首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
There has been less concern about soil mineralogical alteration than about soil physical, chemical and biological changes induced by termite nest-building activity. Furthermore, much less attention has been paid to free sesquioxides than to phyllosilicate minerals. In the present study, we conducted field morphological observations and selective dissolution analysis to characterize free sesquioxides in termite (Macrotermes bellicosus) mounds as compared with surrounding pedons in different toposequence positions, i.e., seasonally flooded valley bottom, hydromorphic fringe and well-drained upland sites. Distinctive redoximorphic features, such as surface yellowish layers on mound structures from the fringe site, indicate possible alteration of iron sesquioxide forms in the mounds due to the transportation of soil from reductive (aquic subsoil) to oxidative (epigeal mound) environments by the nest-building activity of M. bellicosus. On the other hand, the iron-soluble content in the dithionite-citrate-bicarbonate (DCB) system (Fed) was generally higher in the mound structures than at the adjacent sub-surface (Ap2) horizon at each toposequence position, while there was less difference in the content of acid ammonium oxalate (AAO) extractable iron (Feo) as compared to Fed. As a consequence, the iron activity index (Fed/Feo ratio) was found for the most part to be lower in the mound structures than in the neighboring Ap2 horizon. In addition, the content of Fed, AAO-soluble Al (Alo) and DCB-extractable Al (Ald) was significantly correlated with clay content in these soils. These findings suggest that M. bellicosus preferentially collects clay particles, probably from the clay-rich subsoils, such as the argillic horizon, which has been formed by the co-migration of phyllosilicate minerals and relatively crystalline sesquioxides. The species then likely incorporates them into the mounds, which induces an increase in the Fed content relative to that of Feo, resulting in a decreased iron activity index in the mound structures.  相似文献   

2.
The role of mounds of the fungus-growing termite Macrotermes bellicosus (Smeathman) in nutrient recycling in a highly weathered and nutrient-depleted tropical red earth (Ultisol) of the Nigerian savanna was examined by measuring stored amounts of selected nutrients and estimating their rates of turnover via the mounds. A study plot (4?ha) with a representative termite population density (1.5?mounds?ha?1) and size (3.7?±?0.4?m in height, 2.4?±?0.2?m in basal diameter) of M. bellicosus mounds was selected. The mounds were found to contain soil mass of 9249?±?2371?kg?ha?1, composed of 7502?±?1934?kg?ha?1 of mound wall and 1747?±?440?kg?ha?1 of nest body. Significant nutrient enrichment, compared to the neighboring topmost soil (Ap1 horizon: 0–16?cm), was observed in the nest body for total nitrogen (N) and exchangeable calcium (Ca), magnesium (Mg) and potassium (K), and in the mound wall for exchangeable K only. In contrast, available (Bray-1) phosphorus (P) content was found to be lower in both the mound wall and the nest body than in the adjacent topmost soil horizon. Consequently, the mounds formed by M. bellicosus contained 1.71?±?0.62?kg?ha?1 of total N, 0.004?±?0.003?kg?ha?1 of available P, 3.23?±?0.81?kg?ha?1 of exchangeable Ca, 1.11?±?0.22?kg?ha?1 of exchangeable Mg and 0.79?±?0.21?kg?ha?1 of exchangeable K. However, with the exception of exchangeable K (1.2%), these nutrients amounted to less than 0.5% of those found in the topmost soil horizon. The soil nutrient turnover rate via M. bellicosus mounds was indeed limited, being estimated at 1.72?kg?ha?1 for organic carbon (C), 0.15?kg?ha?1 for total N, 0.0004?kg?ha?1 for available P, 0.15?kg?ha?1 for exchangeable Ca, 0.05?kg?ha?1 for exchangeable Mg, and 0.06?kg?ha?1 for exchangeable K per annum. These findings suggest that the mounds of M. bellicosus, while being enriched with some nutrients to create hot spots of soil nutrients in the vicinity of the mounds, are not a significant reservoir of soil nutrients and are therefore of minor importance for nutrient cycling at the ecosystem scale in the tropical savanna.  相似文献   

3.
Recent studies suggest that wood ants (Formica rufa group) mounds are point sources of carbon dioxide (CO2), which increase the heterogeneity of soil carbon (C) emissions in forest ecosystems. However, little is known about the impact of anthropogenic activities, such as logging and subsequent forest succession, on these fluxes. In this study, we measured the CO2 efflux and temperature of wood ant mounds and the surrounding forest floor in managed Finnish boreal forests of different ages (5, 30, 60, and 100 years old) to assess how the effluxes vary with stand age. We conducted efflux measurements from the mounds and the surrounding forest floor throughout the ants' active season (May–September) and during the onset of hibernation (October). The annual CO2 efflux was then estimated using mound or forest floor temperatures, which were measured for one year. The average annual CO2 efflux from the ant mounds was 10.2 (±5.8 SD) kg m−2 year−1, increasing from 3.9 (±0.3 SD) kg m−2 year−1 in the 5 year-old stands to 14.3 (±3.0 SD) kg m−2 year−1 in the 100 year-old stands. Temperatures was significantly higher in the ant mounds than in the forest floor, and the average temperature difference between mounds and forest floor increased with stand age, being the lowest in the 5 year-old (4.1 (±3.1 SD) °C) and highest in the 100 year-old stands (10.3 (±5.2 SD) °C). There were no statistical differences in the mound CO2 efflux per volume among forest age classes, suggesting higher ant CO2 efflux in the older stands likely come from larger ant populations in the bigger mounts. The different mound temperature regimes among stand age classes indicates that the activity of wood ants changes with forest succession, particularly after clear-cutting, which alters CO2 efflux from the mounds. The impact of ant mounds on total CO2 efflux from the soil, estimated from mound area and volume, respectively, increased with forest age, from 0.05 (±0.05 SD) % to 0.31 (±0.18 SD) % and from 0.05 (±0.06 SD) % to 0.90% (±1.11 SD).  相似文献   

4.
Abstract

Termites play a significant role in soil-forming processes of the tropics. The influence of termites on pedogenesis as affected by the toposequence, however, has rarely been explored. We investigated the soil physicochemical and morphological characteristics of epigeal mounds constructed by Macrotermes bellicosus (Smethman) compared with those of surrounding pedons along a toposequence (bottom, fringe and upland sites) of an inland valley in central Nigeria. The physicochemical and morphological properties of the mound soils varied according to structural units but were generally different from those of the adjacent pedons. The differences included finer texture, higher electrical conductivity, total N, exchangeable bases (Ca, Mg and K) and effective cation exchange capacity and lower C/N ratio and exchange acidity in the mound than the pedon at each toposequence position. This tendency to modify the soil properties was more prominent in the nest body where the termites actually live, that is, in the hives, royal cell and base-plate, than in the soils below the nest and the other mound parts, that is, the external wall, internal wall and pillars. We found this trend to a greater or lesser degree at all toposequence positions. Our findings suggest that: (1) M.?bellicosus can manipulate the mound soils according to functional applications of structure units or environmental requirements for its livelihood, regardless of local soils; (2) M.?bellicosus makes ecological patches (hot spots) at all toposequence positions in the same measure; (3) the influence of M.?bellicosus on the pedogenesis is reduced in the lowlands compared with the uplands because the number and volume of the mounds were substantially lower in the bottom and fringe sites compared with the upland site.  相似文献   

5.
Termites are reported to improve soil physicochemical properties thereby enhance soil fertility of their mound and foraging areas. Empirical study pertaining to these effects is missing in Southwest Ethiopia. For this study, soil samples affected by termite activities were collected at 1 m interval within 0–3 m distance from the base of six termite mounds on gently sloping and sloping land and analyzed for physicochemical parameters. The result of the analysis depicted that soil bulk density (1.38–1.15 g cm?3) and moisture content (21.1–9.9%) decreased with increased distance from the mound base. While clay content decreased with increased distance from the mound base from72.0% to 45.5%, sand and silt contents increased from 8.0% to 21.3% and 19.3% to 28.5%, respectively. PH (6.23), organic carbon (3.85%), total nitrogen (0.4%), cation exchange capacity CEC (30.43 cmol kg?1), exchangeable Ca (13.73 cmol kg?1), Mg (3.15 cmol kg?1), and PBS (56.8%) were higher on termite mounds. While, electrical conductivity (0.03 dS m?1–0.06 dS m?1), exchangeable K (0.52–0.93 cmol kg?1) and Na (0.02–0.03 cmol kg?1) showed increasing trend with the distance from the mound base. Our results indicated that termite mounds are important sinks of organic matter and mineral nutrients, and hence contribute to the enhancement of soil fertility. Thus, for subsistent farmers the uses of termite mounds as a fertilizer present an opportunity to improve agricultural production.  相似文献   

6.
An experiment was conducted to study the biochemical response of rapeseed (Brassica campestris L.) to sulphur (S) fertilization at grey terrace soil. There were five treatments: S0 (control), S1 (20 kg S ha?1), S2 (40 kg S ha?1), S3 (60 kg S ha?1) and S4 (80 kg S ha?1). Chlorophyll content in the leaf was determined at 30, 40, 50 and 60 days after emergence (DAE). The biochemical properties were found responsive to S. The highest chlorophyll content of mustard leaves was found in 60 kg S ha?1 at 50 DAE. The same treatment also showed the maximum N content in the leaves at 45 DAE. The highest oil content was recorded in 60 kg S ha?1. Other chemical characters such as acid value, peroxide and saponification values were lowest in 60 kg S ha?1 while iodine value was found highest in the same S level. Non-essential fatty acids such as palmitic, stearic and erucic acid were increased in the rapeseed with decrease in S level, whereas essential fatty acids were maximum in 60 kg S ha?1. Therefore, 60 kg S ha?1 can be recommended to produce quality rapeseed in grey terrace soil of Bangladesh.  相似文献   

7.
Cassava is an important subsidiary food in the tropics. In Tamil Nadu, India, microbial cultures were used to eradicate the tuberous root rot of cassava. Hence, an experiment was conducted for two consecutive years to test the effects of coinoculation of microbes on soil properties. The surface soil from the experimental site was analysed for soil available nutrients, soil enzyme activities and microbial biomass carbon. The treatment of Azospirillum with Trichoderma at the 50% recommended N:P2O5:K2O (NPK) rate (50:25:50 kg ha?1) significantly increased soil available nitrogen (142.81 kg ha?1) by 72.66% over uninoculated control. There was a significant increase in available phosphorus in soil by the inoculation of AM (arbuscular mycorrhizal) fungi with Trichoderma at the 50% recommended NPK rate (41.04 kg ha?1) compared to other treatments. The application of Pseudomonas fluorescens with Trichoderma at the 50% recommended NPK rate significantly increased available iron (19.34 µg g?1) in soil. The treatment of Azospirillum with Trichoderma increased urease enzyme activity at the recommended NPK rate (816.32 μg urea hydrolyzed g?1 soil h?1). Soil application of all cultures at the 50% recommended NPK rate significantly increased dehydrogenase activity (88.63 μg TPF g?1 soil) and β-glucosidase activity (48.82 μg PNP g?1 soil) in soil. Inoculation of Trichoderma alone at the 50% recommended NPK rate significantly increased microbial biomass carbon (3748.85 μg g?1 soil). Thus, the microbial inoculations significantly increased soil available nutrient contents, enzyme activities such as urease, dehydrogenase and β-glucosidase activity and microbial biomass carbon by reducing the amount of the required fertilizer.  相似文献   

8.
In the context of sustainable soil-quality management and mitigating global warming, the impacts of incorporating raw or field-burned adzuki bean (Vigna angularis (Willd.) Ohwi & Ohashi) and wheat (Triticum aestivum L.) straw residues on carbon dioxide (CO2) and nitrous oxide (N2O) emission rates from soil were assessed in an Andosol field in northern Japan. Losses of carbon (C) and nitrogen (N) in residue biomass during field burning were much greater from adzuki bean residue (98.6% of C and 98.1% of N) than from wheat straw (85.3% and 75.3%, respectively). Although we noted considerable inputs of carbon (499 ± 119 kg C ha–1) and nitrogen (5.97 ± 0.76 kg N ha–1) from burned wheat straw into the soil, neither CO2 nor N2O emission rates from soil (over 210 d) increased significantly after the incorporation of field-burned wheat straw. Thus, the field-burned wheat straw contained organic carbon fractions that were more resistant to decomposition in soil in comparison with the unburned wheat straw. Our results and previously reported rates of CO2, methane (CH4) and N2O emission during wheat straw burning showed that CO2-equivalent greenhouse gas emissions under raw residue incorporation were similar to or slightly higher than those under burned residue incorporation when emission rates were assessed during residue burning and after subsequent soil incorporation.  相似文献   

9.
Nest structures of six termite species, four with epigeous (above-ground) and two with subterranean nests were analysed to find out how their building and feeding habits could be related to their nests phosphorus status compared with control soils. Termite nest structure was found to affect significantly the P status in savanna soils: mounds of the African Trinervitermes geminatus and the South American Nasutitermes ephratae (both grass-feeders) displayed a greater amount of available P, especially in the inner part of the nest, than the surrounding soil. The abundant quantities of dead grass material stored in the mound can explain the available soil P increase. A similar increase in P availability was also found for the soil-feeder Cubitermes severus. In mounds of Macrotermes bellicosus, on the other hand, there was a drastic increase in P sorption (and a corresponding decrease in available P) compared to adjacent soils, which was attributed to the building strategy of this species. M. bellicosus selected clay from subsoil to build its nest structure. The data obtained for the subterranean species Ancistrotermes cavithorax and Microtermes toumodiensis indicated also that there is an increase in P sorption in mounds when compared with associated topsoils. Consequently, the nest structures of only certain termite species should be considered, and utilised, as a soil amendment in place of fertilisers. This impact on the P cycle in savannas seems to be related to the termite feeding status and to the type of material utilised in nest building. This should be taken into account before using termite nest material in soil fertility status improvement.  相似文献   

10.
For understanding the effects of soil salinity and nitrogen (N) fertilizer on the emergence rate, yield, and nitrogen-use efficiency (NUE) of sunflowers, complete block design studies were conducted in Hetao Irrigation District, China. Four levels of soil salinity (electrical conductivity [ECe] = 2.44–29.23 dS m?1) and three levels of N fertilization (90–180 kg ha?1) were applied to thirty-six microplots. Soil salinity significantly affected sunflower growth (P < 0.05). High salinity (ECe = 9.03–18.06 dS m?1) reduced emergence rate by 24.5 percent, seed yield by 31.0 percent, hundred-kernel weight by 15.2 percent, and biological yield by 27.4 percent, but it increased the harvest index by 0.9 percent relative to low salinity (ECe = 2.44–4.44 dS m?1). Application of N fertilizer alleviated some of the adverse effects of salinity, especially in highly saline soils. We suggest that moderate (135 kg ha?1) and high (180 kg ha?1) levels of N fertilization could provide the maximum benefit in low- to moderate-salinity and high- or severe-salinity fields, respectively, in Hetao Irrigation District and similar sunflower-growing areas.  相似文献   

11.
The interaction between water availability in the soil and fertilizer application rates often strongly affects crop growth. In the current study, the quality of fresh fruit and antioxidant enzymes of tomato crops (Lycopersicon esculentum Mill) were investigated under different irrigation (low water content [Wl]: 50 ~ 60% field moisture capacity (FMC); moderate [Wm]: 70 ~ 80% FMC; and high [Wh]: 90 ~ 100% FMC) and fertilizer conditions (deficit fertilizer [Fl]: 195 kg ha?1 nitrogen (N) + 47 kg ha?1 phosphorus pentoxide (P2O5) and moderate [Fm]: 278 kg ha?1 N + 67 kg ha?1 P2O5) in a solar greenhouse. The results showed that the quality of fresh fruits and the antioxidant enzyme activities in the leaves and fruits were related to the water content in the soil. Deficit irrigation improved the fruit quality and 50 ~ 60% FMC combined with fertilizer application rates of 195 kg ha?1 N + 47 kg ha?1 P2O5 is recommended for tomato crop cultivation under greenhouse conditions.  相似文献   

12.
Abstract

The dramatic increases in rice productivity and cultivation intensity through the implementation of green revolution (GR) technology using high yielding varieties (HYVs) of rice and chemical fertilizers were not long lasting in Indonesia. The stagnancy of rice productivity in recent years without any scientific reasons presents a challenge for agronomists and soil scientists in Indonesia. This study describes the effects of long-term intensive rice cultivation on the change in available silica (Si) in sawah soil. The term sawah refers to a leveled and bounded rice field with an inlet and an outlet for irrigation and drainage. Soil samples collected by Kawaguchi and Kyuma in 1970 and new samples taken in 2003 from the same sites or sites close to the 1970 sites were analyzed and compared. From 1970 to 2003, the average content of available Si decreased from 1,512 ± 634 kg SiO2 ha?1 to 1,230 ± 556 kg SiO2 ha?1 and from 6,676 ± 3,569 kg SiO2 ha?1 to 5,894 ± 3,372 kg SiO2 ha?1 in the 0–20 cm and 0–100 cm soil layers, respectively. Cultivation intensity differences between seedfarms planted with rice three times a year and non-seedfarms rotating rice and upland crops appeared to affect the changing rates of available Si within the study period. In the 0–20 cm soil layer, the average content of available Si decreased from 1,646 ± 581 kg SiO2 ha?1 to 1,283 ± 533 kg SiO2 ha?1 (?22%) and from 1,440 ± 645 kg SiO2 ha?1 to 1,202 ± 563 kg SiO2 ha?1 (?17%) in seedfarms and non-seedfarms, respectively. Differences in topographical position also influenced the decreasing rate of available Si in this study. Using similar management practices and cultivation intensity, upland sampling sites lost more Si compared with lowland sites. Planted rice under a rain fed system with no Si addition from rain water in an upland position may be a reason for the higher loss of Si, particularly in non-seedfarms. The Si supply from irrigation water might have contributed to the slowdown in the decreasing rate of available Si in Java sawah soils.  相似文献   

13.
A field experiment was carried out to evaluate the effect of two whole-crop rice (Oryza sativa L.) cultivars, TULT and Takanari, on methane (CH4) emission in a paddy field fertilized with biogas slurry (BS) at rates of 0 (NF), 100 (BS100) and 300 (BS300) kg nitrogen (N) ha?1, in comparison with chemical fertilizer CF100 (100 kg N ha?1). Takanari produced significantly higher biomass (< 0.001) than TULT and showed significantly (< 0.01) lower CH4 emission than TULT. BS applications caused higher CH4 emission (52 ± 27 and 80 ± 19 g m?2 in BS100 and BS300, respectively) than did CF100 (42 ± 18 g m?2) and NF (28 ± 10 g m?2) in TULT. In contrast, there was no significant difference in CH4 emission in Takanari among the treatments (26 ± 2, 26 ± 2, 32 ± 4, 29 ± 8 g m?2 in NF, CF100, BS100 and BS300, respectively). Methane oxidizing bacteria (MOB) showed significantly (< 0.05) higher populations in Takanari than in TULT at harvest, which might be due to the higher root biomass (10.3 ± 2.2 g hill?1) in Takanari than in TULT (8.9 ± 1.8 g hill?1). MOB was significantly correlated with tiller number (R2 = 0.176*) and plant biomass (R2 = 0.242*). BS application showed higher copper (Cu) uptake in Takanari while it was not high in TULT. In contrast, it showed no difference in zinc (Zn) uptake in both varieties. Uptake of Cu was not different between the two varieties, while uptake of Zn in the grain was higher in TULT than in Takanari. The present study suggests that CH4 emission deriving from BS application in paddy field can be mitigated by selecting an appropriate cultivar, like Takanari. However, care should be taken for heavy metal uptake in selecting cultivars.  相似文献   

14.
Abstract

Forest fires can change the greenhouse gase (GHG) flux of borea forest soils. We measured carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) fluxes with different burn histories in black spruce (Picea mariana) stands in interior Alaska. The control forest (CF) burned in 1920; partially burned (PB) in 1999; and severely burned (SB1 and SB2) in 2004. The thickness of the organic layer was 22 ± 6 cm at CF, 28 ± 10 cm at PB, 12 ± 6 cm at SB1 and 4 ± 2 cm at SB2. The mean soil temperature during CO2 flux measurement was 8.9 ± 3.1, 6.4 ± 2.1, 5.9 ± 3.4 and 5.0 ± 2.4°C at SB2, SB1, PB and CF, respectively, and differed significantly among the sites (P < 0.01). The mean CO2 flux was highest at PB (128 ± 85 mg CO2-C m?2 h?1) and lowest at SB1 (47 ± 19 mg CO2-C m?2 h?1) (P < 0.01), and within each site it was positively correlated with soil temperature (P < 0.01). The CO2 flux at SB2 was lower than that at CF when the soil temperature was high. We attributed the low CO2 flux at SB1 and SB2 to low root respiration and organic matter decomposition rates due to the 2004 fire. The CH4 uptake rate was highest at SB1 [–91 ± 21 μg CH4-C m?2 h?1] (P < 0.01) and positively correlated with soil temperature (P < 0.01) but not soil moisture. The CH4 uptake rate increased with increasing soil temperature because methanotroph activity increased. The N2O flux was highest [3.6 ± 4.7 μg N2O-N m?2 h?1] at PB (P < 0.01). Our findings suggest that the soil temperature and moisture are important factors of GHG dynamics in forest soils with different fire history.  相似文献   

15.
Abstract

To investigate the effects of renovation (ploughing and resowing) on nitrous oxide (N2O) emissions from grassland soil, we measured N2O fluxes from renovated and unrenovated (control) grassland plots. On 22 August in both 2005 and 2006 we harvested the sward, ploughed the surface soil and then mixed roots and stubble into the surface soil with a rotovator. Next, we compacted the soil surface with a land roller, spread fertilizer at 40 kg N ha?1 on the soil surface and sowed orchardgrass (Dactylis glomerata L., Natsumidori). In the control plot, we just harvested the sward and spread fertilizer. We determined N2O fluxes for 2 months after the renovation using a vented closed chamber. During the first 2 weeks, the renovated plot produced much more N2O than the control plot, suggesting that N was quickly mineralized from the incorporated roots and stubble. Even after 2 weeks, however, large N2O emissions from the renovated plot were recorded after rainfall, when the soil surface was warmed by sunshine and the soil temperature rose 2.7–3.0°C more than that of the control plot. In 2005, during the 67-day period from 19 August to 26 October, the renovated and control plots emitted 5.3 ± 1.4 and 2.8 ± 0.7 kg N2O-N ha?1, with maximum fluxes of 3,659 and 1,322 µg N2O-N m?2 h?1, respectively. In 2006, during the 65-day period from 21 August to 26 October, the renovated and control plots emitted 2.1 ± 0.6 and 0.96 ± 0.42 kg N2O-N ha?1, with maximum fluxes of 706 and 175 µg N2O-N m?2 h?1, respectively. The cumulative N2O emissions from plots in 2005 were greater than those in 2006, presumably because rainfall just after renovation was greater in 2005 than in 2006. These results suggest that incorporated roots and stubble may enlarge the anaerobic microsites in the soil in its decomposing process and increase the N2O production derived from the residues and the fertilizer. In addition, rainfall and soil moisture and temperature conditions during and after renovation may control the cumulative N2O emission.  相似文献   

16.
The iron oxides fractions of four major physiographic units obtained from a transect of calcareous materials were studied to assess the effects of key pedogenic processes and local hydrology conditions as well as physiographic units in controlling iron oxides forms in the north-west of Iran. Samples from different horizons belonging to six pedons were selected and analyzed for soil physicochemical properties, clay minerals, and Fe oxides forms (Fed, Feo, Fep). In general, the soils indicated some variation in the concentration of iron oxides that could be related to rate of weathering, pedogenic accumulations, geomorphologic conditions (as results of different in physiographic units), wet and dry cycle, and organic matter. A wide relative variation in mean values of Fed (6.4–9.9 g kg?1), Feo (2.9–4 g kg?1), and Fep (0.68–1.3 g kg?1) was observed among physiographic units. On the plateau unit, the presence of the most stable geomorphologic conditions and high rate in situ weathering (reflected in clay content), coupled with minor deposition of sediment suggest that the soils have more dynamic conditions than other units, reflecting in the greatest amount Fed and the lowest Feo/Fed ratio. Fed content of the soils containing less clay content (15–25%) was significantly different from those with greater clay content (25–35%).  相似文献   

17.
Abstract

In this paper, we proposed a new approach for on-site colorimetric analysis of ferrous ions (Fe2+) and ammonium-nitrogen (NH4 +-N) using a soil color meter as an alternative method to conventional spectrophotometry. The soil color meter we used can express solution color numerically on the basis of L*a*b* color space. After coloring of water by the 1, 10 phenanthroline method and the Indophenol blue method, the color of solution was measured by the soil color meter. A linear relationship between Fe2+ and a* or b* values, and systematic change of NH4 +-N with L* value, enable us to make a calibration curve. The Fe2+ and NH4 +-N concentrations in groundwater samples (Fe2+: 0.3–1.3 mg L?1; NH4 +-N: 0.02–0.62 mg L?1) determined by the proposed method agreed well with those determined by conventional spectrophotometry with the difference being ± 0.05 mg L?1 and ± 0.02 mg L?1, respectively. Since a similar apparatus is widely used in the soil science field, this technique would facilitate field surveys.  相似文献   

18.
In an incubation experiment with flooded rice soil fertilized with different N amounts and sampled at different rice stages, the methane (CH4) and carbon dioxide (CO2) production in relation to soil labile carbon (C) pools under two temperature (35°C and 45°C) and moisture (aerobic and submerged) regimes were investigated. The field treatments imposed in the wet season included unfertilized control and 40, 80 and 120 kg ha?1 N fertilization. The production of CH4 was significantly higher (27%) under submerged compared to aerobic conditions, whereas CO2 production was significantly increased under aerobic by 21% compared to submerged conditions. The average labile C pools were significantly increased by 21% at the highest dose of N (120 kg ha?1) compared to control and was found highest at rice panicle initiation stage. But the grain yield had significantly responded only up to 80 kg ha?1 N, although soil labile C as well as gaseous C emission was noticed to be highest at 120 kg ha?1 N. Hence, 80 kg N ha?1 is a better option in the wet season at low land tropical flooded rice in eastern India for sustaining grain yield and minimizing potential emission of CO2 and CH4.  相似文献   

19.
Swine lagoon sludge is commonly applied to soil as a source of nitrogen (N) for crop production but the fate of applied N not recovered from the soil by the receiver crop has received little attention. The objectives of this study were to (1) assess the yield and N accumulation responses of corn (Zea mays L.) and wheat (Triticum aestivum) to different levels of N applied as swine lagoon sludge, (2) quantify recovery of residual N accumulation by the second and third crops after sludge application, and (3) evaluate the effect of different sludge N rates on nitrate (NO3-N) concentrations in the soil. Sludge N trials were conducted with wheat on two swine farms and with corn on one swine farm in the coastal plain of North Carolina. Agronomic optimum N rates for wheat grown at two locations was 360 kg total sludge N ha?1 and the optimum N rate for corn at one location was 327 kg total sludge N ha?1. Residual N recovered by subsequent wheat and corn crops following the corn crop that received lagoon sludge was 3 and 12 kg N ha?1, respectively, on a whole-plant basis and 2 and 10 kg N ha?1, respectively, on a grain basis at the agronomic optimum N rate for corn (327 kg sludge N ha?1). From the 327 kg ha?1 of sludge N applied to corn, 249 kg N ha?1 were not recovered after harvest of three crops for grain. Accumulation in recalcitrant soil organic N pools, ammonia (NH3) volatilization during sludge application, return of N in stover/straw to the soil, and leaching of NO3 from the root zone probably account for much of the nonutilized N. At the agronomic sludge N rate for corn (327 kg N ha?1), downward movement of NO3-N through the soil was similar to that for the 168 kg N ha?1 urea ammonium nitrate (UAN) treatment. Thus, potential N pollution of groundwater by land application of lagoon sludge would not exceed that caused by UAN application.  相似文献   

20.
This study provides current data on plant nitrogen (N) uptake required for maximum sugar yield (PNUpmax) and the corresponding fertilizer N dose (ND) (optimum N dose [NDopt]) for high-yielding beet crops (sugar yield up to 20 Mg ha?1). In 2010 and 2011, field experiments were conducted with four cultivars from Beta genus differing in dry matter composition, and six mineral NDs (0–200 kg N ha?1) at three sites (The Netherlands, Germany, Denmark). Differences between cultivars in PNUpmax and NDopt were small; however, environments (defined as combination of site and year) substantially differed from each other: highest PNUpmax and lowest NDopt occurred at environments supplying high amounts of N from soil resources, and vice versa. The level of maximum sugar yield (SYmax) was related neither to PNUpmax (200–270 kg N ha?1) nor to NDopt. However, N dose and plant N uptake required for 95% of maximum sugar yield was 50–80 kg N ha?1 lower than for maximum sugar yield. To conclude, accepting a slight reduction in sugar yield might allow for a substantial decrease in the ND. Cultivar choice and yield level need not to be taken into account at present.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号