首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
哒螨灵农药在土壤中的降解吸附和移动特性   总被引:8,自引:1,他引:7  
采用室内模拟试验方法,研究了哒螨灵在3种土壤中的降解、吸附和移动特性.结果表明,25℃下,哒螨灵在汀两红壤、河南二合土和东北黑土中的降解半衰期分别为41.0、55.9和72.2 d,属于易降解农药,其降解速率依次为江西红壤>河南二合土>东北黑土.酸性条件有利于哒螨灵的降解,土壤pH值对哒螨灵降解的影响比土壤有机质含量大.3种土壤对哒螨灵农药的吸附均较好地符合Freundich方程,吸附系数kd值分别为3.35×103、6.17×103和8.48×103,具有极强的吸附性,且土壤有机质含量越高,对哒螨灵的吸附性越强.土壤对哒螨灵的吸附自由能,变化均小于40 kJ·mol-1,属于物理吸附.哒螨灵在土壤中不易移动,3种土壤薄层移动试验的Rf,值均仪为0.05,正常条件下不会造成对地下水的污染.  相似文献   

2.
环丙沙星在土壤中的吸附及降解研究进展   总被引:1,自引:0,他引:1  
刘畅  李瑜 《北京农业》2016,(4):195-199
环丙沙星等喹诺酮类抗生素广泛应用在畜禽养殖和水产养殖中,用量大,体内代谢转化率低,可通过畜禽粪便等直接进入土壤环境。残留在土壤中的抗生素不仅污染土壤,积累到一定量会破坏土壤生态系统,而且还会污染农产品或通过淋滤作用污染水体,最终威胁人类健康。基于此,主要论述p H值、离子强度和金属离子、有机质及其他土壤理化性质对环丙沙星在土壤中吸附作用的影响,对环丙沙星在土壤中可能的降解机理进行初步综述,并提出该领域今后应深入研究的问题。  相似文献   

3.
壬基酚在土壤中的降解和吸附特性   总被引:3,自引:1,他引:3       下载免费PDF全文
采用室内模拟试验,研究了壬基酚(NP)在3种土壤中的降解和吸附特性。结果表明,NP在土壤中的降解分为快速和慢速降解阶段,半衰期分别为6.74~9.72d和70.02~78.77d。降解前期3种土壤中的降解速率相差较大,依次为黑龙江黑土>北京潮土>广西红壤,与土壤有机质含量相一致,随培养时间推移,降解速率差异减小。NP在土壤中具有不同结合状态及异构体降解性不同可能是出现慢速降解阶段的主要原因。土壤对NP的吸附较为符合Linear等温吸附方程(r≥0.9686),黑龙江黑土、北京潮土和广西红壤中吸附常数Kd值分别为65.52、31.66和32.71,黑龙江黑土对NP的吸附最强,广西红壤和北京潮土的吸附能力较为接近。各土壤理化性质参数中,以土壤有机质含量对NP吸附的影响最大(r=0.9950),阳离子交换量对吸附也有一定影响,粘粒含量和pH对吸附的影响较小。NP在3种土壤中的有机碳吸附常数KOC在3696.22~4334.51之间,移动性很弱,吸附自由能变化均小于40kJ·mol-1,NP在土壤中的吸附以物理吸附为主。  相似文献   

4.
磺胺二甲嘧啶在土壤中的吸附和光催化降解作用   总被引:2,自引:0,他引:2  
研究了磺胺二甲嘧啶(Sulfamethazine,SM2)在土壤中的等温吸附和光催化降解特征,考察了催化剂TiO2用量、土壤水分含量、光照时间和初始浓度等因素对降解效果的影响。结果表明,土壤表面对SM2吸附较小,90%以上的SM2以游离形式存在于土壤中;催化剂TiO2可明显促进SM2的光降解,增加土壤水分含量和延长光照时间,均能显著提高SM2的光降解率,而SM2的初始浓度对光降解效果影响较小。  相似文献   

5.
采用室内模拟试验方法,研究了虱螨脲在3种土壤中的降解、吸附和移动特性.结果表明:25℃下,虱螨脲在江西红壤中的降解半衰期为101 d,属于中等降解农药;在太湖水稻土和东北黑土中的降解半衰期分别为74.5 d和55.5 d,属于较易降解农药.土壤有机质含量是影响虱螨脲降解速率的主要因素;3种土壤对虱螨脲具有较强的吸附性,且土壤有机质含量越高,对虱螨脲的吸附性越强;3种土壤对虱螨脲的吸附自由能变化均小于40kJ·mol-1,属于物理吸附;虱螨脲在土壤中不易移动,正常条件下不会造成地下水的污染.  相似文献   

6.
灭多威在辣椒上的残留降解动态研究   总被引:1,自引:0,他引:1  
灭多威用于防治辣椒钻蛀性害虫,在辣椒中降解较快,半衰期为1 23~2 05天,药后2h灭多威残留不超过1mg/kg,药后5天未检出。  相似文献   

7.
对偏二甲肼在红壤土和黄棕壤土中的吸附及降解进行了研究。通过对不同浓度的偏二甲肼在这两种土壤中的吸附的研究,用改进的平衡法给出了偏二甲肼在这两种土壤中的吸附等温线,得出了它们的吸附常数。通过对偏二甲肼降解产生的中间产物甲醛的初步研究,得到偏二甲肼在两种土壤中降解产生的甲醛浓度随时间的变化趋势,并对测得结果进行了讨论。  相似文献   

8.
二甲戊乐灵在土壤中的吸附及微生物降解   总被引:10,自引:3,他引:10  
通过振荡平衡法和室内培养法分别研究了二甲戊乐灵在土壤中的吸附和降解规律。结果表明,二甲戊乐灵在棕壤中容易被吸附,且解吸困难,其吸附属于物理性吸附。二甲戊乐灵在土壤中的降解主要是土壤微生物的作用,其在灭菌土壤中降解速率很慢。土壤含水量的多少对其降解速率有一定影响。30%FC下二甲戊乐灵在灭菌及未灭菌土壤中的半衰期分别为182.4d和162.2d;75%FC下的灭菌土壤中半衰期为97.63d,是其在未灭菌土壤中半衰期35.36d的2.76倍;在120%FC下灭菌土壤中的半衰期为87.74d,是其在未灭菌土壤中半衰期31.80d的2.76倍。  相似文献   

9.
采用室内模拟实验方法,以太湖水稻土、江西红壤和东北黑土为代表性土壤,研究了噻虫啉等3种烟碱类杀虫剂在土壤中的降解、吸附特性,并利用GUS(Ground Ubiquity Score)指数分析了其对地下水污染的影响。结果表明,3种烟碱类杀虫剂在3种土壤中均较易降解,降解半衰期在5~31d之间,属于易降解农药,降解特性与土壤理化性质及农药本身性质有关。3种烟碱类杀虫剂在江西红壤、太湖水稻土与东北黑土中的吸附较好地符合Freundlich方程,Kd值在0.30~14.70之间,KOC在42.8~1750.9之间,属难吸附农药。吸附性强弱与农药本身溶解性和土壤有机质含量有关,水溶性越强吸附越弱,有机质含量越高,吸附性越强。3种烟碱类杀虫剂在太湖水稻土中的GUS值均小于1.8,而在江西红壤中,其GUS值均大于1.8,这3种杀虫剂在江西红壤中均有一定的淋溶性,对地下水均有一定的污染风险。  相似文献   

10.
烯效唑在土壤中的吸附、迁移及大田中降解的动态   总被引:2,自引:0,他引:2  
本文采用气相色谱法研究植物生长调节剂烯效唑在土壤环境中的行为,结果表明烯效唑在土壤中的吸附性、迁移性随土壤不同而异,其吸附性与有机质含量成正比,迁移性与有机质含量成反比。烯效唑在土壤中的降解情况与土壤条件有关,土壤微生物在烯效唑的降解中起重要作用。烯效唑在室外大田土壤中的降解速率大大高于室内同样土壤,大田施用烯效唑无明显累积效应  相似文献   

11.
生物炭对土壤重金属形态特征及迁移转化影响研究进展   总被引:2,自引:1,他引:2  
在土壤重金属防治中,生物炭因其特有结构和性质,可降低土壤重金属活性和移动性,减少土壤中重金属生物有效性,达到修复重金属污染土壤目的。文章综述近年来国内外有关生物炭修复土壤重金属研究进展,阐述生物炭对土壤重金属生物有效性、重金属形态、重金属迁移转化等方面影响,分析作用机理并提出展望。  相似文献   

12.
为评价异恶唑草酮的环境安全性,采用室内模拟试验方法,研究了异恶唑草酮在不同环境介质(空气、水和土壤表面)的挥发特性,在不同质地土壤(潮土、水稻土、黑土和红壤土)的吸附特性,和2种水-沉积物系统中的降解特性。结果表明:异恶唑草酮在潮土、水稻土、黑土和红壤土中的吸附均符合弗罗因德利希(Freundlich)方程,吸附常数值分别为0.640 6、1.376 2、0.816 9和1.289 5,在土壤中属于难吸附农药。异恶唑草酮在湖泊(杭州西湖)水-沉积物系统和河流(杭州运河)水-沉积物系统中的好氧降解和厌氧降解均符合一级动力学方程,好氧降解半衰期分别为73.7 h和75.3 h,厌氧降解半衰期分别为42.3 h和43.0 h,在水-沉积物系统中属于易降解农药。在20~25 ℃、气体流速为500 mL·min-1的条件下,异恶唑草酮在空气、水和土壤表面的挥发率均小于1%,属于难挥发性农药。试验结果表明,异恶唑草酮在空气、水和土壤表面难挥发,在土壤中难吸附,在水-沉积物系统中降解快,环境风险较小。  相似文献   

13.
应用液相色谱法测定坪草净的有效成分甲磺隆和苄嘧磺隆在3种土壤中的残留动态。结果显示:2666.66mg·L-1的10%坪草净均匀喷雾后6h,甲磺隆在黄棕壤、黄褐土和黄潮土中的残留量分别为0.95、0.84和1.05mg·kg-1,而苄嘧磺隆在黄棕壤、黄褐土和黄潮土中的残留量分别为20.15、18.76和24.24mg·kg-1。甲磺隆、苄嘧磺隆在黄棕壤、黄褐土和黄潮土中的半衰期分别为55.5d和42.5d、88.9d和59.2d、216.6d和110.0d。试验结果表明,坪草净有效成分在黄棕壤中降解最快,而苄嘧磺隆比甲磺隆在3种土壤中更易降解。  相似文献   

14.
为了解不同生物质炭对土壤等温吸附磷酸盐的影响,选取桃木、花生壳和玉米秸秆,在300和500℃下通过慢速热裂解制备生物质炭,按0%、0.5%、1%、3%和5%质量比加入到红壤和潮土中,经过4次干湿交替平衡后,加入系列磷酸盐溶液,测定其等温吸附特征。结果表明:1)所有土壤磷酸盐等温吸附行为均可用Langmuir方程进行拟合,添加活性炭均降低了红壤和潮土的等温吸附参数,而添加生物质炭显著地提高了红壤磷酸盐最大吸附量(q_m),q_m值平均提高了11%;但潮土的q_m值显著降低,平均降低了30%,而K_L(Langmuir等温吸附常数)和最大缓冲容量(MBC)平均分别提高了179%和69%。这说明生物质炭对磷酸盐等温吸附的影响不仅取决于土壤属性,而且与生物质炭特性及其用量也存在一定的联系,q_m值与K_L及MBC值之间的关系就反映出这种复杂性,相关的机理还有待进一步研究。  相似文献   

15.
生物炭对噻虫胺在土壤中吸附和降解的影响   总被引:1,自引:1,他引:1  
为探究由不同热解温度和原材料制备的生物炭对噻虫胺在黑土中吸附和降解的影响,以玉米秸秆和猪粪为原材料,分别在300、500℃和700℃下限氧热解制备了六种生物炭,并将其添加到黑土中,研究生物炭对土壤理化性质与噻虫胺在土壤中吸附-降解的影响。结果表明:添加生物炭可显著提高土壤的pH、有效态磷和有机碳含量,降低土壤的H/C。噻虫胺在土壤及生物炭-土壤混合体系中的吸附过程符合Freundlich模型。添加生物炭显著提高了土壤对噻虫胺的吸附,且吸附量随生物炭热解温度的升高而增大。不同热解温度的生物炭对噻虫胺在土壤中降解的影响不同。高温生物炭-土壤混合体系的强吸附能力降低了噻虫胺被微生物降解的速率,但噻虫胺在低温生物炭-土壤混合体系中具有相对较高的微生物降解速率。因此,在利用生物炭修复农药污染土壤时应该充分考虑生物炭的类型和性质。  相似文献   

16.
采用振荡平衡法研究了阴离子表面活性剂十二烷基硫酸钠(SDS)存在下噻吩磺隆在2种土壤中的吸附行为.结果表明:SDS会使噻吩磺隆在红壤中的吸附量减少,但随着SDS质量浓度的增大,噻吩磺隆的吸附常数呈现增加—减少—增加的变化趋势;噻吩磺隆在河潮土中的吸附受SDS的影响更为复杂,表现为较低质量浓度(小于700 mg/L)的SDS减少噻吩磺隆的吸附量,而较高质量浓度(700~900 mg/L)的SDS则增加噻吩磺隆的吸附量.SDS对噻吩磺隆在2种土壤中的吸附均可用Freundlich吸附等温式进行描述.  相似文献   

17.
应用同位素示踪技术,研究了95Zr在小粉土,黄红壤,青紫泥和海泥中的吸附和解吸,结果表明,95Zr进入淹水土壤之后,迅速地被土壤吸附而达到吸附平衡,不易解吸,吸附率和分配系数大小排列顺序均为:海泥,青紫泥,小粉土,黄红壤,解吸因数的大小排列顺序为:黄红壤,小粉土,青紫泥,海泥,95Zr在土壤中的动态变化可用封闭二分室进行描述,其动态变化规律为:小粉土C1=1474.7(1-e^-3.5275t),黄红壤C2=1481.6(1-e^-2.7535t),青紫泥C3=(1-e^-5.4104t),海泥C4=1750.8(1-e^-9.7195t)。  相似文献   

18.
以甘蔗渣为前驱材料,在3种温度(350、450、550℃)下制备不同碳化度的生物炭(分别记为BC350、BC450、BC550),研究其对诺氟沙星在砖红壤中吸附行为的影响。结果表明,诺氟沙星在砖红壤和生物炭土壤上(W/W,1.0%)的吸附动力学过程包括快速和缓慢两个阶段,伪二级动力学模型能较好地拟合砖红壤和生物炭土壤吸附诺氟沙星的动力学过程(r≥0.963,P0.01);添加质量浓度分别为0.1%、0.2%、0.5%、0.8%、1.0%的3种生物炭提高了砖红壤对诺氟沙星的吸附量,且随着生物炭添加量的增加,吸附量逐渐增加,添加生物炭后砖红壤对诺氟沙星的单点吸附值是砖红壤的1.04~2.34倍。诺氟沙星在生物炭土壤中的吸附过程能够采用Freundlich模型、Langmuir模型和Tekmin模型进行较好的拟合(r≥0.910,P0.05);生物炭土壤对诺氟沙星的非线性吸附过程主要受到表面吸附作用、分配作用和其他微弱作用力共同影响。生物炭的施入可以提高土壤对有机污染物的吸附能力,从而降低有机污染物的生态环境风险。  相似文献   

19.
蛭石改性水稻秸秆生物炭在土壤中的短期降解   总被引:1,自引:0,他引:1  
稳定性是生物炭发挥固碳功能的基础,探究生物炭在土壤中的降解特征具有重要的现实意义。以水稻秸秆为生物质原料,在不同炭化温度和蛭石改性条件下制得一系列生物炭,探索其稳定性变化规律,并通过实验室恒温培养试验,研究了蛭石改性和未改性水稻秸秆生物炭在红壤、水稻土中的短期降解行为及其影响因素。水稻秸秆生物炭的碳含量随炭化温度的升高而增加,经蛭石改性后降低了20.3%~32.6%。当炭化温度从300℃升高至700℃时,生物炭的可溶性有机碳(DOC)含量表现为先增后减的变化趋势,在400℃时为最大值,700℃时为最小值。蛭石改性降低了所有生物炭的DOC含量。生物炭的H/C随炭化温度升高而降低,且经蛭石改性后有所降低。与300℃生物炭相比,700℃未改性和蛭石改性生物炭的热损失量分别降低了56.1%和56.8%。蛭石改性使生物炭的热损失量降低14.8%~45.6%。水稻秸秆生物炭的含碳官能团主要由芳香碳、烷氧碳与非取代脂肪烃组成,其中芳香碳含量最高;随着炭化温度的升高,生物炭中的芳香碳含量增加,烷氧碳与非取代脂肪烃含量下降;蛭石改性增加了生物炭中的芳香碳含量。与红壤相比,水稻土中生物炭的碳含量更低;与淹水条件相比,干旱条件下土壤中生物炭的碳含量更低。结果表明,蛭石改性在降低生物炭中碳含量的同时增加了生物炭的稳定性。相比于红壤,生物炭在水稻土中的碳降解速度更快;相比于淹水条件,干旱条件下生物炭的碳降解速度更快。综合来看,蛭石改性为显著影响生物炭在土壤中发生碳素降解的最主要因素,其次为土壤类型,水分状况的影响相对较弱。  相似文献   

20.
为了评价沙咪珠利对环境的初步影响,采用室内培养法研究三种不同土壤中沙咪珠利的降解作用,同时探究沙咪珠利对土壤微生物呼吸强度的影响,及对蚯蚓的急性毒性。结果表明,沙咪珠利易降解,降解速率随培养时间的延长和添加浓度的增加而降低。土壤中沙咪珠利的残留可影响土壤微生物呼吸,对南京地区黄棕壤中的微生物有中等毒性,对上海地区灰潮土中的土壤微生物作用不明显。人工土壤法测得沙咪珠利对蚯蚓LC_(50)(14 d)为9 255.90 mg·kg~(-1),毒性较低。研究表明,沙咪珠利是一种相对安全、易于降解的新型兽药。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号