共查询到20条相似文献,搜索用时 15 毫秒
1.
R. J. Carmichael C. Whitfield L. K. Maxwell 《Journal of veterinary pharmacology and therapeutics》2013,36(5):441-449
Equine herpes myeloencephalopathy, resulting from equine herpes virus type 1 (EHV‐1) infection, is associated with substantial morbidity and mortality in the horse. As compared to other antiviral drugs, such as acyclovir, ganciclovir has enhanced potency against EHV‐1. This study investigated the pharmacokinetics of ganciclovir and its oral prodrug, valganciclovir, in six adult horses in a randomized cross‐over design. Ganciclovir sodium was administered intravenously as a slow bolus at a dose of 2.5 mg/kg, and valganciclovir was administered orally at a dose of 1800 mg per horse. Intravenously administered ganciclovir disposition was best described by a three‐compartment model with a prolonged terminal half‐life of 72 ± 9 h. Following the oral administration of valganciclovir, the mean observed maximum serum ganciclovir concentration was 0.58 ± 0.37 μg/mL, and bioavailability of ganciclovir from oral valganciclovir was 41 ± 20%. Superposition predicted that oral dosing of 1800‐mg valganciclovir two times daily would fail to produce and maintain effective plasma concentrations of ganciclovir. However, superposition suggested that i.v. administration of ganciclovir at 2.5 mg/kg every 8 h for 24 h followed by maintenance dosing of 2.5 mg/kg every 12 h would maintain effective ganciclovir serum concentrations in most horses throughout the dosing interval. 相似文献
2.
Pharmacokinetics of phenobarbital in the horse 总被引:2,自引:0,他引:2
S H Duran W R Ravis W M Pedersoli J Schumacher 《American journal of veterinary research》1987,48(5):807-810
Pharmacokinetics of phenobarbital was examined in 6 mature horses after 12 mg of phenobarbital/kg of body weight was infused over 20 minutes. Biexponential decrease in serum phenobarbital concentrations was observed with a distribution-phase half-life of 0.101 +/- 0.086 hour (mean +/- SD) and a terminal-phase elimination half-life of 18.3 +/- 3.65 hours. The volume of distribution at steady state was 0.803 +/- 0.070 L/kg. Total body clearance of phenobarbital was 30.8 +/- 6.2 ml/h/kg. The high clearance in the horse seems to explain the markedly shorter half-life of phenobarbital in this species. Seemingly, 6.65 mg of phenobarbital/kg as a 20-minute infusion given every 12 hours would provide approximate peaks of 29 micrograms/ml and troughs of 15 micrograms/ml. A loading dose of 12 mg of phenobarbital/kg would be appropriate for this regimen. 相似文献
3.
B. T. ABASS ‡ B. M. Q. WEAVER G. E. STADDON A. W. WATERMAN 《Journal of veterinary pharmacology and therapeutics》1994,17(5):331-338
Abass, B.T., Weaver, B.M.Q., Staddon, G.E., Waterman, A.W. Pharmacokinetics of thiopentone in the horse. J. vet. Pharmacol. Therap . 17 , 331–338.
The pharmacokinetics of thiopentone sodium administered intravenously as a single dose (11 mg/kg) were studied in acepromazine pre-medicated horses and ponies in which anaesthesia was maintained with either halothane (Group 1) or isoflurane (Group 2). The results showed that the disposition kinetics of thiopentone in horses and ponies were best described by a three-compartment open model. In plasma, a very short initial distribution phase in both horses and ponies, half-life 1.4 ± 1.2 min (mean ± SD) and 1.3 ± 0.7 min, respectively, was obtained, which was followed by a second comparatively slower redistribution phase, half-life 16 ± 12 min and 11 ± 5 min, respectively. The volume of distribution for the drug was large, especially in the ponies which received isoflurane (1127 ± 86 ml/kg). compared to the horses which received halothane (742 ± 89 ml/kg). The drug had a somewhat shorter elimination half-life in the horses (147 ± 21 min) than in the ponies (222 ± 44 min), but no obvious difference in clearance of the drug was observed between the horses (3.5 ± 0.5 ml/min/kg) and ponies (3.6 ± 0.8 ml/min/kg). 相似文献
The pharmacokinetics of thiopentone sodium administered intravenously as a single dose (11 mg/kg) were studied in acepromazine pre-medicated horses and ponies in which anaesthesia was maintained with either halothane (Group 1) or isoflurane (Group 2). The results showed that the disposition kinetics of thiopentone in horses and ponies were best described by a three-compartment open model. In plasma, a very short initial distribution phase in both horses and ponies, half-life 1.4 ± 1.2 min (mean ± SD) and 1.3 ± 0.7 min, respectively, was obtained, which was followed by a second comparatively slower redistribution phase, half-life 16 ± 12 min and 11 ± 5 min, respectively. The volume of distribution for the drug was large, especially in the ponies which received isoflurane (1127 ± 86 ml/kg). compared to the horses which received halothane (742 ± 89 ml/kg). The drug had a somewhat shorter elimination half-life in the horses (147 ± 21 min) than in the ponies (222 ± 44 min), but no obvious difference in clearance of the drug was observed between the horses (3.5 ± 0.5 ml/min/kg) and ponies (3.6 ± 0.8 ml/min/kg). 相似文献
4.
Steel Bolton Preechagoon & Charles 《Journal of veterinary pharmacology and therapeutics》1998,21(6):433-436
The purpose of this study was to determine the pharmacokinetics and absolute bioavailability of cisapride after intravenous (i.v.) and intragastric (i.g.) administration in healthy, adult horses. Five animals received single doses of 0.1 mg/kg, 0.2 mg/kg and 0.4 mg/kg cisapride by the i.g. route in an open, randomized fashion on different occasions separated by a washout period of at least 48 h. Four of these horses were also given a single i.v. dose of 0.1 mg/kg cisapride. Jugular venous blood was collected periodically up to 24 h after dosing. Plasma cisapride concentrations were measured by high-performance liquid chromatography.
There was considerable inter individual variability in pharmacokinetic parameters. The mean (SD) values for systemic clearance ( Cl ) and steady-state volume of distribution ( V ss) were 494 (43.6) mL/h/kg and 1471 (578) mL/kg, respectively. Although the rate of cisapride absorption was quite rapid, only about half the i.g. dose was absorbed systemically. The average terminal half-life ( t½ ) calculated over three i.g. doses was 2.06 h and that for i.v. administration was 2.12 h. The pharmacokinetics of cisapride from 0.1 mg/kg to 0.4 mg/kg were independent of the i.g. dose. 相似文献
There was considerable inter individual variability in pharmacokinetic parameters. The mean (SD) values for systemic clearance ( Cl ) and steady-state volume of distribution ( V ss) were 494 (43.6) mL/h/kg and 1471 (578) mL/kg, respectively. Although the rate of cisapride absorption was quite rapid, only about half the i.g. dose was absorbed systemically. The average terminal half-life ( t
5.
Pharmacokinetics of tinidazole in the horse 总被引:1,自引:0,他引:1
S. PYÖRÄLÄ T. KOTILAINEN P. SILVENNOINEN U. HÄNNINEN M. MERO L. KAARTINEN 《Journal of veterinary pharmacology and therapeutics》1990,13(1):76-80
Serum tinidazole concentrations were monitored in five clinically healthy adult horses after intravenous (i.v.) and oral administration of the drug (15 mg/kg and 25 mg/kg, respectively). After i.v. administration, the mean residence time was 7.0 h, the elimination half-life 5.2 h and the body clearance rate 1.6 ml/min/kg. The distribution volume was found to be 660 ml/kg. After oral administration, the mean residence time was 8.5 h, the absorption half-life 1.1 h and the bioavailability essentially 100%. In view of the in-vitro sensitivities of various anaerobic bacteria, a dosage of 10-15 mg/kg of tinidazole, orally, at 12-h intervals, can be recommended for the treatment of anaerobic infections in horses. 相似文献
6.
Pharmacokinetics of chloramphenicol in the neonatal horse 总被引:1,自引:0,他引:1
GORDON W. BRUMBAUGH RONALD J. MARTENS HUMPHREY D. KNIGHT MICHAEL T. MARTIN 《Journal of veterinary pharmacology and therapeutics》1983,6(3):219-227
Chloramphenicol sodium succinate was administered as an intravenous bolus (50 mg/kg) to eight foals which weighed 49–57 kg (mean ± 1 standard deviation = 53.19 ± 2.66) each, and were 1–9 days (4.5 ± 2.56) of age. The drug was rapidly distributed and followed first-order elimination. Mean pharmacokinetic values were: zero-time serum concentration (C0 ) = 36.14 μg/ml (±14.80); apparent specific volume of distribution ( Vd ) = 1.614 1/kg (±0.669); and elimination rate constant ( K ) = 0.7295 h-1 (±0.3066) which corresponds to a biological half-life ( t 1/2 ) = 0.95 h. These values do not differ greatly from those reported for adult horses and ponies.
A suspension of chloramphenicol was administered by nasogastric tube (50 mg/kg) to a second group of seven foals which weighed 49 to 57 kg (51.34 ± 2.82) each and were 1 to 7 days (4.43 ± 1.90) of age. A mean peak serum chloramphenicol concentration of 23.97 μg/ml (±7.06) was achieved 1.14h (±0.63) after administration. The bioavailability of this preparation was 83.27 percent. 相似文献
A suspension of chloramphenicol was administered by nasogastric tube (50 mg/kg) to a second group of seven foals which weighed 49 to 57 kg (51.34 ± 2.82) each and were 1 to 7 days (4.43 ± 1.90) of age. A mean peak serum chloramphenicol concentration of 23.97 μg/ml (±7.06) was achieved 1.14h (±0.63) after administration. The bioavailability of this preparation was 83.27 percent. 相似文献
7.
Soma LR Uboh CE Guan F Moate P Luo Y Teleis D Li R Birks EK Rudy JA Tsang DS 《Journal of veterinary pharmacology and therapeutics》2004,27(2):71-77
The pharmacokinetics of clenbuterol (CLB) following a single intravenous (i.v.) and oral (p.o.) administration twice daily for 7 days were investigated in thoroughbred horses. The plasma concentrations of CLB following i.v. administration declined mono-exponentially with a median elimination half-life ( t 1/2k ) of 9.2 h, area under the time–concentration curve ( AUC ) of 12.4 ng·h/mL, and a zero-time concentration of 1.04 ng/mL. Volume of distribution ( V d ) was 1616.0 mL/kg and plasma clearance ( Cl ) was 120.0 mL/h/kg. The terminal portion of the plasma curve following multiple p.o. administrations also declined mono-exponentially with a median elimination half-life ( t 1/2k ) of 12.9 h, a Cl of 94.0 mL/h/kg and V d of 1574.7 mL/kg. Following the last p.o. administration the baseline plasma concentration was 537.5 ± 268.4 and increased to 1302.6 ± 925.0 pg/mL at 0.25 h, and declined to 18.9 ± 7.4 pg/mL at 96 h. CLB was still quantifiable in urine at 288 h following the last administration (210.0 ± 110 pg/mL). The difference between plasma and urinary concentrations of CLB was 100-fold irrespective of the route of administration. This 100-fold urine/plasma difference should be considered when the presence of CLB in urine is reported by equine forensic laboratories. 相似文献
8.
M. A. Robinson F. Guan S. McDonnell C. E. Uboh L. R. Soma 《Journal of veterinary pharmacology and therapeutics》2015,38(4):321-329
Dermorphin is a μ‐opioid receptor‐binding peptide that causes both central and peripheral effects following intravenous administration to rats, dogs, and humans and has been identified in postrace horse samples. Ten horses were intravenously and/or intramuscularly administered dermorphin (9.3 ± 1.0 μg/kg), and plasma concentration vs. time data were evaluated using compartmental and noncompartmental analyses. Data from intravenous administrations fit a 2‐compartment model best with distribution and elimination half‐lives (harmonic mean ± pseudo SD) of 0.09 ± 0.02 and 0.76 ± 0.22 h, respectively. Data from intramuscular administrations fit a noncompartmental model best with a terminal elimination half‐life of 0.68 ± 0.24 (h). Bioavailability following intramuscular administration was variable (47–100%, n = 3). The percentage of dermorphin excreted in urine was 5.0 (3.7–10.6) %. Excitation accompanied by an increased heart rate followed intravenous administration only and subsided after 5 min. A plot of the mean change in heart rate vs. the plasma concentration of dermorphin fit a hyperbolic equation (simple Emax model), and an EC50 of 21.1 ± 8.8 ng/mL was calculated. Dermorphin was detected in plasma for 12 h and in urine for 48 or 72 h following intravenous or intramuscular administration, respectively. 相似文献
9.
10.
ObjectiveTo describe the pharmacodynamics and pharmacokinetics following an intravenous (IV) bolus dose of medetomidine in the horse.Study designProspective experimental trial.AnimalsEight, mature healthy horses age 11.7 ± 4.6 (mean ± SD) years, weighing 557 ± 54 kg.MethodsMedetomidine (10 μg kg?1) was administered IV. Blood was sampled at fixed time points from before drug administration to 48 hours post administration. Behavioral, physiological and biochemical data were obtained at predetermined time points from 0 minutes to 24 hours post administration. An algometer was also used to measure threshold responses to noxious stimuli. Medetomidine concentrations were determined by liquid chromatography-Mass Spectrometry and used for calculation of pharmacokinetic parameters using noncompartmental and compartmental analysis.ResultsPharmacokinetic analysis estimated that medetomidine peaked (8.86 ± 3.87 ng mL?1) at 6.4 ± 2.7 minutes following administration and was last detected at 165 ± 77 minutes post administration. Medetomidine had a clearance of 39.6 ± 14.6 mL kg?1 minute?1 and a volume of distribution of 1854 ± 565 mL kg?1. The elimination half-life was 29.1 ± 12.5 minutes. Glucose concentration reached a maximum of 176 ± 46 mg dL?1 approximately 1 hour post administration. Decreased heart rate, respiratory rate, borborygmi, packed cell volume, and total protein concentration were observed following administration. Horses lowered their heads from 107 ± 12 to 20 ± 10 cm within 10 minutes of drug administration and gradually returned to normal. Horse mobility decreased after drug administration. An increased mechanical threshold was present from 10 to 45 minutes and horses were less responsive to sound.Conclusion and clinical relevance Behavioral and physiological effects following intravenous administration positively correlate with pharmacokinetic profiles from plasma medetomidine concentrations. Glucose concentration gradually transiently increased following medetomidine administration. The analgesic effect of the drug appeared to have a very short duration. 相似文献
11.
Pharmacokinetic and pharmacodynamic parameters were established for enantiomers of the non-steroidal anti-inflammatory drug (NSAID) ketoprofen (KTP), each administered separately at a dose level of 1.1 mg/kg to a group of six New Forest geldings, in a three-period cross-over study using a tissue cage model of inflammation. For both S(+)- and R(-)-KTP, penetration into tissue cage fluid (transudate) and inflamed tissue cage fluid (exudate) was rapid, and clearances from exudate and transudate were much slower than from plasma. AUC values were, therefore, higher for exudate and, to a lesser degree, transudate than for plasma. Unidirectional chiral inversion of R(-)- to S(+)-KTP was demonstrated. Administration of both enantiomers produced marked, time-dependent inhibition of synthesis of serum thromboxane B2 and exudate prostaglandin E2 , indicating non-selective inhibition of cyclo-oxygenase (COX) isoenzymes COX-1 and COX-2 respectively. Administration of both enantiomers also produced partial inhibition of β-glucuronidase release into inflammatory exudate and of bradykinin-induced skin oedema. It is suggested that, although S(+)-KTP is generally regarded as the eutomer, R(-)-KTP was probably at least as active in inhibiting bradykinin swelling. Pharmacokinetic/pharmaco dynamic (PK/PD) modelling of the data could not be undertaken following R(-)-KTP administration because of chiral inversion to S(+)-KTP. but pharmacodynamic parameters, E max , EC50, N , k eo and t 1/2(keO), were determined for S(+)-KTP using the sigmoidal E max equation. PK/DP modelling provided a novel means of comparing and quantifying several biological effects of KTP and of investigating its mechanisms of action. 相似文献
12.
Davis JL Messenger KM LaFevers DH Barlow BM Posner LP 《Journal of veterinary pharmacology and therapeutics》2012,35(1):52-58
The purpose of this study was to determine the pharmacokinetics of buprenorphine following intravenous (i.v.) and intramuscular (i.m.) administration in horses. Six horses received i.v. or i.m. buprenorphine (0.005 mg/kg) in a randomized, crossover design. Plasma samples were collected at predetermined times and horses were monitored for adverse reactions. Buprenorphine concentrations were measured using ultra-performance liquid chromatography with electrospray ionization mass spectrometry. Following i.v. administration, clearance was 7.97±5.16 mL/kg/min, and half-life (T(1/2)) was 3.58 h (harmonic mean). Volume of distribution was 3.01±1.69 L/kg. Following i.m. administration, maximum concentration (C(max)) was 1.74±0.09 ng/mL, which was significantly lower than the highest measured concentration (4.34±1.22 ng/mL) after i.v. administration (P<0.001). Time to C(max) was 0.9±0.69 h and T(1/2) was 4.24 h. Bioavailability was variable (51-88%). Several horses showed signs of excitement. Gut sounds were decreased 10±2.19 and 8.67±1.63 h in the i.v. and i.m. group, respectively. Buprenorphine has a moderate T(1/2) in the horse and was detected at concentrations expected to be therapeutic in other species after i.v. and i.m. administration of 0.005 mg/kg. Signs of excitement and gastrointestinal stasis may be noted. 相似文献
13.
M. L. Rezende K. N. Grimsrud S. D. Stanley E. P. Steffey K. R. Mama 《Journal of veterinary pharmacology and therapeutics》2015,38(1):15-23
The aim of the study was to describe the pharmacokinetics and selected pharmacodynamics of intravenous dexmedetomidine in horses. Eight adult horses received 5 μg/kg dexmedetomidine IV. Blood samples were collected before and for 10 h after drug administration to determine dexmedetomidine plasma concentrations. Pharmacokinetic parameters were calculated using noncompartmental analysis. Data from one outlier were excluded from the statistical summary. Behavioral and physiological responses were recorded before and for 6 h after dexmedetomidine administration. Dexmedetomidine concentrations decreased rapidly (elimination half‐life of 8.03 ± 0.84 min). Time of last detection varied from 30 to 60 min. Bradycardia was noted at 4 and 10 min after drug administration (26 ± 8 and 29 ± 8 beats/min respectively). Head height decreased by 70% at 4 and 10 min and gradually returned to baseline. Ability to ambulate was decreased for 60 min following drug administration, and mechanical nociceptive threshold was increased during 30 min. Blood glucose peaked at 30 min (134 ± 24 mg/dL) and borborygmi were decreased for the first hour after dexmedetomidine administration. Dexmedetomidine was quickly eliminated as indicated by the rapid decrease in plasma concentrations. Physiological, behavioral, and analgesic effects observed after dexmedetomidine administration were of short duration. 相似文献
14.
K W Hinchcliff S M McGuirk P S MacWilliams 《American journal of veterinary research》1987,48(8):1256-1260
Pharmacokinetics of phenolsulfonphthalein (PSP) in horse and pony mares was determined after injection of 1 mg/kg of body weight, IV. A plasma PSP concentration vs time curve was described adequately in horses and ponies by an open, 2-compartment model. There were significant differences in the elimination phase parameters, apparent volume of distribution at steady state, and apparent volume of distribution of horses and ponies. The harmonic mean elimination half-life of PSP in horses was significantly longer (P less than 0.001) than that in the ponies (16.4 and 10.0 minutes, respectively). The mean plasma clearance of PSP in horses was significantly (P less than 0.05) less than that in ponies (0.00554 and 0.00701 L/min/kg, respectively). There was no difference between horses and ponies in the metabolic clearance of PSP. The fraction of the administered dose of PSP excreted in the urine in the first 15 minutes was not significantly different between horses and ponies. 相似文献
15.
The pharmacokinetics and bioavailability of cephalothin given to 6 horse mares at a dosage level of 11 mg/kg of body weight IV or IM were investigated. The disposition of cephalothin given IV was characterized by a rapid disposition phase with a mean half-life of 2.89 minutes and a subsequent slower elimination phase with a mean half-life of only 14.7 minutes. The mean residence time of cephalothin was 10.6 +/- 2.11 minutes. The total plasma clearance of cephalothin averaged 13.6 ml/min/kg and was caused by metabolism and renal elimination. Renal clearance of cephalothin averaged 1.32 ml/min/kg and accounted for elimination of about 10.1% of the administered dose. The volume of distribution at steady state averaged 151 mg/kg. Plasma protein binding of cephalothin at a concentration of 10 micrograms/ml averaged 17.9 +/- 2.5%. Cephalothin was rapidly metabolized to desacetylcephalothin. Maximum plasma desacetylcephalothin concentrations were observed in the blood samples collected 5 minutes after IV doses and averaged 22.9 micrograms/ml. The apparent half-life of desacetylcephalothin in plasma was 41.6 minutes and its renal clearance averaged 4.49 +/- 2.43 ml/min/kg. An average of 33.9% of the dose was recovered in the urine as desacetylcephalothin. The maximum plasma cephalothin concentration after IM administration was 11.3 +/- 3.71 micrograms/ml. The terminal half-life was 47.0 minutes and was longer than the half-life after IV administration. The bioavailability of cephalothin given IM ranged from 38.3% to 93.1% and averaged 65.0 +/- 20.5%. 相似文献
16.
The priority in treating the equine patient with acute diarrhoea is to stabilise the haemodynamic aberrations secondary to the fluid and electrolyte losses. Once this has been initiated and the patient is stabilised ancillary treatments may be beneficial. Besides the well established effects of NSAIDs and polymixin B on systemic inflammation, recent studies suggest that the use of DTOS to bind bacterial toxins and Saccharomyces boulardii to reduce the severity and duration of diarrhoea may be beneficial. The justification for using probiotic products is scant. There is no evidence to suggest that systemic use of antimicrobials benefits equine patients with colitis, with the exception of metronidazole in cases of clostridial diarrhoea. In light of their potentially detrimental effects, their use can, in the opinion of the authors, not be advocated. Better understanding of the pathways of systemic inflammation and more selective anti‐inflammatory drugs may be of great benefit in the future. 相似文献
17.
Davis JL Papich MG Morton AJ Gayle J Blikslager AT Campbell NB 《Journal of veterinary pharmacology and therapeutics》2007,30(1):43-48
The purpose of this study was to determine the pharmacokinetics of etodolac following oral and intravenous administration to six horses. Additionally, in vitro cyclooxygenase (COX) selectivity assays were performed using equine whole blood. Using a randomized two-way crossover design, horses were administered etodolac (20 mg/kg) orally or intravenously, with a minimum 3-week washout period. Plasma samples were collected after administration for analysis using high pressure liquid chromatography with ultraviolet detection. Following intravenous administration, etodolac had a mean plasma half-life (t(1/2)) of 2.67 h, volume of distribution (Vd) of 0.29 L/kg and clearance (Cl) of 234.87 mL/h kg. Following oral administration, the average maximum plasma concentration (Cmax)) was 32.57 mug/mL with a t(1/2) of 3.02 h. Bioavailability was approximately 77.02%. Results of in vitro COX selectivity assays showed that etodolac was only slightly selective for COX-2 with a COX-1/COX-2 selectivity ratio effective concentration (EC)50 of 4.32 and for EC80 of 4.77. This study showed that etodolac is well absorbed in the horse after oral administration, and may offer a useful alternative for anti-inflammatory treatment of various conditions in the horse. 相似文献
18.
19.
Pharmacokinetics of amikacin in the horse following intravenous and intramuscular administration 总被引:1,自引:0,他引:1
J. A. ORSINI L. R. SOMA J. E. ROURKE M. PARK‡ 《Journal of veterinary pharmacology and therapeutics》1985,8(2):194-201
The pharmacokinetics of amikacin sulfate (AK) were studied in the horse after intravenous (i.v.) and intramuscular (i.m.) administration. Serum (Cs), synovial (Csf) and peritoneal (Cpf) fluid concentrations of the drug were measured. Doses of 4.4, 6.6 and 11.0 mg/kg were given. The concentrations at 15 min following i.v. injection were 30.3 +/- 0.3, 61.2 +/- 6.9 and 122.8 +/- 7.4 micrograms/ml, respectively, for the 4.4, 6.6 and 11.0 mg/kg doses. Mean peak Cs values after the intramuscular injections occurred at 1.0 h post-injection and were 13.3 +/- 1.6, 23.0 +/- 0.6 and 29.8 +/- 3.2 micrograms/ml, respectively. The t 1/2 of amikacin was 1.44, 1.57 and 1.14 h for the 4.4, 6.6 and 11.0 mg/kg doses, respectively. In this study, minimum inhibitory concentrations (MIC) of amikacin sulfate were determined for six pathogens. Based on the MIC and the pharmacokinetic parameters, it would appear that the usual therapeutic dose of amikacin would be between 4.4 and 6.6 mg/kg twice daily and, for the more serious life-threatening infections, dosing three times a day. 相似文献
20.
G. della Rocca A. Di Salvo P. Cagnardi M.C. Marchesi M.B. Conti 《Research in veterinary science》2014
It is well-known that old animals show physiologic and/or pathologic variation that could modify the pharmacokinetics of drugs and the related pharmacodynamic response. In order to define the most appropriate therapeutic protocol in old horses, pharmacokinetic profile and safety of naproxen were investigated in horses aged over 18 years after oral administration for 5 days at the dose of 10 mg/kg b.w./day. After the first administration, the maximum concentration (Cmax 44.21 ± 9.21 μg/mL) was reached at 2.5 ± 0.58 h post-treatment, the harmonic mean terminal half-life was 6.96 ± 1.73 h, AUC0–24h was 459.71 ± 69.95 h μg/mL, MRT was 7.44 ± 0.74 h and protein binding was 98.47 ± 2.72%. No drug accumulation occurred with repeated administrations. No clinical and laboratory changes were detected after administration of naproxen. Gastric endoscopies performed after the treatment did not show pathological changes of the gastric mucosa. 相似文献