首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The modified activated carbon (MAC) derived from commercial coconut shell activated carbon (AC) with mixture of seven metal salts was used as an adsorbent to remove target residual organic compound (sucrose) from aqueous solutions in batch modes. The results indicated that the highest adsorption capacity of sucrose onto MAC reached when the AC was modified at the ratio of impregnation of AC with mixture of seven metal salts, including nitrate silver (AgNO3), manganese nitrate (Mn (NO3)2), potassium bichromate (K2Cr2O7), nitrate cobalt (Co (NO3)2·6H2O), nitrate copper (Cu (NO3)2·3H2O), nitrate nickel (Ni (NO3)2·6H2O) and nitrate iron (Fe (NO3)2·9H2O) of 3% (w/w). The most appropriate conditions for sucrose adsorption onto MAC in batch experiments obtained at pH 7, contact time of 120 min, 800 mg MAC/50 mL of sucrose solution with initial concentration of 1500 mg/L. At this condition, the highest adsorption capacity of sucrose onto MAC reached 28.28 mg/g. The Langmuir, Freundlich, and Sips adsorption isothermal equilibrium models can adequately describe the adsorption properties of sucrose on MAC. The adsorption kinetic of sucrose onto MAC obeyed pseudo-first-order and pseudo-second-order models with the chemical sorption process. The saturated MAC was recovered by heat from an oven. The highest recovery efficiency of saturated MAC obtained at 180 °C in 120 min. The highest adsorption capacity of sucrose onto recovered MAC was 24.31 mg/g, appropriately adsorption capacity of initial MAC.  相似文献   

2.
In the present work, we have applied a green method for the synthesis of silver nanoparticles (AgNPs) onto amino-functionalized silica using Nigella sativa (black seed) aqueous extract as an eco-friendly and efficient reducing agent. The factors influencing the functionalization of silica and AgNPs loading have been considered. The samples were characterized by elemental analysis, FTIR, XRD, TGA, SEM, and EDX and used for the removal of indigo carmine (IC) dye from aqueous solution. The mean particle size of immobilized AgNPs was calculated from the XRD pattern using the Scherrer equation and is equal to about 26 nm. Adsorption experiments were carried out as batch studies at different contact times, temperature, adsorbent dosage, and initial dye concentrations. The IC adsorption equilibrium was attained after about 20 min of contact time. The equilibrium data shows that the Langmuir model was more reasonable to depict the IC adsorption, and the maximum adsorption capacity of IC is 73.05 mg/g. Based on the kinetic analysis, the adsorption process follows a pseudo-second-order equation. The estimation of the thermodynamic parameters such as the Gibbs free energy, entropy, and enthalpy changes of the adsorption process indicated the feasibility and endothermic nature of IC adsorption. The modified surface was found to be extremely stable in the aqueous medium, and no significant leaching of AgNPs was observed. Thus, immobilization of AgNPs may advance reuse, reduce environmental risks associated with leaching of AgNPs, and enhance cost-effectiveness.  相似文献   

3.
The potential of heat and chemically treated rubber wood shavings (RWS) to remove Cu(II) and Ni(II) was evaluated at bench-scale by varying parameters such as initial Cu(II) and Ni(II) concentrations, contact time and adsorbent dosage. Maximum Cu(II) and Ni(II) uptake was achieved using NaOH-treated RWS after 5 h of contact time, pH 5.0 (Cu), 5.5 (Ni) and 6.0 (mixed-metal solution), initial Cu(II) and Ni(II) of 100 mg L?1 and RWS dosage of 0.3% (w/v). Point of zero charge (pHPZC) value of 4.35 suggests the appropriateness of pH range used. Higher Cu(II) and Ni(II) adsorption following NaOH treatment was due to smaller average pore diameter (34.63 Å), higher mesopore content and higher surface negativity charge. EDAX analysis confirmed the presence of Cu and Ni on the surface of the RWS. The importance of carboxyl and hydroxyl functional groups during Cu(II) and Ni(II) removal is supported by the FTIR analysis and good correlation (R 2 of 0.96–0.99) with the pseudo-second-order adsorption kinetic model. The results indicate the potential of using RWS as an alternative adsorbent to remove Cu(II) and Ni(II) from industrial wastewaters.  相似文献   

4.

Purpose

Polychlorinated biphenyls (PCBs) are persistent soil contaminants that resist biodegradation and present serious risks to living organisms. The presence of biochar in soils can lower the availability of PCBs to biota. In this study, the effect of biochar enrichment in soils on bioaccumulation of PCBs was investigated.

Materials and methods

We applied two types of biochar including pine needle biochar (PC) and wheat straw biochar (WC), and an activated carbon (AC) to soil (2 % w/w) and employed two alternative methods to quantified rates of bioaccumulation: a living bioassay (using earthworm, Eisenia fetida, as a model organism) and a triolein-embedded cellulose acetate membrane (TECAM).

Results and discussion

Our results show that the application of biochar or AC greatly reduced the uptake of PCBs (particularly less-chlorinated PCBs) by earthworms (the reduction in total PCBs concentration was up to 40.0 and 49.0 % for PC and WC treatments, while 71.6 % for AC application). We found that the bioaccumulation factors (BAFs) for PCBs in the earthworms in biochar/AC-enriched soils were strongly correlated with O:C ratio of the biochar/AC (R 2?=?0.998, p?<?0.05). We observed that BAFs increased at log K OW below 6.3 and decreased at log K OW values greater than 6.3. We demonstrated that the concentration of PCBs in TECAM membranes were positively correlated with the concentration of PCBs earthworms in soil.

Conclusions

TECAM offers an efficient and cost-effective method for predicting the bioavailability of PCBs in field-contaminated soils undergoing sorbent-based remediation.
  相似文献   

5.
The adsorption of copper (Cu(II)) from aqueous solutions by activated Luffa cylindrica biochar fibres has been investigated by means of batch equilibrium experiments and FTIR spectroscopy. The effect of various physicochemical parameters, such as pH, initial metal concentration, ionic strength, mass of the adsorbent, contact time and temperature, has been evaluated by means of batch type adsorption experiments. FTIR spectroscopy, as well as acid-base titrations, was used for the characterization of the material and the surface species formed. According to the experimental results even at pH 3, the relative sorption is above 85% and the adsorption capacity of the activated biochar fibres for Cu(II) is q max = 248 g kg?1. Moreover, the interaction between the surface carboxylic moieties and Cu(II) results in the formation of very stable inner-sphere complexes (?G o = ?11.2 kJ mol?1 at pH 3 and ?22.4 kJ mol?1 at pH 5.5).  相似文献   

6.
Environmental pollution with chromium is due to residues of several industrial processes. Bioremediation is an alternative actually considered to remove Cr (VI) from the environment, using adapted organisms that grow in contaminated places. Have been conducted studies with fungi mechanisms of interaction with chromium, most of which have focused on processes biosorption, characterized it by passive binding of metal components of the cell surface, and bioaccumulation, wherein the metal entry to cells occurs with energy expenditure. The paper presents the results of studies carried out on sorption of chromium (VI) ions from aqueous solutions by Fusarium sp. and Myrothecium sp. Both biomasses have the ability to take up hexavalent chromium during the stationary phase of growth and as well inactive conditions. Fusarium sp. showed 26% of biosorption with active biomass and 64% in inactive biomass; meanwhile, Myrothecium sp. obtained 97 and 82%, respectively. Both fungi showed adjust to pseudo-second-order model in active (Fusarium sp. R 2 = 0.99; Myrothecium sp. R 2 = 0.96) and inactive biomass assay (Fusarium sp. R 2 = 0.99; Myrothecium sp. R 2 = 0.99). The data of the active biomass test also confirmed to the intraparticle diffusion model (Fusarium sp. R 2 = 0.98; Myrothecium sp. R 2 = 0.93). The results obtained through this investigation indicate the possibility of treating waste effluents containing hexavalent chromium using Fusarium sp. and Myrothecium sp.  相似文献   

7.

Purpose

Increasing data have shown that biochar amendment can improve soil fertility and crop production, but there is little knowledge about whether biochar amendment can improve water infiltration in saline soils. We hypothesized that biochar amendment could promote water infiltration in saline soil. The aims of this study were to evaluate the effects of biochar amendment on water infiltration and find the suitable amendment rate and particle size of biochar as a saline soil conditioner.

Materials and methods

We measured water infiltration parameters in a coastal saline soil (silty loam) amended with non-sieved biochar at different rates (0.5, 1, 2, 5, and 10%, w/w) or sieved biochar of different particle sizes (≤?0.25 mm, 0.25–1 mm, and 1–2 mm) at 1 and 10% (w/w).

Results and discussion

Compared with the control, amending non-sieved biochar at 10% significantly decreased water infiltration into the saline soil (P?<?0.05). In contrast, sieved biochar of ≤?0.25 mm significantly improved water infiltration capacity, irrespective of the amendment rate. Sieved biochar of 1–2 mm was less effective to improve soil porosity and when amended at 10%, it even reduced the water infiltration capacity. The Philip model (R2?=?0.983–0.999) had a better goodness-of-fit than the Green-Ampt model (R2?=?0.506–0.923) for simulation of cumulative infiltration.

Conclusions

Amending biochar sieved to a small particle size improved water infiltration capacity of the coastal saline soil compared with non-sieved biochar irrespective of the amendment rate. This study contributes toward improving the hydrological property of coastal saline soil and rationally applying biochar in the field.
  相似文献   

8.

Purpose

Chlorpyrifos can be effectively adsorbed by drinking water treatment residuals (WTR), ubiquitous and non-hazardous by-products of potable water production. The major metabolite 3,5,6-trichloro-2-pyridinol (TCP) was found to be much more mobile and toxic than its parent chlorpyrifos. To assess the feasibility of WTR amendment for attenuation of chlorpyrifos and TCP pollution, the sorption/desorption and degradation behavior of chlorpyrifos and TCP in WTR-amended agricultural soils was examined in the present study.

Materials and methods

Two representative agricultural soils were sampled from southern and northern China, respectively. The soils were amended with WTR at the rates of 0, 2, 5, and 10 % (w/w). Batch sorption/desorption test were applied to investigate the sorption/desorption characteristics of chlorpyrifos and TCP in WTR-amended soils. The influence of WTR amendment on chlorpyrifos degradation and TCP formation was evaluated using the incubation test, and its effect on the soil bacterial abundance was further studied through DNA extraction and PCR amplification.

Results and discussion

Results showed that WTR amendment (0–10 %, w/w) significantly enhanced the retention capacity of chlorpyrifos and TCP in both soils examined (P < 0.05). Fractionation analyses further demonstrated that the bioavailability of chlorpyrifos was considerably reduced by WTR amendment, resulting in a decreased chlorpyrifos degradation rate. The WTR amendment also significantly reduced the mobility of TCP formed in chlorpyrifos-contaminated soils (P < 0.001). The chlorpyrifos toxicity to soil bacteria community was largely mitigated following WTR amendment, resulting in increased total bacterial abundance.

Conclusions

Results obtained in the present study indicate a great deal of potential for the beneficial reuse of WTR as soil amendments for chlorpyrifos and TCP pollution control.
  相似文献   

9.
Lima bean (Phaseolus lunatus L.) is an important food source in Brazil, especially in the northeast region, where its production and consumption are high. The goals of the present study were to estimate natural outcrossing rates and genetic diversity levels of Lima bean from Brazil, using ten microsatellite loci to obtain information for their conservation and breeding. Fourteen accessions were selected from an experiment in field with open-pollinated and with the presence of pollinating insects. Twelve seeds of each of the 14 selected accessions were grown in screenhouse for tissue harvest and DNA extraction. The multilocus model was used to determine the reproductive system. The outcrossing rate was 38.1 % (tm = 0.381; ts = 0.078), and the results indicated a mixed mating system with a predominance of selfing (1 ? tm = 61.9 %). The biparental inbreeding rate was high (t m  ? t s  = 0.303) and the multilocus correlated paternity was quite high (r p(m) = 0.889), indicating that the progeny was mostly composed of full sibs. The average effective number of pollen donors per maternal plant (N ep ) was low (1.12), and the fixation index for maternal genotypes (F m ) was 0.945, indicating that most genitors resulted from inbreeding. The studied families presented considerable genetic variability: A = 6.10;  %P = 30; H e  = 0.60 and H o  = 0.077. Total diversity was high (H T = 0.596), and a portion was distributed within families (H S = 0.058). In addition, diversity was higher between families (D ST = 0.538), and genetic differentiation was high (G ST = 0.902). The results presented here can be used in the implementation of Lima bean conservation and breeding programs in Brazil.  相似文献   

10.
The genus Zanthoxylum, belonging to Rutaceae, has a long history of cultivation both for economic and chemical values in China. To effectively conserve and sustainably utilize this genus resource, a study on genetic diversity and relationships of Zanthoxylum germplasms was carried out by employing SRAP markers. We used 16 primer combinations to assess genetic variations and relationships among 175 accessions from eight cultivated provenances, including Shandong, Henan, Shanxi, Shaanxi, Gansu, Sichuan, Guizhou and Yunnan. A total of 145 clear repetitive and intense bands were yielded, and the percentage of polymorphic bands was 100 % for per primer combination, indicating a relatively high diversity among Zanthoxylum germplasms. From a geographic perspective, the highest genetic diversity level was observed within Guizhou provenance (N a  = 1.97, Ne = 1.52, H = 0.31, I = 0.46) while Henan provenance had the lowest genetic diversity (N a  = 1.68, Ne = 1.45, H = 0.25, I = 0.37). Based on AMOVA results, the abundant genetic variation was mainly caused by variation of intra-provenances (84.96 %), rather than among provenances (15.038 %). The results indicated low genetic differentiation (G st  = 0.133) and high gene flow (N m  = 3.2605) among provenances. The neighbor-joining tree revealed that the 175 accessions could be divided into four groups, and groupings indicated a divergence between the cultivated accessions of Zanthoxylum bungeanum Maxim. and Z. armatum DC. Moreover, three accessions of Z. piperitum DC. var. inerme without prickles introduced from Japan gathered one cluster. Cluster IV is composed of accessions of different geographical origin, including 11 wild species and 10 cultivated accessions of Z. bungeanum. The cluster analysis also reflected a relatively close relationship between the geographical origins and the classification of accessions in cluster I. Structure analysis indicated that collected Zanthoxylum accessions could be divided into two major groups. The information obtained from our research would benefit to make use of Zanthoxylum germplasms and assist the management of a Zanthoxylum germplasms collection.  相似文献   

11.
A hybrid between Erianthus arundinaceus (Retz.) Jeswiet and Saccharum spontaneum L. which are wild related species of sugarcane (Saccharum L., Family Poaceae), was repeatedly crossed as female parent with sugarcane commercial varieties to develop near commercial sugarcane clones. The cytoplasm type of the hybrid derivatives were confirmed to be of E. arundinaceus through the mitochondrial and chloroplast DNA polymorphism of nad 4/3-4 intron segment and psbC–trnS segment, respectively. The E. arundinaceus × S. spontaneum hybrid with somatic chromosome number 2n = 62 was confirmed to have 30 chromosomes from E. arundinaceus through genomic in situ hybridization (GISH). The (E. arundinaceus × S. spontaneum) × sugarcane hybrid (2n = 118) had 24 chromosomes from E. arundinaceus whereas its next generation hybrid with sugarcane (2n = 108) had only 12 Erianthus chromosomes. The commercial sugarcane hybrid Co 15015, which is the third generation hybrid with 2n = 106 was confirmed to have two E. arundinaceus chromosomes through GISH. It is the first report of sugarcane with both alien cytoplasm and chromosome contributions from E. arundinaceus.  相似文献   

12.
It is generally assumed that the sorption of a nonionic pesticide on soil depends mainly on the content of soil organic matter (SOM); however, there are other factors that can contribute to this process. The possible causes of variation in the carbon-normalized partition coefficient (K OC) for chlorpyrifos (CPF) for a diverse set of ten soils have been investigated. On the one hand, the analysis of the chemical composition of the SOM was analyzed, and on the other hand, the likely interactions between the organic matter and the mineral phase were assessed. Sorption experiments of CPF were performed on whole soil, on soils treated with 2% hydrofluoric acid (HF), and onto calcined soil at 550 °C. Organic matter chemistry of soil was determined by 13C CP/MAS NMR spectroscopy; K OC values were positively correlated with aryl C relative proportion and negatively correlated with alkyl C and O-aryl C proportions and prediction equation of K OC was found (R 2?=?0.82, p?<?0.001). To evaluate possible organo-mineral interactions, a mathematical model was proposed which calculates the concentration of CPF at equilibrium (C cal) considering adsorption coefficients for the organic (K DHF) and inorganic (K D550 °C) soil constituents, separately. The comparison between C cal and the equilibrium concentration obtained from experimental data (C exp) onto whole soil allowed us to confirm that interactions between the OM and clay affect the adsorption of CPF in whole soil. Such findings should be taken into account in the development of predictive models for the evaluation of the fate and transport of this pesticide in soil.  相似文献   

13.
A bioadsorbent formulated with a secondary raw material, consisting of grape marc, subjected to a bioxidize process and entrapped in calcium alginate beads, was used for the desalination of water containing copper(II) sulfate. Experiments were established under different experimental conditions varying the concentration of contaminant, the amount of bioadsorbent, and the extraction time through response surface methodology. The most significant variable in the removal of copper(II) sulfate was the amount of bioadsorbent employed, followed by the extraction time; whereas, the adsorbent capacity was more influenced by the amount of contaminant and the amount of bioadsorbent used. At the highest concentration of copper(II) sulfate (0.15 mol/L), the equations obtained predict that the bioadsorbent has a capacity of 2785 mg/g and produces a copper(II) removal about 43% using low adsorbent/water ratios, 1:10 (v/v), and maximum extraction times; whereas, it would remove 97.2% of copper(II) sulfate in 5 min, using adsorbent/water ratios close to 1:2 (v/v), with capacity values, in this case, around 1800 mg/g. The encapsulation of the bioxidize adsorbent increased its capacity to 30% and allowed the precipitation of sulfate ions as calcium sulfate. The results obtained in this work could presume advances for promoting the industrial symbiosis between winery and environmental industries.
Graphical abstract Utilization of secondary raw material, consisting of bioxidize grape marc from winery industry, as bioadsorbent encapsulated in calcium alginate beads, for the removal of copper(II) sulfate from water
  相似文献   

14.

Purpose

This study was aimed to investigate the potential of biochar (BC), a waste byproduct of a bioenegy industry, Sri Lanka, as a soil amendment to immobilize and reduce the phytotoxicity of Cr in tannery waste-polluted soil (TWS).

Materials and methods

The TWS and bioenergy waste BC were characterized for physio-chemical parameters. A pot experiment was conducted by adding three BC application rates, 1, 2.5, and 5 % (w/w) to investigate the immobilizing capacity and bioaccumulation of chromium (Cr) in tomato plants (Lycopersicon esculentum L.). Soils and plants were digested via microwave digestion and analyzed for total Cr. Further, sequential extraction was conducted to assess the fractionation of Cr before and after the application of bioenergy waste BC on TWS.

Results and discussion

The total Cr concentration in TWS was 12,285 mg/kg. The biomass of tomato plants grown in the 5 % BC amendment doubled compared to the biomass in BC-unamended soil. Bioaccumulation of Cr in plants grown in 5 % BC-amended TWS showed a decrease by 97 % compared to that of the BC-unamended soil. The CaCl2 extractability of Cr indicated that the bioavailability of Cr in the 5 % BC amendment has decreased by 68 % compared to the control. Sequentially extracted Cr in the exchangeable fraction decreased by 98 % in the 5 % BC amendment.

Conclusions

Pore diffusion, and adsorption via π-π electron donor-acceptor interactions were the primary mechanisms to be involved in the Cr retention in BC. Results suggested that the addition of BC to TWS reduces the mobility, bioavailability, and phytotoxicity of Cr in tomato plants.
  相似文献   

15.
This study was conducted to assess the hyperaccumulation and phytoremediation potential of copper (Cu) and lead (Pb) in Hardy ‘Limelight’ Hydrangea (Hydrangea paniculata) and the common sunflower (Helianthus annuus). The study also investigated the capacity of these two plants to transpire the metals in a temperature-controlled greenhouse. Plants were grown for 4 weeks and periodically watered with known elemental concentrations of copper oxide nanoparticles, copper sulfate, and lead nitrate. Both H. annuus and H. paniculata accumulated significant amounts of Cu and Pb to be classified as hyperaccumulator species. H. annuus took up significant amounts of Cu in the shoots, specifically the leaves (Cu max.?=?1368 ppm), and easily translocated it from stem to leaf (translocation factor (TF) ranged from 2.7 to 81.0). Pb was not as easily taken up and translocated (TF?=?0.6) as Cu was by this species. H. paniculata took up Cu and Pb in high concentrations but preferentially stored more metals in the stems (Cu max.?=?1757 ppm; Pb max.?=?780 ppm) than in the leaves (Cu max.?=?126 ppm; Pb max.?=?35 ppm). The translocation ability of H. paniculata was much lower for both metals compared to H. annuus. Both Cu and Pb transpired from H. annuus at concentrations of 0.04 and 0.005 ppm, respectively.  相似文献   

16.
Spherical biochar derived from saccharides (glucose, sucrose, and xylose) was prepared through two steps: pre-hydrothermal carbonization at 190 °C and calcination at low temperatures (200–325 °C). The spherical biochar was characterized by Brunauer–Emmett–Teller (BET) surface area analysis, Fourier transform infrared spectroscopy, zeta potential, scanning and transmission electron microscopies, and X-ray diffraction. The result indicated that the spherical biochar exhibited low S BET (15–22 m2/g), but abundant superficial active oxygen-containing functional groups. The spherical biochar possessed a negatively charged surface within solution pH 2.0–11. The adsorption process of Pb2+, Cu2+, and methylene green 5 (MG5) was strongly dependent on the solution pH and reached fast equilibrium at approximately 60 min. The maximum Langmuir adsorption capacity (Q°max) exhibited the following order: glucose-biochar > sucrose-biochar > xylose-biochar prepared at 300 °C. The selective adsorption order of glucose-biochar was Cu2+ (0.894 mmol/g) > Pb2+ (0.848 mmol/g) > MG5 (0.334 mmol/g). The electrostatic attraction played a determining role in the adsorption mechanism of pollutant cations. The adsorption of anionic dye (acid red 1) on the spherical biochar was negligible because of electrostatic repulsion. The spherical biochar can serve as a newer and promising adsorbent to remove toxic pollutant cations from water media.  相似文献   

17.
Triploid onion, Allium × cornutum Clementi ex Visiani, 1842 (2n = 3x = 24), a vegetatively reproduced garden crop, possess a complex triparental genome organization with three putative parental species, A. cepa L., A. pskemense B. Fedtsch., and A. roylei Stearn. Two of its most studied clones are the Croatian ‘Ljutika’ and the Indian ‘Pran’, which are genetically highly similar. Earlier studies have shown that ‘Pran’ possesses some molecular markers in the chloroplast DNA (cpDNA) identical to those of the unique male-sterile (S) cytoplasm, used for onion breeding. To find out whether ‘Ljutika’ also possesses a S-type of cytoplasm, we analyzed several cpDNA and mitochondrial (mtDNA) molecular markers. The PCR amplification and RFLP analysis of the chloroplast genes accD, atpF, petB and the mitochondrial gene cob, as well as the sequence analysis of the chloroplast matK and atpB-rbcL regions showed that ‘Ljutika’ possesses the male-sterile S-type of cytoplasm. The phylogenetic analysis of the matK and atpB-rbcL sequences of A. × cornutum, its parental species and other Allium species of the section Cepa showed that none of the analyzed species had the identical type of cpDNA as A. × cornutum. Results also suggested that A. pskemense can be excluded as a donor of the S-cytoplasm and a female parent, whereas cpDNA of A. roylei, although not identical to S-cytoplasm, possessed many polymorphisms of S-type. Fluorescent in situ hybridization, using fluorescently labelled parental genomic DNAs as probes in combination with fluorescently labelled 5S and 35S rDNAs enabled simultaneous visualization of the three genomes during meiosis and confirmed their homeologus intergenomic pairing.  相似文献   

18.
Plants of the Pilocarpus genus (Rutaceae) are popularly known as jaborandi and are the only source of pilocarpine, an imidazole alkaloid used in eye-drops for the treatment of glaucoma as well as for the stimulation of sweat and lachrymal glands. Alkaloid extracts from leaf samples of seven species of Pilocarpus, from the states of São Paulo and Maranhão in Brazil, were analyzed using HPLC–ESI–MS/MS. The samples contained between 0.88 ± 0.04 and 1.00 ± 0.14% of alkaloids in relation to the dry weight of their leaves, with significant differences in results (P ≤ 0.05) found only between Pilocarpus microphyllus planted in the state of Maranhão and Pilocarpus spicatus, Pilocarpus trachyllophus, Pilocarpus pennatifolius and Pilocarpus jaborandi; as well as between Pilocarpus spicatus and Pilocarpus racemosus. Pilocarpine was not found in P. spicatus, whereas in the other species it ranged from 2.6 ± 0.1 to 70.8 ± 1.2% of total alkaloids. P. microphyllus planted in the state of Maranhão for pilocarpine extraction had the highest total alkaloid content, but it had only 35% of pilocarpine in relation to total alkaloids. Three other species contained more pilocarpine in relation to total alkaloids: P. jaborandi (70.8%), P. racemosus (45.6%) and P. trachyllophus (38.7%); and could be candidates for pilocarpine extraction. Differences in alkaloid content were significant for all these samples (P ≤ 0.05). Imidazole alkaloids were observed and partially characterized based on their retention times and high resolution mass. The seven species analyzed had different imidazole alkaloid profiles, but only one did not present quantifiable pilocarpine contents in its leaves. The Pilocarpus genus shows potential for the prospection of novel alkaloids.  相似文献   

19.
Although dilution of lake water has been used for improvement of water quality and algal blooms control, it has not necessarily succeeded to suppress the blooms. We hypothesized that the disappearance of algal blooms by dilution could be explained by flow regime, nutrient concentrations, and their interaction. This study investigated the effects of daily renewal rate (d), nitrogen (N) and phosphorus (P) concentration, and their interaction on the domination between Microcystis aeruginosa and Cyclotella sp. through a monoxenic culture experiment. The simulation model as functions of the N:P mass ratio and dilution rate (D) (calculated from d) was constructed, and the dominant characteristics of both species were predicted based on the model using parameters obtained in a monoculture experiment and our previous study. Results of monoxenic culture experiment revealed that M. aeruginosa dominated in all conditions (d = 5 or 15%; N = 1.0 or 2.5 or 5.0 mg-N L?1; P = 0.1 or 0.5 mg-P L?1) and the predicted cell densities were substantially correspondent to experimental data. Under various N:P ratios and D values, characteristics of domination for each species were predicted, indicating that Cyclotella sp. tended to be dominant under high P concentrations (P ≥ 0.36 mg-P L?1) when the N:P ratio was less than 7.0, and M. aeruginosa could not form algal blooms at the N:P ratio ≤ 7.0 (N ≤ 0.7 mg-N L?1). It was also suggested that the dilution rate leading to the Cyclotella sp. domination required 0.20 day?1 or higher regardless of the N:P ratios.
Graphical Abstract ? M. aeruginosa and Cyclotella sp. could be a superior competitor in nutrient-limited and nutrient-rich conditions, respectively. ? The simulation model in this study indicated that the predicted cell density and nutrient concentration were substantially correspondent to experimental data. ? The model predicted that Cyclotella sp. tended to be dominant at the P ≥ 0.36 mg-P L?1 when the N:P ratio was less than 7.0, and M. aeruginosa could not form algal blooms at the N:P ratio ≤ 7.0 (N ≤ 0.7 mg-N L?1).
  相似文献   

20.

Purpose

The intensive development of nanotechnology raises a question of the potential consequences of the presence of nanoparticles (NPs) in the different components of the environment, including sediments. The aim of this study was to evaluate the toxicity of nanoparticles of ZnO and Ni and their bulk counterparts in bottom sediments (SD1, SD2) with different properties collected from the Vistula River in Poland.

Materials and methods

Sediment samples with NPs at a concentration of 100 mg kg?1 were incubated for 17 months in the dark or under a photoperiod of 12 h light/12 h dark. The Microtox® (bacteria, Vibrio fischeri) and OSTRACODTOXKIT F? (ostracods, Heterocypris incongruens) tests were used to evaluate toxicity. In addition, the contents of Zn and Ni were determined in extracts (H2O and CaCl2) of the bottom sediments.

Results and discussion

The Zn concentration was much lower in the SD1 sediment with the addition of NPs/bulk particles (30–230 μg kg?1) compared to the SD2 sediment (280–1140 μg kg?1). The toxicity of ZnO and Ni was determined by the type of bottom sediment and the parameter studied. Both nano- and bulk-ZnO and Ni caused the mortality of H. incongruens at a level of 13.3–53.3 %. The influence of ZnO and Ni on the growth of H. incongruens was observed to be the opposite. ZnO resulted in growth stimulation, while Ni resulted in growth inhibition of H. incongruens. Both ZnO and Ni stimulated V. fisheri luminescence. In most cases, the incubation of ZnO and Ni under the photoperiod increased the toxicity or decreased the stimulation of V. fisheri bioluminescence and H. ingongruens growth compared to the dark-incubated sediments.

Conclusions

The study provides new and important information on the ecotoxicological effects of ZnO and Ni nanoparticles in different sediments and under various environmental conditions that may be useful for the risk assessment of this new group of contaminants.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号