increasing the concentrate allotment levels throughout the pre‐evening grazing session to the post‐morning grazing session (P < 0.01). The results indicate that dairy cows reduce daily herbage intake but do not alter nitrogen utilization with increasing concentrate allotment before evening grazing. © 2016 Japanese Society of Animal Science  相似文献   

11.
This study evaluated the concentration and expression of lactoferrin (LF) in cows selected for once a day (OAD) milking compared to twice a day (TAD) milking. Milk samples were collected from the Massey University TAD and OAD herds. Milk traits and expression of LF and insulin‐like growth factor 1 (IGF‐1) were analyzed with a general linear model that included the fixed effects of milking frequency, lactation number, interaction between milking frequency and lactation number, and as covariates proportion of F, heterosis F × J and deviation from the herd median calving date. Cows milked OAD produced milk with higher (p < .01) concentrations of protein and lactose than TAD milked cows. Compared to TAD cows, cows milked OAD had higher expression of the LF gene (1.40 vs. 1.29 folds, p = .03) and the IGF‐1 gene (1.69 vs. 1.48 folds, p = .007). The correlation between the expression of LF gene and the concentration of LF in milk was strong (r = .66 p < .001), but the correlation between the expression of the IGF‐1 gene and LF concentration was stronger (r = .94, p < .001). These results suggest that milking frequency affects the milk composition and expression of milk composition genes at early lactation.  相似文献   

12.
The objective of this study was to investigate the effects of tannins and saponins in Samanea saman on rumen fermentation, milk yield and milk composition in lactating dairy cows. Four multiparous early‐lactating dairy cows (Holstein‐Friesian cross‐bred, 75%) with an initial body weight (BW) of 405 ± 40 kg and 36 ± 8 day in milk were randomly assigned to receive dietary treatments according to a 4 × 4 Latin square design. The four dietary treatments were unsupplemented (control), supplemented with rain tree pod (S. saman) meal (RPM) at 60 g/kg, supplemented with palm oil (PO) at 20 g/kg, and supplemented with RPM at 60 g/kg and PO at 20 g/kg (RPO), of total dry matter (DM) intake. Cows were fed with concentrate diets at a ratio of concentrate to milk yield of 1:2, and chopped 30 g/kg of urea‐treated rice straw was fed ad libitum. The RPM contained condensed tannins and crude saponins at 88 and 141 g/kg of DM respectively. It was found that s upplementation with RPM and/or PO to dairy cows diets did not show negative effect on ruminal pH, blood urea nitrogen and milk urea nitrogen concentration (p > 0.05). However, supplementation with RPM resulted in lower ammonia nitrogen (NH3‐N) concentration (p < 0.05). In addition, propionic acid and milk production increased while acetic acid, acetic to propionic ratio, methane production, methanogens and protozoal population decreased with RPM and/or PO supplementation. Furthermore, addition of PO and RPO in the diets increased milk fat while supplementation of RPM resulted in greater milk protein and Fibrobacter succinogenes numbers (p < 0.05). The population of Ruminococcus flavefaciens and Ruminococcus albus were not affected by any treatments. The findings on the present study showed that supplementation with RPM and RPO to diets of cows improved the rumen environment and increased milk yield, content of milk protein and milk fat.  相似文献   

13.
The aim of this study was to determine the effect of different levels of fibrolytic enzyme on nutrient utilization and milk production in dairy cows. Four multiparous early-to-mid-lactation Holstein–Friesian crossbred cows were randomly allocated in a 4 × 4 Latin square design. Cows were fed a balanced total mixed ration (TMR) on a dry matter (DM) basis containing 0, 1.2, 2.4, and 3.6 g/kg DM of fibrolytic enzyme in TMR, where the TMR comprises 60% concentrate supplemented with a fibrolytic enzyme at 0, 2, 4, and 6 g/kg DM of concentrate, and 40% urea-molasses-treated sugarcane bagasse (UMSB) was used as a roughage source. Fibrolytic enzyme supplementation in TMR containing UMSB did not affect dry matter intake (DMI) of dairy cows (p > 0.05). There was a quadratic effect of fibrolytic enzyme levels on the digestibility of DM, organic matter (OM), neutral detergent fiber (NDF), and acid detergent fiber (ADF) (p < 0.05), and the maximal response was reached at 1.2–2.4 g/kg DM of fibrolytic enzyme added in the TMR. Furthermore, 3.5% fat-corrected milk, milk fat, total volatile fatty acids, and propionic acid were greater in a cow fed with 1.2–2.4 g/kg DM of fibrolytic enzyme, resulting in a lower ratio of acetic acid to propionic acid (p < 0.05). In conclusion, adding a fibrolytic enzyme in TMR containing UMSB improved nutrient utilization, rumen fermentation, and milk production of lactating dairy cows.  相似文献   

14.
The performance of spring calving Holstein-Friesian (HF) and Jersey×Holstein-Friesian (J×HF) dairy cows was examined during three successive years (mean of 35 HF cows and 31 J×HF cows per year). Throughout the experiment cows were managed on one of three grassland-based systems of milk production, namely low concentrate (LC), medium concentrate (MC) or high concentrate (HC). Post-calving, cows were housed and offered grass silage, supplemented with 6.0, 8.0 and 10.0 kg concentrate/cow/d in systems LC, MC and HC, respectively (mean period from calving to start of full time grazing, 69 days). During the grazing period target concentrate feed levels were 0, 2.5 and 5.0 kg/cow/d for systems LC, MC and HC, respectively (mean period from start of full time grazing to start full time re-housing, 206 days). Full lactation concentrate inputs were 530, 1092 and 1667 kg/cow, in systems LC, MC and HC, respectively. There were no significant genotype×system interactions for any of the milk production parameters examined. Food intake during the confinement and grazing periods was unaffected by genotype. Milk yield was highest with HF cows while milk fat and milk protein content were highest with the J×HF cows (P<0.001). Genotype had no effect on fat plus protein yield. Milk yield and fat plus protein yield were higher with systems MC and HC than with LC (P<0.001). HF cows were on average 44 kg heavier than J×HF cows, while the mean condition score of the J×HF cows was approximately 0.2 units higher than that of the HF cows (P<0.001). Live weight and condition score changes during the lactation followed similar trends with both genotypes. The J×HF cows had fewer days to first observed heat (P<0.05), a higher conception rate to first service (P<0.01), first plus second service (P<0.001), and a higher pregnancy rate at the end of the breeding season (P<0.05). Although mean somatic cell score was unaffected by genotype, the proportion of cows with one or more cases of mastitis was lower with the J×HF cows (P<0.05). In summary, while the J×HF cows had improved fertility performance compared to the HF cows, both genotypes exhibited similar levels of tissue mobilisation and deposition throughout the lactation, while there was no evidence of a genotype×grassland system interaction for any of the milk production parameters examined.  相似文献   

15.
To assess the effects of negative and positive behaviors on milk yields, this study examined the attitudes and behaviors of stockpersons toward their cows and milk yields at a farm where 15 workers milked 67 cows as rotating shift work. At a holding area when moving cows to the parlor, stockperson behaviors were observed at 34 milkings. Behaviors were classified as negative (NEG) or positive (POS): NEG were attempts to move cows using touching (NT), vocalization (NV), and gestures (NG); POS were communications without attempting to move cows, consisting of touch (PT) or vocalization (PV). Numbers of NV and NEG were negatively correlated with milk yields of first parity (p < .05). Average milk yields of first parity and all cows were higher when PT were observed (p < .001, p < .0001) and POS were observed (p < .001 and p < .0001). Numbers of PT were positively correlated with milk yields of first parity (p < .05). Average milk yields of second parity were higher when PV was observed (p < .01). Positive behaviors, especially touching, are related to higher herd milk yields. Negative behaviors such as negative vocalizations are related to lower yields of younger cows.  相似文献   

16.
Whole oilseeds such as soya beans have been utilized in dairy rations to supply additional fat and protein. However, antinutritional components contained in soya beans, such as trypsin inhibitors and haemagglutinins (lectins) may alter digestibility of nutrients and consequently affect animal performance. The objective of the present experiment was to quantify the effect of different levels of whole raw soya beans in diets of dairy cows on nutrient intake, total tract digestion, nutrient balances and milk yield and composition. Sixteen mid to late‐lactation cows (228 ± 20 days in milk; mean ± SD) were used in four replicated 4 × 4 Latin square design experiment with 21‐d periods. Cows were assigned to each square according to milk yield and DIM. The animals were randomly allocated to treatments: control (without soya beans addition; CO), WS9, WS18 and WS27, with addition of 9%, 18% and 27% of whole raw soya bean in diet on a dry matter (DM) basis respectively. All diets contained identical forage and concentrate components and consisted of maize silage and concentrate based on ground corn and soya beans at a ratio of 60:40. There were no differences in OM, CP, NDF and NEL intakes (kg/day and MJ/day) among the treatments (p > 0.05). However, DM and NFC intakes were negatively affected (p = 0.04 and p < 0.01, respectively) and ether extract (EE) intake was positively affected (p < 0.01). Total tract digestion increased linearly with whole raw soya beans for EE (p < 0.01) and NDF (p = 0.01). The excretion (kg/day) of digested soya beans grains increased linearly according to addition of whole raw soya beans. However, the nutritive characteristics of excreted grains were not altered. Milk (kg), milk lactose (kg) and protein (kg) yield decreased linearly (p < 0.01, p < 0.01 and p = 0.04, respectively) milk fat content (%) increased linearly (p < 0.01) with whole raw soya beans inclusion. Increasing addition of whole raw soya beans affected milk fatty acid profile with a linear decrease of cis‐9‐trans 11CLA and total saturated FA; and linear increase of total unsaturated and C18:3 FA. Energy balance was positively affected (p = 0.03) by whole raw soya beans as well as efficiency of NEL milk/DE intake (p = 0.02). Nitrogen balance and microbial protein synthesis were not affected by whole raw soya beans. Increasing doses of whole raw soya beans decreased dry matter intake and milk yield, however, led to an increase of unsaturated acids in milk and higher milk fat concentration.  相似文献   

17.
Two experiments were conducted to clarify the effect of water‐soluble carbohydrate (WSC) content in orchardgrass pasture on the diurnal distribution of grazing time. Six ruminally cannulated, non‐lactating dairy cows were grazed on either of two pastures with different orchardgrass cultivars containing low WSC (LWSC; cultivar: ‘Hokkai 28’) or high WSC (HWSC; cultivar: ‘Harunemidori’). The cows were grazed in morning and evening sessions in experiment 1, whereas the cows were grazed throughout the day in experiment 2. In experiment 1, grazing time of the cows on HWSC was longer than that of the cows on LWSC (P < 0.01). This difference was larger in the morning session than in the evening session (pasture × grazing session: P < 0.05). Effects on herbage intake were similar to those on grazing time. In experiment 2, daily total grazing time was longer for the cows on HWSC than for those on LWSC (P < 0.05). The cows on HWSC spent a longer time grazing than those on LWSC in the morning between 03.00 and 09.00 hours (P < 0.01). The results indicated that prolonged grazing time in the period between dawn and early morning could increase daily herbage intake in cows grazed on pastures of orchardgrass cultivars with high‐WSC content.  相似文献   

18.
Volatile organic compounds (VOCs) in milk were investigated as quantitative markers of herbage intake (HI) at pasture. Eight Holstein cows were fed indoors with concentrate and conserved forages (grass silage, corn silage and hay) (NG), then were divided into three treatments according to the duration of access to pasture: 4 h (G4), 8 h (G8), and 20 h (G20) per day. The HIs were 4.3, 8.6, and 13.0 kg dry matter/day for the G4, G8 and G20 treatments, respectively. Milk from cows was sampled and analyzed VOCs by the steam distillation‐extraction method and gas chromatography‐mass spectrometry (GC‐MS). From the intensity of the GC peak area, the levels of 1‐phytene (3,7,11,15‐tetramethyl‐1‐hexadecene) and 2‐phytene (3,7,11,15‐tetramethyl‐2‐hexadecene) were lowest in NG treatment and markedly increased with grazing time at pasture. With simple regression analysis on the HI to each diterpenoid, a strong correlation was found between the intensity of 1‐phytene in the milk and the HI (r = 0.807, P < 0.001). 1‐phytene content in milk could be useful as a quantitative marker of the HI of grazing cows.  相似文献   

19.
The productive and reproductive characteristics of Brown Swiss (B) cross‐bred cows were investigated by comparing with those of Holstein (H) cows housed in the same barn. Additionally, their hair cortisol levels were analyzed to evaluate the extent of stress experienced during dry and lactation periods. B cross‐bred cows had lower milk yields and higher milk fat rates than H cows. Reproductive records showed that days from parturition to first artificial insemination (AI) in B cross‐bred (n = 16) and H (n = 27) cows were not significantly different, but conception rate at first AI of B cross‐bred cows tended to be higher than that of H cows. Percentage of B cross‐bred cows that resumed ovarian cyclic activity within 45 days after parturition was higher than that of H cows (6/6 (100%) and 5/11 (45.5%), P < 0.05), and B cross‐bred cows had higher body condition scores at that time. Hair cortisol level at 60 to 90 days after parturition in H cows increased significantly compared with in the dry period, and it was higher than that of B cows during the same period. These results suggest that B cross‐bred cows experience less metabolic stress during early lactation, which may result in earlier resumption of reproductive function.  相似文献   

20.
Forages rich in water‐soluble carbohydrates (WSC) might be an ideal energy source during early lactation, as they provide both energy for milk production and structural fibre to promote chewing and rumen buffering. Thus, the aim was to investigate feeding strategies based on high‐quality hay rich in WSC with graded amounts of concentrate on ruminating behaviour, ruminal pH and systemic health variables. Twenty‐four Simmental cows were randomly allocated to four groups beginning 10 days before until 28 days after calving. Diets were 60LQH (60% fibre‐rich hay plus 40% concentrate), 60HQH, 75HQH and 100HQH (60%, 75% and 100% high‐quality hay, plus 40%, 25% and 0% concentrate, respectively). Hay qualities differed in contents of WSC (110 g vs. 198 g of dry matter [DM]), neutral detergent fibre (646 g vs. 423 g of DM) and crude protein (65 g vs. 223 g of DM). Rumination was recorded using the Rumiwatch system over 4 days during the last week. Weekly serum samples were analysed for the liver enzymes aspartate aminotransferase, glutamate dehydrogenase and γ‐glutamyltransferase and the acute phase proteins serum amyloid A and haptoglobin. Four cows per group received a wireless pH sensor orally placed into the rumen one week before the expected calving date. Daily time spent chewing did not differ between groups. Likewise differences in minimum, maximum and mean pH‐values were not significant, but daily time of reticular pH <6 was longer in cows fed 60LQH compared to cows fed 100HQH (p = 0.043) and in tendency to cows fed 75HQH or 60HQH (p = 0.072 or p = 0.086, respectively). Blood parameters were unaffected by diet. Accordingly the present results demonstrate that feeding hay rich in WSC helped stabilizing the reticuloruminal pH in early lactation dairy cows, even in combination with 40% concentrates in DM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号