首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 176 毫秒
1.
This study quantified variations within tree stems in tangential shrinkage (αT), radial shrinkage (αR), and tangential/radial shrinkage ratio (αT/αR) of Melia azedarach grown in two different sites in northern Vietnam. The overall values of αT, αR, and αT/αR were 7.05%, 4.38%, and 1.64, respectively. The variation pattern in αT and αR was found to increase gradually from pith to bark and this trend was similar on both sites. In radial direction, the αT/αR decreased significantly from 10 to 50% of the radial length from pith before approaching a constant value toward the outside. The transverse shrinkage variation with height was very small and without statistical significance. There were strong positive relationships between transverse shrinkage and basic density (BD). This implies that the selection for high wood density may lead to increase wood transverse shrinkage. In addition, the αT and αR had significant positive linear relationships with both acoustic wave velocity (VL) and dynamic modulus of elasticity of log (DMOElog). This result suggests that it might be possible to sort lumber with large transverse shrinkage by stress wave method for M. azedarach planted in northern Vietnam.  相似文献   

2.
The longitudinal shrinkage variations within trees and the relationship with density, microfibril angle, and modulus of elasticity were examined for five sugi cultivars selected for different within-tree distributions of density, microfibril angle, and modulus of elasticity. The cultivars showed significant differences in longitudinal shrinkage and in its within-tree distribution. The within-tree distributions were categorized into two types: (1) large values of longitudinal shrinkage near the pith that decreased with height and from pith to bark, (2) small values of longitudinal shrinkage near the pith that increased slightly from pith to bark. There were strong relationships between longitudinal shrinkage and microfibril angle, and modulus of elasticity, with large values of longitudinal shrinkage associated with large microfibril angle and low modulus of elasticity. Sugi exhibited large variation in longitudinal shrinkage within stem and among cultivars, with the variation strongly affected by microfibril angle. Part of this article was presented at the 56th Annual Meeting of the Japan Wood Research Society, Akita, Japan, August 2006  相似文献   

3.
A dead tree of Pinus armandii Franch. var. amamiana (Koidz.) Hatusima (abbreviated to PAAm) was obtained from a natural habitat on Tanega-shima Island and various properties of its wood were investigated. Grain angle was measured and soft X-ray analysis was undertaken to obtain the density in each annual ring. Unit shrinkage and dynamic properties were measured by shrinkage, bending, and compression tests. Variations of wood properties in the radial direction, relationships of wood properties to density, and annual ring width were examined. Roughly speaking, variations in the radial direction of the grain angle, twist angle by drying, Young’s modulus and strength in static bending, absorbed energy in impact bending, compressive Young’s modulus, compressive strength, and compressive proportional limit corresponded to the variation of annual ring width. As a result, it was determined that if PAAm is afforested artificially for the purposes of lumber production and conservation, the annual rings of logs should not be too widely spaced. Wood properties of PAAm were similar to those of Japanese black pine (Pinus thunbergii Parl.), which is another representative pine on Tanegashima Island. This study was presented in part at the 56th Annual Meeting of the Japan Wood Research Society, Hiroshima, August 2007  相似文献   

4.
The ring characteristics and screw withdrawal resistance (SWR) of naturally regenerated Taiwan yellow cypress (Chamaecyparis obtusa var. formosana) trees were explored. Significant differences in average ring width (RW), earlywood width, latewood width, ring density (RD), earlywood density (ED), latewood density (LD), highest density (Dmax), lowest density (Dmin), latewood percentage (LWP), and SWR were observed between trees, rings (SWR excluded), and tree height positions. The RW components in the radial direction increased from the pith outward to about the 3rd to 5th ring and then decreased to about the 25th ring; it was almost constantly sustained toward the bark side. The RD in the radial direction slowly decreased from the pith outward to the bark side. Average ring width and ring density were significantly affected by the various tree growth rates, radial ring numbers, and tree height positions. ED, LD, Dmax, Dmin, and LWP were the most important factors determining the overall RD. RW did not correlate with tree RD. SWR is correlated with ED, RD, Dmin, LWP, and intra-ring density variation (IDV). Thus, the SWR can be used to predict wood density and in nondestructive evaluation of a living tree.  相似文献   

5.
With emphasis on tree breeding for wood quality in Picea jezoensis, we aimed to evaluate radial and between-family variations in the microfibril angle (MFA) of the S2 layer in the latewood tracheids in 10 open-pollinated families of 43-year-old P. jezoensis trees. In addition, the relationships between MFA/wood density with the modulus of elasticity (MOE) or modulus of rupture (MOR) were investigated. Significant differences in MFA between families were found from the pith toward the bark. MFA showed higher values around the pith area, although some families showed relatively lower values than others around this area. In addition, due to a larger coefficient of variations of MFA near the pith, the potential for juvenile wood MFA improvement may be greater compared with mature wood. MOE was correlated with MFA in juvenile wood and with wood density in mature wood, whereas MOR was mainly correlated with wood density at radial positions in both woods. Therefore, to improve the MOE and MOR of P. jezoensis wood, both MFA and wood density would be factors to consider in both juvenile and mature woods. On the other hand, there are indications that, only wood density would be an important criterion for improving mature wood properties.  相似文献   

6.
Radial variations of wood properties (basic density, fiber length, vessel element length, and compression strength) in plantation-grown Casuarina equisetifolia in Bangladesh were investigated for effective utilization of the wood. Samples disks at breast height were randomly collected from trees in a 10-year-old plantation in Cox’s Bazar Forest Division, Bangladesh. The basic density showed a near-constant value up to 30 mm from the pith and then rapidly increased up to 60 mm from the pith. The fiber length and vessel element length gradually increased from the pith to bark. When radial variation of wood properties was determined according to relative distance from the pith, similar radial patterns were observed among the sample trees, indicating that the wood properties in C. equisetifolia may be related to the growth rate. The compression strength parallel to the grain (CS) increased from the pith to bark. A significant positive correlation was found between the air-dried density and the CS. The results obtained indicated that wood around the pith has a relatively low density, and wood outside the pith area has a relatively high density, suggesting that it could be used as structural lumber. Part of this report was presented at the 58th Annual Meeting of Japan Wood Research Society, Tsukuba, March 2008  相似文献   

7.
To investigate the relations between growth and the wood properties of Japanese larch (Larix kaempferi), six sample trees of varied ages and radial growth were felled and the ring width, ring density, percentage of latewood, and some other factors were determined. There were significant differences in ring density and percentage of latewood between sample trees with vigorous growth and those with poor growth. In corewood the ring density decreased with increasing ring width for all sample trees, whereas in outerwood this trend did not appear. Moreover, the latewood width increased with the increment of ring width only in outerwood, whereas there was almost no change in the corewood. The variation in patterns of ring width, ring density, and percentage of latewood in the radial direction and the relation with height was also studied.Part of this report was presented at the 47th annual meeting of the Japan Wood Research Society, Kochi, April 1997  相似文献   

8.
Genetic parameters for various wood density traits were estimated in 29-year-old trees of 18 full-sib families of hybrid larch (Larix gmelinii var. japonica × Larix kaempferi) F1. Intra-ring density variation (IDV) was also evaluated using a model that expresses the pattern curve from earlywood to latewood as a power function. A high IDV indicates an abrupt change in wood density from earlywood to latewood. The ring width and wood density traits of individual rings were determined by X-ray densitometry. Overall wood density (RD) was shown to increase with increasing ring number, ranging from 0.42–0.59 g/cm3, whereas IDV of individual rings decreased gradually from pith outwards. Estimates of individual tree narrow-sense heritability of RD and IDV were 0.66 and 0.67, respectively. IDV showed negative genetic and phenotypic correlations with RD (r g = −0.99, r p = −0.72). The predicted genetic gains in latewood proportion and IDV were higher than that of RD. These results suggest that the intra-ring density variation is under moderate genetic control equivalent to wood density. The trend of increasing wood density from earlywood to latewood was associated with changes in both tracheid diameter and cell wall thickness.  相似文献   

9.
Collapse-type shrinkage is one of highly refractory drying defects in low-medium density plantation-grown eucalypt wood used as solid wood products. Basic density (BD), microfibril angle (MFA), double fibre cell wall thickness (DWT), proportion of ray parenchyma (RP), unit cell wall shrinkage, total shrinkage and residual collapse, which are associated with collapse-type shrinkage characteristics, were investigated by using simple regression method for three species of collapse-susceptible Eucalyptus urophyll, E. grandis and E.urophyllaxE.grandis, planted at Dong-Men Forest Farm in Guangxi autonomous region, China. The results indicated that : unit cell wall shrinkage had a extremely strong positive correlation with BD, moderately strong positive correlation with DWT, and a weakly or moderately negative correlation with RP and MFA; total shrinkage was positively correlated with BD, DWT and RP and negatively related to MFA, but not able to be predicted ideally by any examined factors alone owing to lower R^2 value (R^2≤0.5712); residual collapse was negatively correlated with BD and DWT, linearly positively correlated with MFA, and had strongly positive linear correlation with RP. It is concluded that BD can be used as single factor (R^2≥0.9412) to predicate unit cell wall shrinkage and RP is the relatively sound indicator for predicting residual collapse  相似文献   

10.
Pinus radiata D. Don trees from six clones, grown at initial spacings of 2500 stems ha−1 and 833 stems ha−1 were destructively harvested. For these trees wood properties were measured on radial slices sampled at a height of 1.4 m above the ground. Relative to wide spacing, close initial stand spacing significantly reduced microfibril angle (MFA) and ring width and significantly increased dynamic modulus of elasticity (MOE), fibre length, latewood percentage and cell wall thickness. Density and fibre width were not significantly different between spacing treatments. Examination of the influence of genetic population on wood properties indicated that genotype significantly influenced MFA, MOE and ring width. The key wood properties MFA, MOE and fibre length were regressed against tree diameter, height and stem slenderness. All three wood properties were most strongly correlated with stem slenderness. Multiple regression models developed for MFA, MOE and ring width accounted for respectively 62%, 81% and 58% of the variation in these variables. The following changes occurred in sampled properties with increasing ring number: MFA and ring width declined markedly; MOE and fibre length increased markedly; latewood percentage and cell wall thickness increased slightly; and density and fibre width did not show any radial trend.  相似文献   

11.
Growth, specific gravity, and wood fiber length of Acacia mangium, Acacia auriculiformis, artificial acacia hybrid clones, and combinations, which were planted in a trial forest in Bavi, Vietnam, in July 2001, were examined. The radial variations from pith to bark were investigated to clarify the effect of genetic factors on these traits. Superiority of hybrids over their parents ranged from 36.3% to 41.6% for diameter, from 20.0% to 25.3% for height, from 6.9% to 20.7% for specific gravity, and from 6.1% to 12.8% for wood fiber length. The hybrid possessed heterosis in diameter, height, specific gravity, and wood fiber length regardless of whether the female parent was A. mangium or A. auriculiformis. The profiles of wood fiber length and specific gravity in the radial direction were similar for all the trees investigated. Wood fiber length was initially 0.5–0.6 mm near the pith and then increased slowly, finally reaching 1.0–1.2 mm near the bark. The specific gravity of acacia increased from 0.49–0.58 near the pith to 0.63–0.74 near the bark. From a relative distance of 30% from the pith, the specific gravity increased slightly and seemed to be stable. The relations among tree diameter, specific gravity, and wood fiber length were fair and could be represented by positive linear regression formulas. Hybrids for which A. auriculiformis was the female parent and A. mangium was the male parent had a faster growth rate and longer wood fibers than the inverse hybrids. Part of this report was presented at the 6th Pacific Regional Wood Anatomy Conference, Kyoto, Japan, December 2005  相似文献   

12.
Development of optimal ways to predict juvenile wood stiffness, strength, and stability using wood properties that can be measured with relative ease and low cost is a priority for tree breeding and silviculture. Wood static modulus of elasticity (MOE), modulus of rupture (MOR), radial, tangential, and longitudinal shrinkage (RS, TS, LS), wood density (DEN), sound wave velocity (SWV), spiral grain (SLG), and microfibril angle (MFA) were measured on juvenile wood samples from lower stem sections in two radiata pine test plantations. Variation between inner (rings 1–2 from pith) and outer (rings 3–6 from pith) rings was generally larger than that among trees. MOE and MOR were lower (50%) in inner-rings than in outer-rings. RS and TS were higher (30–50%) for outer-rings than inner-rings, but LS decreased rapidly (>200%) from inner-rings to outer-rings. DEN had a higher correlation with MOR than with MOE, while MFA had a higher correlation with dry wood MOE than with MOR. SLG had higher significant correlation with MOE than with MOR. DEN and MOE had a weak, significant linear relationship with RS and TS, while MOE had a strong negative non-linear relationship with LS. Multiple regressions had a good potential as a method for predicting billet stiffness (R 2 > 0.42), but had only a weak potential to predict wood strength and shrinkage (R 2 < 0.22). For wood stiffness acoustic velocity measurements seemed to be the most practical, and for wood strength and stability acoustic velocity plus core density seemed to be the most practical measurements for predicting lower stem average in young trees.  相似文献   

13.
Abstract

Genetic variation in wood density, microfibril angle (MFA), wood stiffness (MOE), height, diameter and volume was investigated in a 26-year-old Norway spruce [(Picea abies (L.) Karst.] clonal trial in southern Sweden. Wood quality measurements were performed on 10 mm increment cores using SilviScan. For MFA, mean values of annual rings showed the highest value (30°) at ring 2 counting from the pith, followed by a steep decrease and a gradual stabilization around ring 12 at approximately 14°. MOE showed a monotonic increase from 5 GPa to 14 GPa when moving from pith to bark. High broad-sense heritability values were found for wood density (0.48), MFA (0.41) and MOE (0.50). All growth traits displayed heritability values of similar magnitudes as reported in earlier studies. The generally high age–age correlations between different sections of the wood cores suggested that early selection for wood quality traits would be successful. Owing to unfavorable genetic correlations between volume and MOE, the correlated response indicated that selection for volume only at age 10 would result in a 0.27% decrease in weighted MOE at age 26 for every 1% increase in volume.  相似文献   

14.
Summary Based on 15-year-old black spruce (Picea mariana) trees from 40 half-sib families sampled from 9 blocks of a family test in New Brunswick, this study examined intertree and intratree variation in various wood density and ring width characteristics. Of various variance components of the intertree variation, a remarkable variance component due to family was found in wood density characteristics (viz. average wood density, average earlywood density and latewood density of the tree), and these characteristics are thus under strong genetic control (h i 2 ranging from 0.60 to 0.86, and h f 2 from 0.56 to 0.68). It, to a lesser extent, applies to ring width characteristics at the tree level (viz. average ring width, and average earlywood width, latewood width and latewood percent of the tree) that show a lower heritability (h? from 0.18 to 0.28, and h f 2 from 0.22 to 0.36). Both block and block × family interaction contribute little to the total intertree variation encountered in 40 families from 9 blocks, while tree-to-tree variation within the family accounts for most (over 3/4) of the total intertree variation.Compared to the intertree variation (tree-to-tree variation within the family), the intratree variation in various wood characteristics studied is considerably larger in this species. It appears that most intraring wood density characteristics show a relatively smaller intertree variation but a relatively larger intratree variation as compared to ring width characteristics (except latewood width and latewood percent). Latewood width and latewood percent show the smallest intertree variation and the largest intratree variation. Between the two sources of the radial intratree variation, cambial age explains much more variation in most intraring wood density characteristics, while ring width accounts for more variation in earlywood width, latewood width and intraring density variation. This indicates that wood density of growth rings in this species is dependent more on cambial age than ring width (growth rate). Among various wood density and ring width characteristics studies, maximum (latewood) density shows the strongest response to calendar year. This characteristics is thus a useful dendroclimatic parameter in this species.I would like to thank Dr. E.K. Morgenstern and Mr. D. Simpson for their involvement in the planning of this study. Thanks are also due to G. Chauret, T. Keenam, R. Ploure, V. Steel and C. Reitlingshoefer for their technical assistance  相似文献   

15.
Heartwood extracts from Amazonian trees cumaru-ferro (Dipteryx odorata), jatoba (Hymenaea courbaril), and guarita (Astronium lecointei) exhibit antioxidant activities comparable with that of α-tocopherol, a well-known antioxidant. This article reports the characterization of the antioxidant compounds in the extracts of the three heartwoods. Silica gel column chromatography of the cumaru-ferro EtOAc extract yielded (−)-(3R)-7,2′,3′-trihydroxy-4′-methoxyisoflavan and (+)-(3R)-8,2′,3′-trihydroxy-7,4′-dimethoxyisoflavan. Silica gel column chromatography followed by preparative high-performance liquid chromatography of the jatoba EtOAc extract yielded (−)-fisetinidol and (+)-trans-taxifolin. Chemical structures were assigned using electron-ionization mass spectrometry, 1H and 13C nuclear magnetic resonance (NMR) spectroscopy including nuclear Overhauser effect spectroscopy (NOESY), as well as optical rotation and circular dichroism. Gas chromatography-mass spectrometry demonstrated that the isolated compounds were predominant in the EtOAc extracts. In the guarita EtOAc extract, catechin and gallic acid were identified by comparing their retention times and mass fragmentation patterns with those of authentic samples. Antioxidant activity determined by the 1,1-diphenyl-2-picrylhydrazyl assay demonstrated that all these compounds had activities comparable with that of α-tocopherol. Part of this report was presented at the 57th Annual Meeting of the Japan Wood Research Society, Hiroshima, August 2007  相似文献   

16.
Models for predicting microfibril angle variation in Scots pine   总被引:1,自引:0,他引:1  

Context

Microfibril angle (MFA) is one of the key determinants of solid timber performance due to its strong influence on the stiffness, strength, shrinkage properties and dimensional stability of wood.

Aims

The aim of this study was to develop a model for predicting MFA variation in plantation-grown Scots pine (Pinus sylvestris L). A specific objective was to quantify the additional influence of growth rate on the radial variation in MFA.

Methods

Twenty-three trees were sampled from four mature Scots pine stands in Scotland, UK. Pith-to-bark MFA profiles were obtained on 69 radial samples using scanning X-ray diffractometry. A nonlinear mixed-effects model based on a modified Michaelis–Menten equation was developed using cambial age and annual ring width as explanatory variables.

Results

The largest source of variation in MFA (>90 %) was within trees, while between-tree variation represented just 7 % of the total. Microfibril angle decreased rapidly near the pith before reaching stable values in later annual rings. The effect of ring width on MFA was greater at higher cambial ages.

Conclusion

A large proportion of the variation in MFA was explained by the fixed effects of cambial age and annual ring width. The final model is intended for integration into growth, yield and wood quality simulation systems.  相似文献   

17.
The annual ring width, density and shrinkage variation from pith to bark in Chinese fir (Cunninghamia lanceolata) and Boka sugi (Cryptomeria japonicd) were studied and compared. The results show that the ring width decreased sharply from pith to bark for Chinese fir. However, the ring width variation pattern for Boka sugi followed a different way, i.e., the ring width decreased to the fifth ring, increased to the tenth ring, decreased again to the fifteenth, and then increased to the twentieth, where it became constant. The large variations of Boka sugi appeared to show the maintenance of fast growth for many years. The annual ring mean density of Chinese fir increased gradually from pith to bark. However, the density changes for Boka sugi indicated the opposite trend, i.e., the mean density decreased gradually from pith to bark. The former showed a pattern as the same as a pine and a larch, and the latter was often found in a cedar and a cypress. The longitudinal shrinkage in juvenile wood was much hig  相似文献   

18.
The behaviour of longitudinal shrinkage was investigated in the corewood of a swept, 17-year-old New Zealand radiata pine stem. Wood categories in terms of normal wood, mild compression wood and severe compression wood were identified microscopically using autofluorescence of lignin. Average longitudinal shrinkage was collated according to corewood location and wood category within corewood in the leaning and the vertical parts of the stem, and then maximum radial difference of longitudinal shrinkage within growth ring was examined. The results show that the average longitudinal shrinkage is significant (2.4%) in the corewood of the leaning part of the stem. Among wood categories, severer compression wood displays the highest (2.9%) average longitudinal shrinkage. In the context of this study, growth rings may consist of one of three types of wood: (1) only normal wood; (2) a single compression wood type; and (3) mixed-type wood. Where multiple compression woods co-existed with normal wood, the maximum radial difference of longitudinal shrinkage within the growth ring was found to be 4.0%. A strong correlation (R 2 = 0.90) between average MFA and average longitudinal shrinkage suggests a significant influence of the average MFA on average longitudinal shrinkage across the three growth ring types.  相似文献   

19.
Reduction in the rotation ages of softwood saw-log plantations in South Africa is causing increased proportions of low stiffness sawn lumber at final harvest. It has been shown for some species that the microfibril angle (MFA) of the S2 layer of tracheids is strongly related to the modulus of elasticity (MOE) of wood, even more so than wood density, especially in wood formed during juvenile growth. The objectives of this study were to describe the variation in MFA in young Pinus patula trees and to determine the relationship between MFA and the dynamic MOE of sawn P. patula lumber. Thirty 16- to 20-year-old trees from six compartments from the Mpumalanga escarpment were processed into discs and lumber. The MFA, density and ring width were measured at two height levels using Silviscan 3. The average annual ring MFA varied between 7° and 29°; the pattern of variation depended mainly on height level and the ring number from the pith. The MFA in P. patula followed the same within-tree variation trends as in New Zealand-grown Pinus radiata but the average MFA was lower in absolute terms and differences between height levels were less pronounced. The MFA and density exhibited highly significant Pearson correlations of 0.73 and 0.70, respectively, with board dynamic MOE. A multiple regression model, which included MFA, density and ring width, explained 71% of the variation in the dynamic MOE of boards. A sensitivity analysis on the model showed that MFA and density had approximately similar influences on predicting the dynamic MOE of Pinus patula boards.  相似文献   

20.
The relationships between bending properties, compressive strength, tracheid length, microfibril angle, and ring characteristics of 20-year-old Taiwania (Taiwania cryptomerioides Hay.) trees were examined. The trees came from different thinning and pruning treatments, but the practices showed no significant effect on the investigated properties. The results showed that based on comparison with the literature, plantation-grown immature Taiwania have noticeably lower average strength properties than mature trees of the same species. Wood density and bending and compressive strengths were not related to either tracheid length or microfibril angle in young Taiwania. There were positive relationships between bending strength and compressive strength. The wood density, ring width, earlywood width, earlywood density, and latewood percentage were the most important predictors of strength by simple linear regressions. The wood density and ring width/earlywood width may be considered as indicators for assessing the bending strength, while wood density and latewood percentage were the best predictors of compressive strength by multiple linear regressions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号