首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the plane_section hypothesis of combination section,this paper describes the section strains of reinforced concrete columns with concrete cover under initial axial pressure and analyses the height of relative limit compression area and the stress of concrete and reinforcing bar of combination section in ultimate state.Meanwhile,the paper proposes practical calculation method of load capacity.  相似文献   

2.
Based on the elastic finite element analysis of the RC beam-wider-than-wall joint, two large-scale specimens of the direct anchoring beam-wider-than-wall joint are designed to test the joint behavior. The stresses and slips of longitudinal bars in the beam, load-bearing capacity and destruction form are observed and analyzed. The analysis and test results show that: The wide beam should be extended through into the wall for some length to make the flexural stress uniform along beam section width, thus the beam's bearing capacity can be achieved. The anchorage condition of the upper longitudinal bar in the beam outside the wall's width is poor, thus the anchorage length prescribed in the current CODE is not enough to ensure the bearing capacity and ductility of joints. The beam stirrups are very important to the anchorage of the upper longitudinal bar in the beam outside the wall's width. If the quantity of the beam stirrups is not enough, the wide beam in the joint area would have more cracks which decrease the bearing capacity and ductility of joints. Finally, a novel spatial truss mechanism model for the beam-wider-than-wall joint is put forward.  相似文献   

3.
Based on the reversed cyclic loading tests of 21 nearly full-size interior joints in completed reinforced concrete frames,the law of bond deterioration of beam bars crossing the joint is tested and analyzed,which is influenced by the axial load ratio,shear-compression ratio,reinforced bar strength,concrete strength and the relative length of beam bars crossing the joint. By the nonlinear fitting method, the formula of the bond stress r between steel crossing interior joints and concrete under different loading step is obtained. According to the loading approach, the propositional formula of the relative length of beam bars crossing the joint hc/d is presented, which is influenced by axial load ratio, shear-compression ratio ,reinforced bar strength and concrete strength.  相似文献   

4.
Through the comparative tests of prestressed and non-prestressed brick-walls un-der the repeated lateral loading,the effect of the prestress-force to the strain distribution in the non-prestressed bars of the structural columns has been investigated.This effect is beneficial:the pre-stress-force will reduce the value of strain in the bars of the lower part in the columns and uniformize the strain distribution along the whole height of the columns.Furthermore,instead of a strainreduction,the strain of prestressed be will increase along with the increasing of the lateral load.Thus,the coefficient of prestress-force-increase could be calculated in the tWo stages of the crack-resistance and ultimate bearing capacity.As a result,both the prestressed and non-prestressed barsare able to give the potential of their bearing capacity a full play,and improve the earthquake-resis-tant property.  相似文献   

5.
The flexural performance of the beams reinforced with both non-prestressed bars and prestressed bonded FRP bars was theoretically analyzed. Both the CFRP bar and the AFRP bar were taken as the representatives in the study. Correlativity of two kinds of balanced relative depth of compressive area, respectively corresponding to the yield of steel bar and to the rupture of FRP bar, was investigated. Therefore the influence of performance parameters of FRP on the flexural failure modes was analyzed. The results indicate that failure modes and two kinds of balanced relative depth of compressive area are with direct correlation, and the latter is directly influenced by the performance of the FRP bars. Adopting the short-term performance parameters or the long-term performance parameters, which considers the environmental factor, creep fracture factor, relaxation factor and materials coefficiency, would have different results. Failure mode I is the ideal one, while the others should be avoided. Prestressed control stress of CFRP bars with low-ductility should not be too high, otherwise the rupture of CFRP bars will happen before the yield of steel bars.  相似文献   

6.
焊接加固热作用对工形截面压弯钢构件承载性能的影响   总被引:1,自引:0,他引:1  
为研究焊接加固热作用及不同初始负载对工字形压弯钢柱承载性能的影响,基于考虑热影响的热结构耦合分析方法进行了热源模型热输入改进,并考虑初始几何缺陷、初始残余应力及摩擦等,完成了不同负载下焊接加固的3个工字形压弯钢柱的模拟分析。研究了焊接位移时程、腹板应力应变重分布及荷载位移关系,通过有限元分析与相应试验结果对比验证,进而获得了试验无法获得的焊接温度场、翼缘与加固板间的焊接应力应变重分布以及翼缘边缘屈服承载力等结果,并将承载力结果与规范计算结果对比,考察了现有设计方法。结果表明,焊接顺序决定焊接变形的发展过程,焊接热输入和初始负载共同决定持载焊接的位移变化范围和焊接残余变形的大小;初始负载越大,应力应变重分布往偏心受力方向发展更多,承载力越低,而初始残余应力不影响极限承载力;采用考虑热影响的有限元方法具有一定可行性和总体安全性,规范设计方法仍有可提升空间。  相似文献   

7.
In order to investigate the effective seismic capacity design measures of shear wall and to realize expected failure modes under strong earthquake,the existing problems in current seismic capacity design measures are pointed out through theoretical analysis.The effectiveness of the measures of Chinese seismic design code is verified by fine finite element dynamic time-history analysis of examples.Improving measures are then put forward and are verified through example analysis.It is shown the bending ductile demand of bottom section of shear wall increases too much based on moment capacity design measures of Chinese seismic design code 2001 in the rigid foundation assumption under rare earthquake action,and its bearing capacity for vertical axis force loses;the shear capacity design measures of current seismic design code would lead to shear failure in the stores above the bottom ductility strengthening area.Some improved bending and shear seismic capacity design measures of shear wall are proposed and are verified to be effective.  相似文献   

8.
In order to investigate the effect of prestressed binding bars on axial compressive behavior of rectangular concrete-filled tubular (CFT) short columns, five rectangular CFT short columns, three with prestressed binding bars, one with ordinary binding bars, the other with no binding bars, were constructed and tested under axial compressive loads. The binding bars were made up with high-strength bolts. As used for ordinary binding bars, the high-strength bolts were welded to the steel tube before the column was loaded to axial compressive force. As used for prestressed binding bars, the high-strength bolts were first tensed by screwed screw cap down to bring force to prestress the steel tube and its core concrete, then welded to the steel tube before the column was loaded to axial compressive force. Test results indicate that the bearing capacity and ductility of rectangular CFT short columns are increased by setting binding bars. Compared to ordinary binding bars, the prestressed binding bars can decrease the longitudinal displacements corresponding to ultimate strength, but have little effect on the ultimate strength and displacement capacity after ultimate strength of the columns. The longitudinal displacements corresponding to ultimate strength of the columns decrease with the decreasing of space between binding bars. With the same section width and amount of binding bars, the bearing capacity of the columns improves with the increase of section long-broad-ratio, while displacement capacity after ultimate strength decreases with the increase of section long-broad-ratio.  相似文献   

9.
Considering the large negative bending moment at the end of frame beam and low tensile strength of concrete,a new composite steel-concrete frame beam(CSCFB),reinforced by a T shape steel beam at the negative bending regions,was brought forward.Through two full-scale of single-layer CSCFB frame models experiment,the load-displacement curves of CSCFB and strain distribution at cross section were obtained.Compared with the ordinary composite beam,the T shape reinforcing section can enhance the beam stiffness effectively,and make it distribute reasonably.The segment flexural rigidity method is presented and validated.  相似文献   

10.
The stability behavior of shuttle-shaped steel lattice columns subject to combined axial force and bending moment was examined through elastic buckling analysis and geometrically and materially nonlinear analysis. Firstly, the concept of section stiffness variation ratio is proposed for shuttle-shaped lattice columns and the elastic buckling behavior is discussed. Then, the effect of bending moment on the stability behavior of lattice columns is investigated, with the emphasis on the development of axial stress, bending stress and shear stress. The influence of column component spacing and diaphragm thickness on the stability bearing capacity is also analyzed. It is shown that the elastic buckling mode of the lattice column is dependent on its section stiffness variation ratio; for lattice columns with C-shaped buckling mode, the reduction in stability bearing capacity caused by bending moment is smaller than that of columns with S-shaped buckling mode; the maximum stability bearing capacity of the lattice column can be achieved by adjusting the column component spacing, and the spacing corresponding to the maximum capacity is basically consistent with the critical spacing for transformation of C-shaped buckling mode and S-shaped mode; and it is more effective to increase the thickness of columns with S-shaped buckling mode to get larger bearing capacity.  相似文献   

11.
A new method with which to calculat the displacements of beams and frames is presented. The areas of tending moment diagram of beam or frame and the slope at the origin of the elastic curve are treated as some rotatable vectors with this method. Angular displacement and in-line displacement can be calculated by using the projection and moment of these vectors. This method can be used to calculate displacement of the bar and the bar syttem ( including three dimensional forms. ) , which made from linear or ncnlinear elastic materials. The cross section of the bar is changeable.  相似文献   

12.
再生混凝土与锈蚀钢筋间的粘结性能试验研究   总被引:4,自引:0,他引:4  
为了探究再生混凝土结构的耐久性能,对5组不同钢筋锈蚀率(0~9%)的再生混凝土梁式试件进行加载试验。分析不同钢筋锈蚀率对再生混凝土梁式试件的钢筋应变、局部粘结应力、粘结滑移和极限粘结应力的影响。结果表明:钢筋锈蚀率大于3%时试件底部开始有细微锈胀裂缝出现;锈蚀率越大,荷载作用下钢筋应变沿锚固位置的变化曲线越平缓;局部粘结应力沿锚固段呈现出双峰分布,峰值主要集中在加载端和自由端附近;加载端附近位置滑移现象最先发生,远离加载端滑移现象延后;随着钢筋锈蚀率的增大,极限粘结强度先增加后降低,极限荷载下的滑移值增大。  相似文献   

13.
The experimental results of reinforced concrete sandwich beam column joints were studied intensively and finite element method simulation of such joints were performed for the sake of design method.Basic design criterion and computation contents were provided according to failure mode of specimens and other experimental results.And the limits of parameters were proposed based on the analysis of seismic behavior influence factors and comparison of traditional joints and sandwich joints.Hence, formulas of load resistant capacity were acquired by the results of load resistant capacity of specimens and nonlinear finite element method simulation.It is found that three measures should be taken for sandwich joints in order to reach demanded ductility and load resistant capability.Firstly, several parameters should be limited, including shear compression ratio, axial load ratio, ratio of beam concrete strength to column concrete strength, and minimal amount of transverse reinforcement of joint.Secondly, shear load resistant capacity and axial compressive load resistant capacity should be computed to ensure load resistant capability of joint, and essential strengthen measures could be applied if necessary.Thirdly, appropriate construction details should be taken to avoid reducing of beam bar anchorage capacity.  相似文献   

14.
Three specimens of sandwich joints with eccentricity being larger than a quarter of the column width in middle floor of frame are designed and loaded under cyclic loading. Their shear capacity, failure modes, and ductility, as well as energy dissipation are analyzed. The results show that the performance of sandwich joints with big eccentricity is good under cyclic loading. X-type reinforcements can be used to substitute for stirrups in the joint to bear shear forces. But the anchorage of longitudinal bars of beams in eccentric sandwich joints is relatively weak. Comparing to sandwich joints without eccentricity, the column longitudinal bars near the sandwich joints with big eccentricity are vulnerable to sudden change of strain.  相似文献   

15.
Yield Displacement Calculation Method of High-Strength Concrete Shear Wall   总被引:1,自引:0,他引:1  
It is assumed that concrete compressive stress of the cross-section compression zone is linear distribution when the cross-section of high-strength concrete shear wall reaches yield situation. Based on the plane section assumption, the yield curvature formula of shear wall section is obtained by using moment - curvature analysis method. The parameters affecting yield curvature of high-strength concrete shear wall are studied by using the yield curvature formula. The results show that longitudinal reinforcement yield strain is the most vital factor of the yield curvature in addition to axial load ratio. When axial load ratio is larger, both wing walls of shear wall section have larger impact. The yield curvature formula is presented, considering the impact of axial load ratio, boundary reinforcement yield stress and both ends of wing walls of shear wall section based on the regression analysis of calculation results. On this basis, the vertex yield displacement formula of high-strength concrete shear wall is proposed, and the calculation results of formula correspond well to the vertex yield displacement experimental values of the 12 high-strength concrete cantilever wall. The formula is also suited for the vertex yield displacement of comment concrete shear wall.  相似文献   

16.
五星形桩是一种横截面异形桩,是在圆桩的基础上向内切割5个圆弧,形成截面类似五星形的异形桩。按其截面性质分为周长最大化五星形桩F1、周长面积比最大化五星形桩F2两种桩型,为掌握五星形桩的水平承载性能进行了与圆桩的对比模型试验研究。试验用土为干砂,砂雨法土样制作,模型桩为预制钢筋混凝土桩,相似比为1∶8。模型试验桩包括:五星形桩F1、五星形桩F2、与五星形桩F2截面周长相同的圆桩C1、与五星形桩F2截面面积相同的圆桩C2。由于五星形桩水平承载性能具有方向性,试验采用理论计算中水平承载力最大的方向施加水平荷载,试验结果表明:F1C1F2的水平极限承载力相当,但F2的截面面积最小,仅为C1的0.44倍;与C2相比,F2的水平极限承载力是其1.63倍,可见,合理截面形式的五星形桩可以提供更大的水平承载能力;五星形桩与圆桩弯矩分布规律基本一致,都在4倍直径左右(五星形桩为外接圆直径)达到最大,但五星形桩截面面积小,抗弯刚度不足,容易折断,总体水平承载性能不及截面周长相同的圆形桩,但优于截面面积相同的圆形桩。  相似文献   

17.
An improved splice method for mid-diameter steel bars (10-16mm) used in RC structures was developed, which can make the installation more easily and economic through the hybrid connection of welding and overlapping. In order to study the mechanical behavior of welding-overlap splices, a total of 138 steel bar splice tests were conducted, including both the steel-concrete interaction group and the lonely-steel group. Through the splice tensile experiment, the failure model and ultimate strength of the improved splice was summarized. Meanwhile, the failure mechanism was analyzed by the FEM analysis. The test results show that: hybrid connection of welding and overlapping is a simpler splice method which can realized the reliable splice in the RC structures, the ultimate load of the improved splice is sufficient for the application and the failure model is reasonable. Base on the test results, some suggestions for application were given. The economic analysis of a real application case is conducted, which shows a good prospect of proposed connection.  相似文献   

18.
对砂土地基上圆形浅基础在竖向荷载V、水平荷载H及力矩M复合加载条件下的承载力进行了系统的三维有限元分析。在分析中,砂土假定为纯摩擦材料,遵循基于Mohr-Coulomb破坏准则的理想弹塑性本构关系。首先,对圆形浅基础的竖向承载力进行了有限元计算, 并与滑移线解法进行了对比,两种方法所得结果比较吻合。进而探讨了砂土内摩擦角对于基础在V-H、V-M荷载平面与V-H-M三维荷载空间内的破坏包络轨迹的影响。计算结果表明,与不排水情况下软黏土地基上基础破坏包络面相比,砂土地基上圆形浅基础的破坏包络面形状有较大差异, 但V-H和V-M平面内的破坏包络面形状仍具有较好的归一化特性。基于有限元计算结果,建立了圆形浅基础在V-H-M三维荷载空间内的破坏包络面方程, 该方程可用来合理评价复合加载条件下砂土地基上圆形浅基础的整体稳定性。  相似文献   

19.
预应力CFRP布及预紧螺栓加固RC梁试验研究   总被引:1,自引:0,他引:1  
为提高碳纤维布加固RC结构的效果及其可靠性,提出了预应力碳纤维布与预紧螺栓联合加固技术。结合在役RC梁的损伤特点及目前的RC梁加固方法,分别采用不同的碳纤维布加固技术对完整梁和破坏梁的抗弯性能进行了对比试验研究。针对目前碳纤维布张拉设备的缺陷,研发了便于现场应用的新型碳纤维布布张拉设备,分析了预应力大小对加固效果的影响。结果表明,预应力碳纤维布及预紧螺栓联合加固技术是一种更可靠的桥梁加固方法,不仅能够提高RC梁正截面的抗弯承载能力及正常使用阶段的截面刚度,而且螺栓预紧锚固碳纤维布能够很好地抑制其在混凝土表面的剥离,提高碳纤维布与混凝土表面之间粘结强度,对碳纤维布施加预应力能够充分发挥其高强性能,有效抑制混凝土裂缝开裂和开展。  相似文献   

20.
In order to investigate the flexural behavior of concrete beams reinforced with high strength hot rolled bars of fine grains, static bending test on four rectangle cross section HRBF400, HRBF500 RC beams was conducted. The results show that the experimental maximum crack width under short term load meets the requirement of current code while calculated value does not meet; mid span deflection of RC beams with HRBF400 under short term load still meets the requirement of current code while RC beams with HRBF500 does not meet. Bearing capacity calculating formula under conditions of crack/deflection control was proposed and conception of component's bearing capacity utilization coefficient (BCUC) was put forward. The influences of reinforcement strength, reinforcement diameter, concrete grade, reinforcement ratio, concrete cover thickness and high span ratio on BCUC were analyzed. Within the range of economic reinforcement ratio, ductility of HRBF RC beams meets the requirement. Energy dissipation capacity of HRBF RC beams is similar to that of normal RC beams at low reinforcement ratio but it decreases faster than normal RC beams with the increasing of reinforcement ratio. Energy dissipation capacity of HRBF RC beams is higher than that of normal RC concrete beams in elastic stage and it enhances with the increasing of reinforcement ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号