首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Ten homozygous winter wheat genotypes representing different levels of resistance to Fusarium head blight were crossed in all possible combinations excluding reciprocals. Parents, F1 and F2 were inoculated with one pathogenic strain of Fusarium culmorum. Data for head blight, observed 21 days after first inoculation (OBS-2), and for the area under the disease progress curve, based on observations 14, 21 and 28 days after first inoculation (AUDPC), were analyzed. The contrast between parents and F1 crosses indicated dommance effects of the resistance genes. Diallel analysis according to Griffing's Method 4, Model 1 showed significant general combining ability (GCA) effects for both F1 and F2; specific combining ability effects were not significant. With the exception of one genotype for which general performance for Fusarium resistance was not in agreement with its GCA, the resistance to F. culmorum was uniformly transmitted to all offspring, and the parents can be described in terms of GCA. It is suggested that in the progenies with one of the awned lines as parent, one resistance gene was linked with the gene coding for presence of awns, located on chromosome 4B. A single observation date, taken at the right time, was as effective in assessing resistance as the AUDPC.  相似文献   

2.
Summary During a four year period, a total of 258 winter and spring wheat genotypes were evaluated for resistance to head blight after inoculation with Fusarium culmorum strain IPO 39-01. It was concluded that genetic variation for resistance is very large. Spring wheat genotypes which had been reported to be resistant to head blight caused by Fusarium graminearum were also resistant to F. culmorum. The resistant germplasm was divided into three gene pools: winter wheats from Eastern Europe, spring wheats from China/Japan and spring wheats from Brazil. In 32 winter wheat genotypes in 1987, and 54 winter wheat genotypes in 1989, the percentage yield reduction depended on the square root of percentage head blight with an average regression coefficient of 6.6. Heritability estimates indicated that for selection for Fusarium head blight resistance, visually assessed head blight was a better selection criterion than yield reduction.  相似文献   

3.
Summary Crosses were made among ten winter wheat genotypes representing different levels of resistance to Fusarium head blight to obtain F1 and F2 generations. Parents, F1 and F2 were inoculated with one strain of Fusarium culmorum. Data on incidence of head blight 21 days after first inoculation were analyzed. Broad-sense heritabilities averaged 0.39 and ranged from 0.05 to 0.89 in the individual F2 families. The joint-scaling test indicated that the inheritance of Fusarium head blight resistance was adequately described by the additive-dominance model, with additive gene action being the most important factor of resistance. With respect to the non-additive effects, dominance of resistance predominated over recessiveness. The number of segregating genes governing resistance in the studied populations was estimated to vary between one and six. It was demonstrated that resistance genes differed between parents and affected resistance differently.  相似文献   

4.
Summary In a field trial, F3 winter wheat lines from plants selected for Fusarium head blight resistance in F2 generations of a set of crosses, composing a 10×10 half diallel, were tested with their parental lines for resistance to Fusarium culmorum. Selection responses averaged 3.7% on the head blight percentage scale and ranged from –22.0% to 27.1%. Realized heritabilities averaged 0.23 and ranged from 0 to 0.96. Significant transgression for resistance was observed which was suggested to be genetically fixed. It was estimated that resistant parents differed in one or two resistance genes. The possibility of accumulation of resistance genes was shown. The level of head blight resistance of the parental line appeared to be a good indicator of the potential resistance level of its crosses.  相似文献   

5.
Summary Fusarium head blight infection causes severe yield losses and contamination of the grain with mycotoxins in triticale (× Triticosecale Wittmack) grown in temperate and semihumid areas. In a two-year experiment thirty-six genotypes were inoculated separately with two isolates of Fusarium graminearum differing fivefold in their in vitro deoxynivalenol (DON) production and the effect on various traits was studied. All traits were significantly affected by head blight. The two isolates differed considerably in their aggressiveness resulting in a mean reduction of grain weight per spike of almost 25% and 50%, respectively. Inter-annual correlation was high for average disease rating (r=0.63, P<-0.01) and low for the other traits. Therefore, disease rating, averaged from two to three records, was regarded a suitable criterion for screening purposes. The effect of isolates on genotypes was not stable over years. The mean DON content of five genotypes with diverse resistance levels was 68 mg kg-1. In vitro DON production of the two isolates used for inoculation did not correspond to their aggressiveness and DON contamination of the grain.  相似文献   

6.
Fusarium head blight (FHB) caused by Fusarium spp. is one of the most important fungal diseases of wheat (Triticum aestivum L.) in regions with wet climatic conditions. Improvement of the FHB resistance by developing new varieties requires sound knowledge on the inheritance of resistance. An 8 × 8 diallel analysis was performed to estimate general (GCA) and specific (SCA) combining ability of resistance to FHB. The F1s and parental lines were evaluated under artificial inoculation at the experimental field of IFA-Tulln, Austria during 2001 and 2002. Disease severity was evaluated by repeated scoring of the percentage of infected spikelets and calculating an area under the disease progress curve (AUDPC). The analysis of combining ability across two years showed highly significant GCA and non-significant SCA effects indicating the importance of additive genetic components in controlling FHB resistance. The significant GCA-by-year interaction presented the role of environmental factors in influencing the FHB reaction of wheat lines. The comparison of the crosses with low FHB infection and GCA effects of their parents showed that such crosses involved at least one parent with high or average negative GCA effect. The results revealed that it is feasible to use highly or moderately resistant genotypes and conventional breeding methods to achieve genetic improvement of FHB resistance in spring wheat.  相似文献   

7.
The inheritance of Fusarium head blight (FHB) resistance was investigated in eight western European wheat lines using a half-diallel of F1 crosses. The parents and F1 crosses were point-inoculated, with a highly aggressive isolate of Fusarium graminearum, in replicated field and glasshouse trials. Type II resistance was assessed by measuring the % FHB spread and % wilted tips. There was a good correlation between the two disease parameters, % FHB spread area under the disease progress curve (AUDPC) and % wilted tips AUDPC (r = 0.86, P < 0.01). Correlation coefficients between the field and glasshouse environments were r = 0.46 (P < 0.01) for % FHB spread AUDPC and r = 0.40 (P < 0.05) for % wilted tips AUDPC. Both general combining ability (GCA) and specific combining ability (SCA) effects influenced the inheritance of FHB resistance, suggesting that in this set of parents both additive and non-additive (dominance or epistatic) effects influence the inheritance of type II FHB resistance. Highly significant GCA-by-environment (P < 0.0001) and SCA-by-environment (P < 0.005) interactions were also observed. Specific combinations of western European wheat varieties were identified with type II FHB resistance at a level equal to or more resistant than the winter wheat variety ‘Arina’.  相似文献   

8.
Head blight of wheat (FHB, scab) caused by Fusarium spp. has been associated with yield and quality losses in many wheat-growing regions. In tetraploid wheat sources of resistance are scarce. In the search for novel sources of resistance, 151 Triticum dicoccoides genotypes, originating from 16 habitats in Israel and one habitat in Turkey together with several control genotypes, were evaluated for reaction to fungal spread (Type II resistance) in replicated greenhouse experiments. Significant genetic diversity was found among the tested genotypes, the broad sense heritability for Type II FHB resistance was 0.71. Most of the tetraploid accessions were highly susceptible, only a few showed moderate resistance. Among the eight T. dicoccoides lines with the lowest relative infection rates, five originated from the Mt. Gerizim population, and three from the Mt. Hermon population. None of the T. dicoccoides lines reached the level of resistance present in the common wheat cultivar Sumai3. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Summary For genetic analysis of head blight in winter rye (Secale cereale) caused by Fusarium culmorum, six homozygous inbred lines from the Petkus gene pool were crossed in all combinations to obtain 15 diallel F1 crosses and the corresponding 15 F2 crosses. These materials and 10 additional inbreds were artificially inoculated in a 2-year field experiment. The inbreds were also tested with F. graminearum in a separate sub-experiment.Single disease rating, average disease rating, and yield components (grain-weight per spike, 1000-grain weight, kernel number per spike) relative to the non-inoculated treatment were significantly affected by Fusarium head blight in all material groups. The relative grain weight per spike ranged from 26% to 88%. Significant genotypic and genotype x year interaction variances were found throughout. Heritabilities were highest for homogeneous inbreds (h2=0.6–0.8) and lowest for heterogeneous F2 crosses (h2=0.4–0.6). Disease rating and relative grain-weight per spike were highly correlated for the inbreds and F2 crosses (r0.7, P0.01), but lower for the F1 crosses (r0.6, P0.05). Inter-annual correlation coefficients for disease ratings and relative grain-weight per spike ranged from r0.7 (inbreds) to r0.5 (F2 crosses). The diallel analysis showed significant GCA effects only for relative 1000-grain weight in 1990, but significant SCA and SCAx year interaction variances for most traits. The resistances of 16 inbreds to F. culmorum and F. graminearum were tightly associated for all traits (r=0.96–0.97, P0.01).In conclusion, only slow progress can be expected from selecting for Fusarium head blight resistance in rye due to the limited amount of additive genetic variance and the great improtance of environmental factors.  相似文献   

10.
Fusarium head blight (FHB) is one of the most destructive diseases in wheat. Identification of resistance gene analogs (RGAs) may provide candidate genes for cloning of FHB resistance genes and molecular markers for marker-assisted improvement of wheat FHB resistance. To identify potential RGAs associated with FHB resistance in wheat, 18 primer pairs of RGAs were screened between two parents (Ning7840 and Clark) and seven informative RGA primer combinations were analyzed in their recombinant inbred lines (RILs). Five PCR products amplified from three primer combinations showed significant association with FHB resistance, and their sequences are similar to the gene families of RGAs. Three of them (RGA14-310, RGA16-462, RGA18-356) were putatively assigned to chromosome 1AL and explained 12.73%, 5.57% and 5.9% of the phenotypic variation for FHB response in the F7 population, and 10.37%, 3.37% and 4.53% in F10 population, respectively; suggesting that these RGAs may play a role in enhancing FHB resistance in wheat. Analysis of nucleotide sequence motifs demonstrated that all the RGA markers contain a heat shock factor that initiates the production of heat shock proteins. A sequence tagged site (STS) marker (FHBSTS1A-160) was successfully converted from RGA18-356, and validated in fourteen other cultivars. Significant interaction between the quantitative trait locus (QTL) on 1AL and the QTL on 3BS was detected. The marker FHBSTS1A-160 in combination with markers linked to the major QTL on 3BS could be used in marker-assisted selection (MAS) for enhanced FHB resistance in wheat.  相似文献   

11.
Sources of resistance to Fusarium spp. are needed to develop maize hybrids resistant to the accumulation of fungal mycotoxins in the grain. In a search for resistant germplasm in 1999 and 2000, a set of Argentinian maize populations was evaluated in Ottawa, Canada, for resistance to ear rots after inoculation with local isolates of Fusarium verticillioides and F. graminearum. Sixteen of these populations, varying in observed resistance levels, were re-evaluated in 2003 and 2004 in Pergamino, Argentina, using local isolates of the same fungi. Conidial suspensions of each fungal species were inoculated into the silk channel of primary ears. Disease severity was assessed after physiological maturity using a scale based on the percentage of visibly infected kernels. Genotype effect was more important than genotype-by-fungal species or genotype-by-fungal species-by-environment interaction effects. In addition, disease severity levels associated with each fungal species were positively correlated (P < 0.05) (r = 0.90, r = 0.81, r = 0.87 and r = 0.53, in Ottawa 1999 and 2000, and Pergamino 2003 and 2004, respectively). Populations ARZM 01107, ARZM 07138, ARZM 10041, ARZM 13031, ARZM 16002 and Pora INTA exhibited the highest and most stable resistance to both species. Considering that disease resistance exhibited low specificity to the environment and to the fungal species in evaluations conducted in a wide range of environments and with fungal isolates collected from different hemispheres, the most resistant populations are potential sources of genes for stable resistance to these Fusarium spp.  相似文献   

12.
Variation for resistance to Fusarium head blight in spring barley   总被引:3,自引:0,他引:3  
Fusarium head blight (FHB) is a fungal disease of barley and other cereals, causing substantial yield and quality losses, mainly due to the contamination of the harvest with mycotoxins. We aimed to evaluate genetic variation for resistance to FHB and its association with other plant characters in diverse barley germplasm in order to identify useful lines for resistance breeding. The 143 barley lines consisted of 88 current European spring barley lines and cultivars, 33 accessions from the genebank at IPK Gatersleben, and 22 lines obtained from North American institutions. We conducted artificially inoculated field experiments with Fusarium graminearum Schwabe during two seasons. FHB severity was evaluated by repeated assessment of visual symptoms. On a set of 49 lines several trichothecene mycotoxins were analyzed. Variation for FHB severity was quantitative. The lines with lowest FHB severity were 'CIho 4196' and 'PI 566203'. Also within the European spring barley collection variation for FHB severity was highly significant. There was a significant negative correlation between plant height and FHB severity (r=– 0.55). FHB severity assessed in the field and the amount of deoxynivalenol in the harvested grains were positively correlated (r= 0.87). Several lines with a useful level of FHB resistance were found or confirmed and are recommended as crossing partners.  相似文献   

13.
Summary Fusarium head blight (FHB) is a serious disease of wheat worldwide that may cause substantial yield and quality losses. Breeding for FHB-resistant cultivars is the most cost-effective approach to control FHB. The objective of the present study was to determine the relationship of resistance between new resistant sources and Sumai 3 using five simple sequence repeat (SSR) markers closely linked to the major QTL for FHB resistance on chromosome arms 3BS and 6BS. All five SSR markers were highly polymorphic between Sumai 3 (and its derivatives) and susceptible Canadian wheat lines. Most of the Sumai 3-derived Chinese wheat accessions and three Canadian FHB-resistant lines had all the Sumai 3 SSR marker alleles on chromosome arms 3BS and 6BS. The Chinese landrace Wangshuibai and two Japanese accessions Nobeokabozu and Nyu Bai had the same banding patterns as Sumai 3 for all five SSR marker alleles, and another Chinese landrace Fangshanmai had three of the five SSR markers in common with Sumai 3, and therefore most likely carries the same QTL as Sumai 3 on 3BS and 6BS. The Brazilian cultivar Frontana had no alleles in common with Sumai 3 on either QTL, and the Chinese landrace Hongheshang had only one of the five SSR markers in common with Sumai 3, therefore likely carrying resistance genes different from Sumai 3. The Italian cultivar Funo is not the donor of either the 3BS QTL or 6BS QTL. All five SSR seem to be effective candidates for marker-assisted selection to increase the level of resistance to FHB in wheat breeding programs.  相似文献   

14.
Types and components of resistance to Fusarium head blight of wheat   总被引:18,自引:2,他引:18  
Resistance of wheat to Fusarium head blight caused by Fusarium graminearum and F. culmorum was identified in natural epidemics in 1985 and 1987 as well after artificial inoculations (1983–1988 and 1984–1987). Out of 25 genotypes tested, five were identified with no significant difference in head blight scores, but differing significantly in yield after artificial inoculation, i.e. tolerance differences were detected at different resistance levels. Some genotypes that were similar in yield or head blight scores differed in seed infection severity. Genotypes with awns were more susceptible to head blight when tested under natural epidemic condition in the field; but this trait did not influence head blight severity in artificial inoculations. Dwarf genotypes were more severely infected by head blight than tall genotypes under natural conditions, but genotypes of different plant height classes were similarly susceptible after artificial inoculations. In the early generations of a breeding programme resistance measured by visual evaluation of artificial inoculation is the most important way to screen. If selection of dwarf and awned genotypes cannot be avoided, the higher susceptibility caused by awns and dwarfness under natural epidemic conditions can be decreased by a higher level of physiological resistance, as variability in physiological resistance is available. In later generations, traits like percentage of seed infection or tolerance can be identified by additionally measuring yield reduction. Stability of disease reaction appears to be connected with resistance level, the most resistant genotypes are the most stable, and the most susceptible ones tend to have more unstable reactions in different epidemic conditions.  相似文献   

15.
Fusarium head blight (FHB, scab) caused by Fusarium spp. is a widespread disease of cereals causing relevant yield and quality losses and contaminating cereal products with mycotoxins. Breeding resistant cultivars is the method of choice for controlling the disease. Resistance to FHB is a quantitative trait and is most likely governed by several genes. We present the results of an F1 diallel analysis of FHB resistance involving six resistant and one susceptible European winter wheat genotypes of diverse origin in order to identify promising combinations for the selection of improved cultivars. Parents and F1s including reciprocals were evaluated for FHB resistance in an artificially inoculated field trial. Two traits were assessed: visual disease symptoms on the heads and the percentage of Fusarium damaged kernels in a harvested sample. General combining ability (GCA) and specific combining ability (SCA) effects were statistically significant for visual symptoms and kernel damage, whereas reciprocal effects were small or not significant. Heterosis for resistance was common, indicating that the parental genotypes possess different resistance genes. Selection of transgressive segregates should be feasible from such heterotic combinations. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
Summary The inheritance of resistance to bacterial leaf streak or black chaff of wheat was studied under field conditions, with an artificial epidemic of Xanthomonas campestris pv. undulosa. A complete series of crosses between five parents, differing in reaction to X. c. pv. undulosa, was generated. Disease was recorded at two different stages of growth. No evidence of cytoplasmic effect was found from the comparison between reciprocal F1 crosses. The study of the F3 generations attested that five genes were involved in resistance to bacterial leaf streak. Separate analyses carried out for the two scoring dates were mutually consistent: genotypes, number of genes, and their action and relative importance were verified. The genes differed in strength of expression of resistance. One of the two strongest genes, Bls1, is present in all three superior parents, Pavon 76, Mochis T88 and Angostura F88. Resistance was not complete, and proved to be stable over the season.  相似文献   

17.
由镰孢属(Fusarium)真菌侵染引起的赤霉病是严重威胁小麦生产的重要病害之一,但小麦育种中可直接利用的抗源非常有限。采用单花滴注法接种赤霉菌株F0609,对来源于中间偃麦草或长穗偃麦草的119份小偃麦衍生品系进行3年6个环境的抗病鉴定,发现平均病小穗率<10%的材料有13份,抗性评价为抗病(R);平均病小穗率介于10%~25%之间的材料有61份,抗性评价为中抗(MR);其余45份材料的平均病小穗率介于25%~50%或>50%,抗性评价为中感或高感(MS和S)。在13份高抗赤霉病材料中,CH16387的抗性显著优于苏麦3号和望水白,CH16371和CH16379的抗性显著优于望水白,其余10个品系与抗病对照苏麦3号和望水白的抗性水平相当。这13份材料分别来自小麦-中间偃麦草部分双二倍体TAI8045和小麦-长穗偃麦草部分双二倍体TAP8430与普通小麦的杂交组合,TAI8045抗性显著优于对照品种望水白, TAP8430与苏麦3号和望水白的抗性相当,而杂交组合中的小麦亲本对赤霉病表现感病,推测这些材料的抗性可能来自TAI8045和TAP8430。这些抗病材料为小麦抗赤霉病育种提供了新的种质资源。  相似文献   

18.
Fusarium head blight (FHB) is a destructive disease of barley. The genetics and expression of resistance to FHB in barley is complex, and various spike characters are thought to possibly influence resistance. Tests using spray-inoculation of Fusarium graminearum at anthesis in greenhouse environments showed that two-rowed and cleistogamous varieties from Japan belong to the highest resistance group, while six-rowed and chasmogamous varieties are mostly susceptible. In order to evaluate the effect of such spike characters, including row type and flowering type, on FHB resistance, near-isogenic lines (NILs) differing in these characters were tested for their resistance. Two testing methods were used: the pot-plant and cut-spike methods, in which spikes at anthesis were spray-inoculated in greenhouse environments. The chasmogamous NILs and some six-rowed NILs were significantly more diseased than cleistogamous and two-rowed parent lines, respectively, and the difference in FHB severity was greater and more stable between cleistogamous/chasmogamous NIL pairs than between two-/six-rowed pairs. Slight or no differences were observed in glaucous/non-glaucous, normal/dense spike, normal/uzu type and normal/deficiens NIL pairs. The results indicate that the contribution of cleistogamy and/or the genetic background toward FHB resistance is more than that of row type and the other tested spike characters. Further, it should be possible to develop six-rowed varieties with FHB resistance nearly as good as that of the two-rowed varieties.  相似文献   

19.
G.-L. Jiang    R. W. Ward 《Plant Breeding》2006,125(5):417-423
Fusarium head blight (FHB or scab) caused by Fusarium graminearum is a worldwide serious disease in wheat. Exploitation and genetic studies of elite resistance sources can speed up the development of resistant cultivars. To characterize the inheritance of host plant resistance in two new lines, ‘CJ 9306’ and ‘CJ 9403’, developed from a recurrent selection programme in China, six generations P1, P2, F1, F2, B1 and B2 of four crosses and 137 F6 : 7 recombinant inbred lines (RILs) from one cross were evaluated in the greenhouse for scab resistance using single‐floret inoculation. The data of area under disease progress curve (AUDPC) in F2, backcross (BC) and RIL populations exhibited mono‐modal distributions without clear‐cut demarcations and skewing towards resistance. An additive–dominance model was well‐fitted, additive effects played a predominating role, and dominance effects were also significant. Continuous distributions with two major peaks and one minor peak for the number or percentage of scabby spikelets (NSS or PSS) in segregating populations implied the existence of major genes or quantitative trait loci (QTL) for resistance. The estimates of broad‐sense and narrow‐sense heritabilities based on the six‐generation experiment were 56–76% and 26–67% respectively. The estimates of broad‐sense heritabilities based on anova with RILs were 89–90%. These two improved lines with excellent scab resistance and good agronomic traits are of interest for wheat breeding and production.  相似文献   

20.
Four cycles of recurrent selection for FHB resistance were conducted in an intermating wheat breeding population using the dominant male-sterile gene ms 2 during 1987–1991.Five cycles of phenotypic mass selection for male-sterile plants were evaluated using the soil-surface inoculation method in Experiment I. Experiment II evaluated changes in FHB scores during five cycles of progeny selection for fertile plants using the single-floret inoculation method. In Experiment I, the average level of FHB response increased to MR level in C4, compared to MS level in C0. The numbers of infected spikelets and diseased kernels decreased 0.32 and 2.68 per cycle, respectively. In Experiment II, the average level of FHB response increased to R level in C4F1. The numbers of infected spikelets and diseased kernels decreased 0.93 and 4.58 per cycle, respectively. In both experiments, the largest selection gains were realized in the first cycle. The frequencies of R and MR individuals were increased significantly. The frequencies of individuals with FHB response equal and/or superior to Sumai 3 were increased to 5–8% in C4 and 25% in C4F1after the fourth cycle. Agronomic traits tended to be slightly improved in selected populations. Compared to 2% in C0, about 34% of lines superior in both FHB resistance and agronomic traits in C4F1 were selected to enter the conventional breeding program for further evaluation. Sixty three semidwarf lines superior in both FHB resistance and yield potential were selected from the F5 generations derived from C1F1 to C4F1. From them, two resistant cultivars with high-yielding potential were developed and commercialized in the Lower Yangtze Valley. Recurrent selection appears to be highly effective and feasible in shifting the average FHB response of the intermating population in the desirable direction, thereby enhancing the frequency of resistant individuals. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号