首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conservation tillage practices are intended to minimize soil erosion. Yet little is known concerning changes in physical properties of subarctic soils subject to tillage practices. This study ascertained whether physical properties of a newly cleared subarctic soil are altered after 7 years of continuous barley (Hordeum vulgare L.) using different tillage and straw management strategies. Tillage and straw treatments were established in 1983 near Delta Junction, Alaska, and consisted of conventional fall and spring disk, fall chisel plow, spring disk, and no-tillage. Tillage plots were split by straw management practices, which included straw and stubble, stubble only, and no straw or stubble. Soil samples were collected from the upper 0.15 m of the profile in the spring of 1990 to assess water content, bulk density, saturated hydraulic conductivity, dry aggregate and mechanical stability, penetration resistance, water retention, and particle size distribution. Percent non-erodible aggregates, mechanical stability, and penetration resistance were greater for no-tillage compared to conventional tillage, chisel plow, and spring disk. No-tillage soils were also typically wetter, denser, and had a greater hydraulic conductivity. The spring disk treatment was least susceptible to erosion and also conserved soil water compared with chisel plow. Straw maintained on the surface conserved water and promoted soil stability.  相似文献   

2.
Soil management practices are needed in the subarctic that stabilize the soil against the forces of wind and water as well as conserve soil water for crop production. There is a paucity of information, however, regarding the long-term effects of conservation tillage on soil hydraulic properties in subarctic Alaska. The objective of this study was therefore to characterize infiltration, water retention, and saturated hydraulic conductivity of a soil 20 years after establishing tillage and straw management treatments in interior Alaska. The strip plot experimental design, established on a silt loam and maintained in continuous barley (Hordeum vulgare L.), included tillage as the main treatment and straw management as the secondary treatment. Tillage treatments included no tillage, autumn chisel plow, spring disk, and intensive tillage (autumn and spring disk) while straw treatments included retaining or removing stubble and loose straw from the soil surface after harvest. Soil properties were measured after sowing in spring 2004; saturated hydraulic conductivity was measured by the falling-head method, infiltration was measured using a double-ring infiltrometer, and water retention was assessed by measuring the temporal variation in in-situ soil water content. No tillage resulted in greater saturated hydraulic conductivity and generally retained more water against gravitational and matric forces than other tillage treatments. Infiltration was greater in autumn chisel plow than other tillage treatments and was presumably suppressed in no tillage by an organic layer overlying mineral soil. Infiltration was also enhanced by retaining straw on rather than removing straw from the soil surface after harvest. No tillage is not yet a sustainable management practice in this region due to lack of weed control strategies. In addition, the formation of an organic layer in no tillage has important ramifications for the soil hydrological and thermal environment. Therefore, minimum tillage (i.e., autumn chisel plow or spring disk) appears to be a viable management option for maximizing infiltration in interior Alaska.  相似文献   

3.
Tillage and residue management practices are sought in the subarctic where small grain production is often curtailed by the lack of soil water. Barley (Hordeum vulgare L.) grain yield and evapotranspiration were compared among four tillage and three residue management practices near Delta Junction, Alaska, USA from 1988 through 1991. Barley was hand-harvested in the fall whereas soil water content was determined biweekly during the growing season by neutron attenuation. Grain yield was similar for spring disk, fall chisel, and conventional (fall and spring disk) tillage across years. No tillage, however, resulted in a 260 kg ha−1 greater yield as compared with fall chisel and conventional tillage in 1990 when evaporative demand exceeded that in other years by nearly 10%. In 1990 and 1991, grain yield from plots devoid of stubble and loose straw was at least 200 kg ha−1 greater than from plots with stubble or stubble and loose straw. Barley consumed at least 15 mm more water to achieve the greater yield on no tillage or no stubble and loose straw plots. Water-use efficiency did not vary among tillage treatments, but was greatest in 1990 for plots devoid of stubble and loose straw. This study suggests that, in dry years with high evaporative demand, no tillage or removal of stubble and loose straw from the soil surface will enhance grain production and water-use efficiency of barley in the subarctic.  相似文献   

4.
With the increasing use of conservation tillage, many questions about the long-term effects of tillage system on soil physical properties have been raised. Studies were conducted to evaluate saturated hydraulic conductivity (KSAT), macropore characteristics and air permeability of two silty soils as affected by long-term conservation tillage systems in the state of Indiana. Measurements were taken during the tenth year of a tillage study on a Chalmers silty clay loam (Typic Haplaquoll) and the fifth year of a study on a Clermont silt loam (Typic Ochraqualf). Tillage systems were moldboard plow, chisel, ridge till-plant, and no-till in a rotation of corn (Zea mays L.) and soya beans (Glycine max L.). Saturated hydraulic conductivity was measured on large soil columns (25 × 25 × 40 cm) before spring tillage, and macropore size and continuity were assessed with staining techniques. Intact soil cores (8 cm diam × 10 cm) were collected in early July in the row and non-trafficked interrow at three depths (10–20, 20–30, and 30–40 cm) and were analyzed for air permeability (Kair), air-filled porosity and bulk density. Saturated hydraulic conductivity values were in the order plow > chisel > ridge till > no-till for the Chalmers soil and were significantly greater in the plow treatment than in the other 3 tillage systems on the Clermont soil. Differences in KSAT between the 2 soils were generally greater than differences among tillage systems, and coefficients of variation were lower for treatments that did not include may fall tillage operations. At the 10-cm depth on the Chalmers soil, the chisel treatment had the greatest number of stained cylindrical channels, whereas for the Clermont soil the ridge till had the greatest number at this depth. Although the no-till treatment had similar or fewer total channels, it had the most continuous channels from the 10-cm depth to the 20- and 30-cm depths on both soils. Tillage system, row position and depth all affected Kair. On the Chalmers soil, plow, chisel and ridge systems had lower Kair between rows than in the row at the 10–20-cm depth, whereas no-till had constant Kair in the row and between the row. On the Clermont soil, ridge till had the highest Kair of all treatments at the 10–20-cm depth, and no-till had the highest Kair of all treatments at the 20–30-cm depth.  相似文献   

5.
《Soil & Tillage Research》2007,92(1-2):82-88
Soil management practices are needed in the subarctic that stabilize the soil against the forces of wind and water as well as conserve soil water for crop production. There is a paucity of information, however, regarding the long-term effects of conservation tillage on soil hydraulic properties in subarctic Alaska. The objective of this study was therefore to characterize infiltration, water retention, and saturated hydraulic conductivity of a soil 20 years after establishing tillage and straw management treatments in interior Alaska. The strip plot experimental design, established on a silt loam and maintained in continuous barley (Hordeum vulgare L.), included tillage as the main treatment and straw management as the secondary treatment. Tillage treatments included no tillage, autumn chisel plow, spring disk, and intensive tillage (autumn and spring disk) while straw treatments included retaining or removing stubble and loose straw from the soil surface after harvest. Soil properties were measured after sowing in spring 2004; saturated hydraulic conductivity was measured by the falling-head method, infiltration was measured using a double-ring infiltrometer, and water retention was assessed by measuring the temporal variation in in-situ soil water content. No tillage resulted in greater saturated hydraulic conductivity and generally retained more water against gravitational and matric forces than other tillage treatments. Infiltration was greater in autumn chisel plow than other tillage treatments and was presumably suppressed in no tillage by an organic layer overlying mineral soil. Infiltration was also enhanced by retaining straw on rather than removing straw from the soil surface after harvest. No tillage is not yet a sustainable management practice in this region due to lack of weed control strategies. In addition, the formation of an organic layer in no tillage has important ramifications for the soil hydrological and thermal environment. Therefore, minimum tillage (i.e., autumn chisel plow or spring disk) appears to be a viable management option for maximizing infiltration in interior Alaska.  相似文献   

6.
Soil properties and surface characteristics affecting wind erosion can be manipulated through tillage and crop residue management. Little information exists, however, that describes the impact of long term tillage and residue management on soil properties in the subarctic region of the United States. This study examines the impact of 20 years of tillage and residue management on a broad range of physical properties that govern wind erosion processes on a silt loam in interior Alaska. A strip plot experimental design was established in 1983 and included intensive tillage (autumn and spring disk), spring disk, autumn chisel plow, and no tillage with straw either retained on or removed from the soil surface. Soil and residue properties measured after sowing barley (Hordeum vulgare L.) in May 2004 included penetration resistance, soil water content, shear stress, bulk density, random roughness, aggregate size distribution, and residue cover and biomass. No tillage was characterized by larger aggregates, greater soil strength (penetration resistance and shear stress), wetter soil, and greater residue cover compared to all other tillage treatments. Despite crop failures the previous 2 years, crop residue management influenced residue biomass and cover, but not soil properties. Autumn chisel and spring disk appeared to be viable minimum tillage options to intensive tillage in controlling erosion. Autumn chisel and spring disk promoted greater roughness, aggregation, and residue cover as compared with intensive tillage. Although no tillage appeared to be the most effective management strategy for mitigating wind erosion, no tillage was not a sustainable practice due to lack of weed control. No tillage also resulted in the formation of an organic layer on the soil surface over the past 20 years, which has important ramifications for long term crop production in the subarctic where the mean annual temperature is <0 °C.  相似文献   

7.
The potential benefits of conservation tillage practices depend mainly on the soil and climatic conditions of the site. A study was conducted to determine the effects of three tillage systems (conventional, CT; reduced, RT; zero, ZT) on spring wheat (Triticum aestivum L.) and weed growth on a clay soil in temperate continental climate, northern Alberta (55°43′N, 118°41′W), Canada. A medium duty cultivator with 25 cm sweeps spaced 22 cm apart and a working depth of 8–10 cm was used for tillage in the CT (once in fall and twice in spring) and RT (once in spring) plots. The ZT plots received a harrowing to spread straw and a preseeding application of Roundup (glyphosate) to control weeds. Experimental design was a randomized complete block with four replications and the tillage systems were fixed in space for the 1989, 1990 and 1991 seasons. The RT treatment resulted in higher yields than the CT or ZT treatments. However, the differences were not always significant. The ZT treatment produced higher yields than CT in 1989 and 1991, whereas its yields were lower than CT in 1990. The 3 year means of total dry matter (TDM) were 3899 kg ha−1, 3640 kg ha−1 and 3331 kg ha−1 for the RT, ZT and CT treatments, respectively. The corresponding grain yields were 1728 kg ha−1, 1573 kg ha−1 and 1530 kg ha−1. The concentration of total N in plants and grains of wheat, amounts of extractable NO3-N, NH4-N and P in soil and soil moisture and bulk density were not significantly affected by tillage. The mean weight diameter of aggregates in surface soil was significantly greater under ZT than under the other systems. Wild buckwheat (Polygonum convolvulus L.) was more abundant under CT, but common groundsel (Senecio vulgaris L.), dandelion (Taraxacum officinale Weber), hemp nettle (Galeopsis tetrahit L.), field horsetail (Equisetum arvense L.) and smartweed (Polygonum scabrum Moench) tended to have higher populations under the ZT system. The populations of foxtail barley (Hordeum jubatum L.) wild rose (Rosa sp.), stinkweed (Thlaspi arvense L.) and wild oats (Avena fatua L.) showed no consistent effect of tillage. Tillage or preseeding application of glyphosate did not provide an effective control of all weed species. The spring tillage of the RT system improved crop yields and weed control relative to ZT, whereas the fall tillage of the CT system (in addition to spring tillage) reduced crop yields and had no significant effect on weed population relative to RT. The overall results showed that tillage intensity could be reduced to the level of RT without any adverse influence on crop yields, soil properties or weed populations. The RT system is also economical and environmentally desirable owing to lower tillage and herbicide requirements.  相似文献   

8.
In irrigated grain-growing soils on Canada's prairies, straw management can affect nitrogen (N) fertility and long-term soil organic matter reserves. We conducted a 2-year field experiment in southern Alberta, on a Dark Brown Chernozemic Lethbridge loam (Typic Boroll), to determine the effects of straw removal, tillage, and fertilizer timing on crop uptake of soil and fertilizer N. During the study (1991 and 1992), the crop was oat (Avena sativa L.) and wheat (Triticum aestivum L.), respectively, in an experiment that had been in a wheat-wheat-oat-wheat rotation since 1986. Five straw-tillage treatments were: straw-fall plow, straw-pring plow, no straw-fall plow, no straw-spring plow and no straw-direct seeding. Fertilizer N was applied in fall or spring. Ammonium nitrate (5 at.% 15N) was added at 100 kg N ha−1 in fall 1990 or spring 1991. For oat (1991), plant N derived from soil was higher under fall plow than under spring plow, higher with tillage than direct seeding, and unaffected by straw removal. The plant N derived from fertilizer was not affected by straw removal in fall plow treatments, but under spring plow, it was higher with straw removal. The plant N derived from fertilizer showed a significant straw-tillage × fertilizer timing interaction; with fall incorporated straw, plant N derived from fertilizer was 44.0 kg N ha−1 for spring-applied, and 30.6 kg N ha−1 for fall-applied N, but in other straw-tillage treatments there was no effect of fertilizer timing. Cumulative fertilizer N recovery (plant + soil) over the 2 years averaged 64.2%, and was unaffected by straw-tillage treatment. Fertilizer N recovery, however, was less with fall-applied N (61.3%) than spring applied N (66.8%). At mid-season, fall plow treatments had higher soil inorganic N and inorganic N derived from fertilizer than spring plow treatments, apparently because of less immobilization. The fall plow treatments also retained higher inorganic N after harvest. Straw removal and fertilizer timing did not influence soil inorganic N and soil inorganic N derived from fertilizer. N removal in straw (16 kg N ha−1 yr−1) could deplete soil N in the long-term. Long-term effects of tillage timing on soil N will depend on the relative amount of N lost by leaching with fall plowing and that lost by denitrification under spring plowing. With direct seeding, crop yield and uptake of soil N was less, and N losses by denitrification could be greater. Application of N in spring, rather than fall, should enhance crop N uptake, reducing N losses and enhancing long-term soil organic N.  相似文献   

9.
Long-term tillage effects on soil quality   总被引:6,自引:0,他引:6  
Public interest in soil quality is increasing, but assessment is difficult because soil quality evaluations are often purpose- and site-specific. Our objective was to use a systems engineering methodology to evaluate soil quality with data collected following a long-term tillage study on continuous corn (Zea mays L.). Aggregate characteristics, penetration resistance, bulk density, volumetric water content, earthworm populations, respiration, microbial biomass, ergosterol concentrations, and several soil-test parameters (pH, P, K, Ca, Mg, Total-N, Total-C, NH4-N, and NO3-N) were measured on Orthic Luvisol soil samples collected from Rozetta and Palsgrove silt loam (fine-silty, mixed, mesic Typic Hapludalfs) soils. Plots managed using no-till practices for 12 years before samples were collected for this study had surface soil aggregates that were more stable in water and had higher total carbon, microbial activity, ergosterol concentrations, and earthworm populations than either the chisel or plow treatments. Selected parameters were combined in the proposed soil quality index and gave ratings of 0.48, 0.49, or 0.68 for plow, chisel, or no-till treatments, respectively. This indicated that long-term no-till management had improved soil quality. The prediction was supported by using a sprinkler infiltration study to measure the amount of soil loss from plots that had been managed using no-till or mold-board plow tillage. We conclude that no-till practices on these soils can improve soil quality and that the systems engineering methodology may be useful for developing a more comprehensive soil quality index that includes factors such as pesticide and leaching potentials.  相似文献   

10.
A potential for reduced soil macroporosity (below 12% soil volume) under direct drilling, with a concomitant increase in soil relative saturation, is associated with an increase in crown and root rots in Prince Edward Island field crops. Four long-term tillage systems (moldboard plowing, paraplowing-direct drilling, rotary cultivation and direct drilling) were compared in relation to the pathogenic fungal complexes formed in a two crop rotation in spring barley (Hordeum vulgare L.) and soybean (Glycine max L. Merrill) over a 3 year period in a cool humid region of eastern Canada. The principal phytopathogenic fungal complex of Rhizoctonia solani Kühn, Fusarium avenaceum (Fr.) Sacc. and F. oxysporum Schl. remained constant over the treatments. Tillage practice did not affect the number of colony forming units of R. solani in the rhizosphere. The recovery of R. solani from root tissues tended to be lower following conservation tillage and was attributed to antagonism associated with elevated numbers of saprophytic trash microflora concentrated at the soil surface. Disease levels in potato (Solanum tuberosum L.) plantlet bioassays were not influenced significantly by soil source or tillage regime. However, plantlet growth tended to be depressed following transplantation into soil from soybean plots in 1993. Under optimum soil physical conditions conservation tillage did not appear to influence disease levels in barley and soybean rotations.  相似文献   

11.
Tillage systems can influence weed seed viability and the distribution with depth of weed seeds in soil. To investigate this ‘tillage effect’, weed seed bank composition was determined at two soil depths (0–10 and 10–20 cm) in three tillage systems [mouldboard plough (MP), shallow tillage (ST), and direct drilling (DD)] established for 14 years on a sandy loam (Podzol) in Prince Edward Island, Atlantic Canada. The cropping system was a cool-season soybean (Glycine max L. Merr.) in rotation with barley (Hordeum vulgare L.). The objectives were to evaluate the size and composition of the viable soil seed bank, using the seedling germination method, and to determine if the adoption of non-inversion tillage practices (DD and ST) influence seed bank parameters relative to the conventional full inversion MP. The diversity of weed species was slightly lower for MP (17 species) compared to the ST (21 species) and DD treatments (22 species). The population for most weed species was relatively low with only three common species [low cudweed (Gnaphalium uliginosum L.), creeping buttercup (Ranunculus repens L.), common lambsquarters (Chenopodium album L.)] above 5 m−2. For the total soil depth sampled (0–20 cm), weed seed population was significantly greater under DD (56 weeds m−2) and ST (66 weeds m−2), compared to MP (25 weeds m−2), and mainly related to changes in the number of annual broadleaf weeds, compared to perennial broadleaf and grasses. Comparison of the 0–10 with the 10–20 cm soil depth showed a relatively uniform weed seed distribution for the MP treatment, while a greater proportion of weed seeds was found at the lower soil depth for DD and ST. This distribution tended to be weed species dependent. Soil texture and weed seed characteristics were considered to have a critical impact on the total weed seed bank size, specifically for the 10–20 cm soil depth. Overall, the weed bank size was relatively small indicating that adoption of conservation tillage practices for sandy loams in Atlantic Canada should not cause a major change in weed community and weed populations, or present a need for significant changes in weed control management.  相似文献   

12.
Seedbanks of five weed species were monitored in response to tillage and crop rotations in a semi-arid location in northern Jordan. Tillage practices of mouldboard- or chisel-plowing and cropping patterns of barley (Hordeum vulgare) planting or fallow were evaluated on permanently established subplots. Soil samples were collected from the upper 10 cm for three consecutive years, immediately after performing tillage and prior to planting. Soil seedbanks of the five dominant weed species (Anthemis palestina, Diplotaxis erucoides, Hordeum marinum, Rhagadiolus stellatus, and Trigonella caelesyriaca) were estimated by recovering viable seeds through greenhouse and laboratory procedures. At initiation, more viable seeds were present in soil subjected to mouldboard plowing than chisels plowing. In the following two sampling seasons, significant rotation by tillage interaction affected the seedbank of each species. Generally, mouldboard plowing increased weed seedbanks when combined with frequent fallowing. Conversely, chisel plowing combined with barley cropping generally reduced weed seedbank sizes. Results emphasized the importance of managing weeds during fallow to avoid the build up of H. marinum, a serious grass weed in semi-arid environments.  相似文献   

13.
Much uncertainty exists among growers concerning the need to adjust N-fertilizer application to cereals when reduced tillage is adopted. Studies in long-term trials are required to give an adequate answer to this question, which is of both economic and environmental interest. N-fertilizer requirements of spring cereals and of soil mineral nitrogen contents at different times of the year were measured over the period 1991–1996 in two long-term tillage trials established in 1980 at Kise (60°46′N, 10°49′E) on morainic loam soil. Tillage treatments comprised conventional tillage with autumn ploughing and reduced tillage without ploughing and with harrowing in spring kept to the minimum necessary for seeding. Four levels of N-fertilizer (0, 60, 90 and 120 kg N/ha) were compared in 1991–1995 in barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.), and their residual effect was measured in 1996. Levels of soil mineral nitrogen before fertilization in spring were on an average 8% lower with reduced tillage than with conventional tillage. Plant development was delayed with reduced tillage, but this was compensated for later in the season. A two-year incubation study under covered plots in the field did not reveal any effect of tillage on net nitrogen mineralisation. There was a tendency to higher straw yield with reduced tillage, but no overall effect on grain yield. Responses to N-fertilizer were almost identical with both the tillage systems, and yields increased up to the highest level of application. Crop nitrogen contents were monitored, but only minor differences were found between tillage systems in total uptakes and apparent N-fertilizer recoveries. On the basis of these results it is concluded that long-term reduced tillage does not affect the N-fertilizer requirements of spring cereals on loam soils under cool climatic conditions.  相似文献   

14.
Increased use of conservation tillage is being considered as a way to sequester atmospheric C in the soil. However, little information exists on the effect of rotation and its interaction with tillage on soil organic carbon (SOC). A research trial with combinations of rotations and tillage treatments was sampled 20 years after its establishment to assess the effects on SOC sequestration in a typic Hapludalf in southern Ontario, Canada. The cropping treatments included continuous corn (zea mays L.), six rotations comprised of 2 years of corn following 2 years of another crop or crop sequence, and continuous alfalfa (Medicago sativa L.). Each rotation was split into either fall moldboard plow (MP) or fall chisel plow (CP) treatments. Continuous alfalfa was plowed and replanted every 4 years. Soil samples were taken incrementally to a depth of 40 cm and SOC and bulk density determined. The average SOC concentration (0–40 cm) was greatest in continuous alfalfa (18.0 g C kg−1). The treatments of soybean (Glycine max L.Merr.)+winterwheat (Triticum aestivum L.) or barley+barley (Trifolium pratense L.) (interseeded with red clover) followed by 2 years of corn had higher SOC concentrations (17.2–17.3 g C kg−1) than continuous corn and the treatments of 2 years of corn following 2 years of alfalfa or soybean (16.4–16.5 g C kg−1). The rotation of 2 years of barley followed by 2 years of corn had the lowest SOC concentrations (15.2 g C kg−1). On an equivalent mass basis, the rotations of soybean+winterwheat or barley+barley (underseeded with red clover) followed by 2 years of corn, had 2–9 Mg ha−1 more C than the other corn-based rotations. Including red clover in the winter wheat seemed to accelerate the rate of C mineralization compared to winter wheat without red clover; whereas interseeding red clover with barley increased SOC contents compared to excluding red clover in the barley rotation. More SOC was found in the top 10 cm and less in the 10–20 cm depth of the CP than in the MP soils. However, the CP did not increase the SOC content (0–20 cm) above that of MP indicating that this form of reduced tillage did not increase C sequestration in any of the rotations on this soil.  相似文献   

15.
This study was carried out to investigate the effect of tillage and residue management on activities of phosphatases (acid phosphatase, alkaline phosphatase, phosphodiesterase, and inorganic pyrophosphatase) and arylsulfatase. The land treatments included three tillage systems (no-till, chisel plow, and moldboard plow) in combination with corn residue placements in four replications. The activities of these enzymes in no-till/double mulch were significantly greater than those in the other treatments studied, including no-till/bare, no-till/normal, chisel/normal, chisel/mulch, moldboard/normal, and moldboard/mulch. The effect of mulching on activities of phosphatases was not as significant as on activities of arylsulfatase. The lowest enzyme activities were found in soil samples form no-till/bare and moldboard/normal treatments, with the exception of inorganic pyrophosphatase, which showed the lowest activity in no-till/bare only. Among the same residue placements, no-till and chisel plow showed comparable arylsulfatase activity, whereas the use of moldboard plow resulted in much lower arylsulfatase activity. The activities of phosphatases and arylsulfatase were significantly correlated with organic C in the 40 soil samples studies, with r values ranging from 0.71*** to 0.92***. The activities of alkaline phosphatase, phosphodiesterase, and arylsulfatase were significantly correlated with soil pH, with r values of 0.85***, 0.78***, and 0.77***, respectively, in the 28 surface soil samples studied, but acid phosphatase and inorganic pyrophosphatase activities were not significantly correlated with soil pH. The activities of phosphatases and arylsulfatase decreased markedly with increasing soil depth and this decrease was associated with a decrease in organic C content. The activities of these enzymes were also significantly intercorrelated, with r values ranging from 0.50*** to 0.92***. Received: 4 October 1995  相似文献   

16.
Tillage and crop management effects on soil erosion in central Croatia   总被引:4,自引:0,他引:4  
Soil erosion continues to be a primary cause for soil degradation and the loss of soil quality throughout the world. Our objectives were to quantify soil erosion (referred to as erosional drift) and to assign erosion risk to six tillage and crop management treatments evaluated from 1995 to 1999 for a 5-year maize (Zea mays L.), soybean (Glycine hyspida L.), winter wheat (Triticum aestivum L.), oil-seed rape (Brassica napus var. oleifera L.), and spring barley (Hordeum vulgare L.) plus double-crop soybean rotation on Stagnic Luvisols in central Croatia. Standard black fallow (tilled, unsown, and without any vegetative cover) Universal Soil Loss Equation (USLE) plots were used to establish the erosion potential associated with the rainfall pattern for each year. Soil loss from the check plots was several times greater than the T value, which is estimated to be 10 t ha−1 per year. During the 2 years when spring seeded maize or soybean were grown (1995 and 1996) erosion risk was extremely high, especially for treatments where tillage and planting (row direction) were up and down the slope. When autumn seeded winter wheat or oil-seed rape were grown (1996/1997 or 1997/1998), soil erosion was insignificant. Also, except when plowing and sowing were up and down slope, erosion loss for the spring barley plus double-crop soybean crops in 1999 was insignificant. With no-tillage, soil erosion from the maize and soybean crops was reduced 40 and 65% compared to plowing up and down slope, even though the planting direction was still up and down the slope. With the exception of maize in 1995, erosion losses were moderate to insignificant when plowing and planting were performed across the slope. We conclude that erosion risk can be used as a reliable indicator of sustainable land management and that using no-tillage or plowing and planting perpendicular to the predominant slope are effective soil conservation practices for this region.  相似文献   

17.
Soil physical condition following tillage influences crop yield, but the desired condition cannot be adequately evaluated with current techniques. This study was conducted to determine a soil condition index (SCI) that could be used to select the type of implement needed to achieve an optimal seedbed with minimum energy input. Effects of bulk density, moisture content, and penetration resistance resulting from three tillage systems (no-till, chisel plow and moldboard plow), on the growth of corn (Zea mays L.) were studied. The experiment was conducted in Boone County, Ames, IA, on soils that are mostly Aquic Hapludolls, Typic Haplaquolls and Typic Hapludolls with slopes ranging from 0 to 5%. The results are from the 2000 season, which had normal weather conditions and yield levels for the Iowa state. The average corn grain yield at this site was 9.36 Mg/ha. At the V2 corn growth stage, the average dry biomass was 1.34 g per plant. The soil physical properties were normalized with respect to reference values and combined via multiple regression analysis against corn biomass at V2 stage into the SCI. Mean SCI values for the no-till, chisel and moldboard plow treatments were 0.86, 0.76, and 0.73, respectively, all with a standard error of 0.0127. The lower the SCI, the more optimum the soil physical conditions. An analysis of variance showed significant differences among mean SCI for each treatment (p-value=0.001). The use of the SCI could improve the tillage decision-making process in environments similar the one studied.  相似文献   

18.
Earthworm response to rotation and tillage in a Missouri claypan soil   总被引:4,自引:0,他引:4  
 Agricultural management practices affect earthworm populations. A field experiment was conducted to determine the effect of two rotations and two tillage systems on earthworm population density and biomass in a claypan soil. The rotations were soybean/corn and wheat/corn, and the tillage systems were conventional tillage (chisel plowed and disked) and no-tillage. Earthworm and soil samples were collected in fall 1995, spring 1996, and fall 1996. Aporrectodea trapezoides and Diplocardia singularis were the species identified at the site. A. trapezoides accounted for 92–96% of the total earthworm population density and D. singularis accounted for only 4–8%. In a no-till system, soybean/corn rotation resulted in significantly greater population density of A. trapezoides compared with the wheat/corn rotation. Crop residue quality (low C:N ratio) and quantity were important factors in increasing A. trapezoides population density and biomass. Conventional tillage markedly decreased population density and biomass of both earthworm species. Our results suggest that rotation and tillage significantly affect earthworm population density and biomass. Received: 6 June 1998  相似文献   

19.
Numerous investigators of tillage system impacts on soil organic carbon (OC) or total nitrogen (N) have limited their soil sampling to depths either at or just below the deepest tillage treatment in their experiments. This has resulted in an over-emphasis on OC and N changes in the near-surface zones and limited knowledge of crop and tillage system impacts below the maximum depth of soil disturbance by tillage implements. The objective of this study was to assess impacts of long-term (28 years) tillage and crop rotation on OC and N content and depth distribution together with bulk density and pH on a dark-colored Chalmers silty clay loam in Indiana. Soil samples were taken to 1 m depth in six depth increments from moldboard plow and no-till treatments in continuous corn and soybean–corn rotation. Rotation systems had little impact on the measured soil properties; OC content under continuous corn was not superior to the soybean–corn rotation in either no-till or moldboard plow systems. The increase in OC (on a mass per unit area basis) with no-till relative to moldboard plow averaged 23 t ha−1 to a constant 30 cm sampling depth, but only 10 t ha−1 to a constant 1.0 m sampling depth. Similarly, the increase in N with no-till was 1.9 t ha−1 to a constant 30 cm sampling depth, but only 1.4 t ha−1 to a constant 1.0 m sampling depth. Tillage treatments also had significant effects on soil bulk density and pH. Distribution of OC and N with soil depth differed dramatically under the different tillage systems. While no-till clearly resulted in more OC and N accumulation in the surface 15 cm than moldboard plow, the relative no-till advantage declined sharply with depth. Indeed, moldboard plowing resulted in substantially more OC and N, relative to no-till, in the 30–50 cm depth interval despite moldboard plowing consistently to less than a 25 cm depth. Our results suggest that conclusions about OC or N gains under long-term no-till are highly dependent on sampling depth and, therefore, tillage comparisons should be based on samples taken well beyond the deepest tillage depth.  相似文献   

20.
Because the adoption of conservation tillage requires long-term evaluation, the effect of tillage and residue management on corn (Zea mays L.) grain and stover yields was studied for 13 seasons in east central Minnesota. Three primary tillage methods (no-till (NT), fall chisel plow (CH), fall moldboard plow (MB)) and two residue management schemes (residue removal versus residue returned) were combined in a factorial design experiment on a Haplic Chernozem silt loam soil in Minnesota. No significant effects on grain yield were seen due to tillage treatments in 9 out of 13 years. The NT treatment resulted in lower yields than CH and MB treatments in years 6 and 7, and lower than the MB in year 8, indicating a gradual decrease in yield over time with continuous use of NT. There were differences due to residue management in 8 out of 13 years. The residue-returned treatments contributed about 1 Mg ha−1 greater yields in intermediate level dry years such as years 3 and 6, which had cumulative growing season precipitation 20 and 30% below the 9-year average, respectively. In excessively dry or long-term-average years, residues resulted in little yield difference between treatments. The most pronounced effects of residues were with the CH treatment for which yields were greater in 8 out of 13 years. The ratio of grain to total dry matter yield averaged 0.56 and did not vary with time or between treatments. These results apply primarily to soils wherein the total water storage capacity and accumulated rainfall are insufficient to supply optimum available water to the crop throughout the growing season. Under conditions with deeper soils or in either wetter or drier climates, the results may differ considerably.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号