首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mineralization of [14C]methyl parathion (MP) in Cecil sandy loam was considerably reduced when soil-water content was near saturation. Despite the fact that amounts of MP residue in soil held at 10?0 kPa after 35 days were about the same, larger amounts of metabolites were accumulated and higher amounts of non-extractable 14C-activity were formed in soil held at ? 2.5 kPa than held at ? 6 kPa. Three principal metabolites, p-nitrophenol (PNP), p-aminophenol (PAP) and a water-soluble polar product (R? = 0), were detected in soil held at ? 2.5 kPa but only PNP and PAP were detected in soil held at ? 6 kPa. The major metabolite PNP behaved like parent MP, in that it was rapidly mineralized in soil held at ? 6kPa. Much slower mineralization was observed in soil held at ? 2.5kPa.  相似文献   

2.
Fifty bacterial isolates from a parathion-treated soil (Gilat, Israel) were tested for their ability to hydrolyze the organophosphorus insecticide, parathion in peptone-yeast extract medium. After 5 days 33 isolates had hydrolyzed at least a portion of the added parathion. Eight of these isolates hydrolyzed 75% of the added parathion in 5 days and appeared to be Bacillus strains. Ten of these 33 isolates had hydrolyzed all of the parathion after 5 days and appeared to be Arthrohacter strains. One isolate from each group was tested further. During the logarithmic phase of growth, Bacillus sp., isolate 10, hydrolyzed less than 10% of the parathion added to peptone-yeast extract medium and was not active in parathion hydrolysis when inoculated into sterilized, parathion-treated soil. Arthrobacter sp., isolate 6, hydrolyzed parathion rapidly in peptone-yeast extract medium and in sterilized, parathion-treated soil. It used parathion or its hydrolysis product, p-nitrophenol, as sole carbon source. The parathion hydrolyzing enzyme appeared to be constitutive in isolate 6. Single applications of p-nitrophenol at concentrations greater than 1 mM inhibited growth but successive additions of smaller amounts permitted growth to continue.  相似文献   

3.
Individual roots of a 7-year-old lodgepole pine (Pinus contorta Dougl. ex Loud) were subjected to water potentials of 0, ?200 or ?400 kPa using PEG 4000 as the osmotic agent. Root exudation of photoassimilated 14CO2 was followed over time. Although roots subjected to a water potential of ?400 kPa exuded more 14C-labeled material than roots at either 0 or ?200 kPa, more labeled material was also translocated to these roots, suggesting an attempt to alleviate the water stress. Some roots exuded over 80% of the total 14C-activity which moved to the roots in 10 days. Although exudation did not appear to be influenced by mycorrhizal infection, mother roots exuded a greater proportion of 14C-labeled assimilates than lateral roots.  相似文献   

4.
The fate of [ring-14C]methyl parathion in a silt loam soil was monitored during a 49-day incubation. After this period, 54% of the initial 14C remained in the soil; of this, 13% was soxhletextractable with methanol and 87% was bound residue. Soils were then treated with inorganic and organic amendments and incubated for an additional 70 days. Release of methyl parathion bound residues could not be demonstrated, but both bound and extractable 14C were mineralized to 14CO2, CO2 was evolved slowly and continuously by the controls and where soil was amended with H2SO4, (NH4)2SO4, NH4OH, chitin, oat seedlings or oat straw. Glucose and asparagine caused higher rates of 14CO2 production. HgCl2 gave very high initial rates of 14CO2 loss; the rate declined to that of the control only after 9–10 weeks. The lime treatment exceeded the controls after 1 week, declining only slightly with time. The effects of sewage sludge and dairy manure were similar to the controls except that: sludge caused a very high initial release of 14CO2, and both treatments gave an unaccountable loss of 14C, perhaps as 14CH4 resulting from the formation of anaerobic conditions. By 70 days, amounts of extractable 14C and bound 14C had both declined twice as rapidly in certain soils as in unamended controls.Studies carried out with soxhlet-extracted soils, containing only bound residues, indicated that the soil microflora able to mineralize bound residues without any appreciable buildup of 14C activity in the extractable phase.  相似文献   

5.
The hydrolysis of the organophosphorus insecticide, parathion (O,O-diethyl O-p-nitrophenyl phosphorothioate) in a silty loam sierozem soil (Gilat, Israel) occurred primarily through microbial action. Parathion (labelled with 14C in the alkyl chain) was applied at levels of 10–160 μg dry soil?1 to soil remoistened to 20% and incubated at 25°C for 8 days. Bacterial numbers increased to a maximum 4–5 days after application of parathion and the increase was proportional to the concentration of parathion added. The rate of hydrolysis of parathion per μg applied was independent of the concentration of parathion. A model developed to predict the relationship between parathion concentration, microbial numbers and hydrolysis kinetics was in general agreement with the data experimentally obtained. The course of decomposition of successive additions of parathion, determined experimentally and predicted by the model, was characterized by rapid hydrolysis of parathion and successive increases in bacterial numbers. A portion of the 14C applied in these experiments was strongly absorbed by the soil and was not used by the soil microorganisms during the incubation period tested.  相似文献   

6.
The reactions of methyl nitrite (CH3ONO), a gaseous product of NO?2 decomposition in soils, were studied by exposure of soils in closed vessels to the gas. The N transformations occurring in soils at different soil-water states were assessed by measuring CH3ONO and other gaseous forms of N in the gas space, soil inorganic N (NH4+, NO?2, NO3?) and incorporation of CH3O15NO into the soil organic N fraction. The initial rate of uptake of CH3ONO increased with decreasing soil-water content, but the rate of hydrolysis decreased as soil-water content decreased below – 33kPa matric potential. Uptake was not affected by y-irradiation of soils. Adsorption isotherms conformed to the Langmuir equation in each of 22 oven-dry soils studied. Langmuir adsorption maxima were positively correlated with the clay contents of the soils, and adsorption was reversible to some extent at all soil-water states. Small amounts of added CH3ONO were recovered as N2 and N2O and as 15NH4+ in γ-irradiated soils. From 60 to 72% of added CH3O15NO was recovered by Kjeldahl digestion; this was indicative of a chemical reaction with soil organic matter. The results suggest that the physical process of adsorption of CH3ONO by clay minerals and the chemical fixation of CH3ONO by soil organic matter are key factors controlling the atmospheric concentration of CH3ONO, and that the combined effect of these processes, together with hydrolysis in the soil solution, will inhibit the emission of CH3ONO formed in N-fertilized soils.  相似文献   

7.
The dynamics of soil water following single surface wettings   总被引:1,自引:0,他引:1  
Single rainfall events play an important agricultural and ecological role, especially in dry regions where precipitation is erratic. Infiltration, redistribution and evaporation of single quantities of water are important in this context and have been investigated in the laboratory. Three soils of differing texture were packed at two uniform initial water potentials (– 100 MPa and –1.5 MPa) into columns, after which 12.7, 25.4 and 50.8 mm of water were applied as a single irrigation. The columns were maintained in a controlled hot and dry atmosphere (evaporativity = 16.7 mm d-1) for up to 30 days, during which water-content profiles were measured at intervals. Infiltration was rapid to depths ranging between 35 and 250 mm. Thereafter redistribution was small. Evaporation caused the water profile to develop three zones: dry between the soil surface and the drying front, dry below the wetting front, and an intermediate wetter zone between the drying and wetting fronts. As evaporation continued, the drying front moved deeper into the soil and the water content in the intermediate zone decreased. During the first few hours evaporation was rapid and constant, at the evaporativity of the atmosphere. Subsequently, evaporation was slower. Total evaporation (E) increased with time (t) as Eα tn for t > 1 d, where n = 0.24 for a loamy sand, 0.33 for a clay loam and 0.31 for a silty clay loam. Weighted-mean soil-water diffusivities, averaged over the profile above the wetting front, ranged between 1000–2000 mm2 d?1 at the start of the falling-rate stage and 200–400 mm2 d?1 near air-dryness, in reasonable agreement with the few results in the literature.  相似文献   

8.
The degradation of14 C-Carbofuran was studied in sterilized, unsterilized and green manure amended clay soil under moist and flooded conditions overa period of 30 days. The14 C mass balance showed that carbofuran did not undergo any degradation in sterilized moist soil. In sterilized flooded soil bound residues were formed to the extent of about 47% of the applied radioactivity at the end of 30 days. Carbofuran underwent considerable degradation in unsterilized moist and flooded soils. In moist soil about 48% of the applied14 C activity was recovered as bound activity while in flooded soil, about 23% of the activity was bound. Green manure amendment resulted in formation of more bound residues under moist conditions while it enhanced the degradation of carbofuran under flooded conditions. In flooded amended soil about 44% of the appliedl4 C-activity was recovered as against about 54% in the unamended flooded soil. The notable degradation products formed under flooded soil conditions were 3-keto carbofuran and 3-hydroxy carbofuran.  相似文献   

9.
The burrowing nematode, Radopholus similis (Cobb.) Thorne, causes the most damage to bananas. To minimize nematicide applications, cropping systems that use fallow, crop rotation and clean planting material have been developed in the French West Indies. In order to optimize the benefit of the intercropping period, we studied the survivorship of R. similis in different soil types and conditions. We monitored the survivorship of calibrated populations of R. similis in the laboratory on a Nitisol and on an Andosol, two soils derived from volcanic ashes and pumices. We studied water potentials ranging from 0 to ?700 kPa on undisturbed soil and on soil previously frozen to get rid of living nematodes. Mortality of adult R. similis decreased regularly, and was fairly well described by Teissier's model. In the previously frozen soils, R. similis survived longer in wet soils (half-life of 21–46 days at 0 to ?5 kPa) than in dry soils (half-life of less than 10 days between ?80 and ?250 kPa). In contrast, in undisturbed soils, R. similis survived longer in dry soils: half-lives ranged from 57 days at ?273 kPa to 17 days at water saturation in the Andosol, and 36 days at ?660 kPa to 14 days at water saturation in the Nitisol. These results are consistent with the absence of anhydrobiosis in R. similis, unlike Pratylenchus coffeae. P. coffeae survivorship curves over time do not follow a model derived from exponential decrease like Teissier's model. These results also show that the recommended one year host-free period required to sanitize soils cannot be shortened without risk, even if flooding the soil could improve it.  相似文献   

10.
The effects of temperature, moisture content and the addition of pig slurry on nitrification in two soils were studed. There was no accumulation of NO2?-N under the incubation conditions investigated and the accumulation of NO3?-N was linear for additions of 50–250 μg NH4+-N g? soil, either as ammonium sulphate or as pig slurry. Nitrate formation was treated as a single step, zero order process to enable a rate constant to be calculated. Nitrification rate increased with increasing moisture content up to the highest level tested, soil water potential ?8.0 kPa, corresponding to approximately 60% of water holding capacity in both soils. Measurable nitrification was found in both soils at the lowest moisture content (soil water potential ?1.5 MPa) and temperature (5° C) tested. The nitrification rate constant in soils treated with 50 μg NH4+-N g? soil was not significantly affected (P = 0.05) by the form of ammonium added. Addition of 250 μg NH4+-N as ammonium sulphate caused a marked inhibition of nitrification at all moisture contents and temperatures. Addition of 250 μg NH4+-N as pig slurry caused a marked increase in nitrification rate, the increase being greater at the higher temperatures and moisture contents.  相似文献   

11.
To predict the amount of crop residue remaining on a field at a given time, the rates of residue decomposition under conditions of low temperature or low water potentials need to be known. Laboratory experiments were made in which temperature and moisture were controlled. The amount of CO2 evolved from soils treated with wheat residue was used as a measure of decomposition. After 30 days at 20°C and −33 kPa, 38% of the surface-applied wheat residue was lost as CO2-C. Decomposition decreased as the temperature decreased, the 30 day CO2-C losses were 32.7, 28.6, 21.7 and 17.2% at 15, 10. 5 and 0°C, respectively. When water potential at 20°C was varied, decomposition decreased as the water potential decreased with 35.4, 25.1, 22.1, 17.0 and 10.1% of the residue decomposing at −150 kPa and −1.0, −1.5, −2.5 and −5.0 MPa, respectively. The results obtained with residue incorporated into soil were similar to those with surface-applied residue. Equations for the relationship between the amount of residue decomposition after 30 days and temperature or water potential are presented.  相似文献   

12.

Purpose

Biochar has long been proposed for amending agricultural soils to increase soil-water retention capacity and therefore promotes crop growth. Recent studies revealed the potential use of biochar-amended soil in landfill final covers to promote methane oxidation and odor reduction. However, the effects of biochar application ratio, compaction water content (CWC), and degree of compaction (DOC) on soil-water retention characteristics of biochar-amended clay (BAC) at high soil suction (dry condition) are not well understood. The present study aims to overcome this knowledge gap.

Materials and methods

Soil suction was induced using vapor equilibrium technique by a temperature- and humidity-controlled chamber, and the water desorption (drying) and adsorption (wetting) water retention curves (WRCs) of compacted pure kaolin clay and peanut shell BAC with different biochar application ratios (0, 5, and 20 %, w/w), DOCs (80, 90, and 100 %), and CWCs (30 and 35 %) were measured. The correlations between these factors and the gravimetric water content were analyzed by three-way ANOVA followed by the Tukey HSD test. The soil micro-structure was studied by scanning electronic microscope with energy-dispersive X-ray spectroscopy.

Results and discussion

Measured WRCs of BAC suggest that the soil-water retention capacity at high suction range (48.49–124.56 MPa) was in general increased, upon biochar application. The BAC compacted with CWC of 35 % at low (80 %) and high (100 %) DOCs for the 5 % BAC were increased by 7.30 and 9.77 %, when compared with clay, while the increases of 20 % BAC were 39.89 and 59.20 %, respectively. This is attributed to the embedded effects of clay particles in biochar pores, which reduce the total pore space of BAC. The soil-water retention capacity of BAC was also increased with CWC and decreased with DOC. The results of three-way ANOVA analysis show that the effects of DOC and biochar ratio on soil gravimetric water content was significant (p?<?0.05) only at 48.49 MPa on drying path. For other induced suctions, only effects of CWC were significant (p?<?0.05).

Conclusions

Biochar application increases soil-water retention capacity of the BAC at high soil suction (48.49–124.56 MPa) (dry condition) at both low (80 %) and high DOC (100 %). The soil-water retention capacity of 20 % BAC was much higher than that of 5 % BAC. BAC is a potential alternative landfill final cover soil with a higher soil-water retention capacity to be used in dry areas or regions with a long period of evaporation event.
  相似文献   

13.
In order for cholinesterase (ChE) activity to be used as an effective biomarker in earthworms, the time course of enzyme activity inhibition and recovery must be fully characterized. A laboratory experiment was carried out using parathion as a model organophosphorus pesticide at the recommended dose (1 mg kg−1) and a 10 fold higher dose (10 mg kg−1), on two earthworm species (Allolobophora chlorotica and Aporrectodea caliginosa). ChE activity and weight were measured every week for a 14 day period of exposure to parathion and then for 8 weeks in uncontaminated soil. After 3 days of exposure, the weight of both earthworm species had decreased by 10–15% compared to the control, regardless of the dose used. During the remainder of the exposure period, no differences were observed between the two doses for A. chlorotica; but A. caliginosa showed rapid weight recuperation for the lowest dose applied. After 28 days and over, the control and both exposed species of worms lost similar amounts of weight. ChE inhibition was measured during and after the exposure period. ChE inhibition followed a different time course for the two species investigated. A. chlorotica appeared less sensitive to parathion than A. caliginosa. In this latter species, ChE inhibition was rapid at close to 70% of the control after 3 days, for either dose, and reached 80–90% after 7 days exposure. While A. chlorotica exhibited the same pattern of inhibition for 10 mg kg−1 of parathion, the inhibition process was slower for the recommended dose with 50% inhibition after 7 days of exposure and 70% after 14 days. ChE activity recovery, after transfer to uncontaminated soil, also followed a different pattern for the two species. After exposure to 1 mg kg−1 parathion, ChE activity from A. chlorotica underwent a slow but constant recovery process to regain the control value after 8 weeks in unpolluted conditions. On the other hand, the ChE activity from A. caliginosa remained strongly inhibited. The differential susceptibility to parathion found in this study could be related to differences in the specificity of the total ChE activities between those two species.  相似文献   

14.
The survival of Pseudomonas solanacearum biovars 2 and 3 in three soils, a Nambour clay loam, a Beerwah sandy loam and a Redland Bay clay, was compared at pressure potentials of ?0.003, ?0.05 and ?0.15 kPa. The soils were inoculated with mutants of P. solanacearum biovars 2 and 3, resistant to 2000 μg streptomycin sulphate ml?1 and their survival measured every 6 weeks for 86 weeks in the clay loam and clay and for 52 weeks in the sandy loam. Soil populations declined with the initial drying necessary to bring the soil moisture to the specific pressure potentials; the initial counts for biovar 2 varied between 0.20 and 2.00 × 109 cfu g?1 soil and for biovar 3 between 0.17 and 1.29 × 109 cfu g?1 soil.The population decline in soil maintained at a constant pressure potential was expressed as the rate of population decline. Biovar 2 declined more rapidly than biovar 3. The rate of population decline of each biovar at ?0.003 and ?0.05 kPa was greater in clay loam than in sandy loam and at all pressure potentials it was greater in clay loam and sandy loam than in clay. There was also a tendency for the rate of population decline of both biovars to decrease in the drier soil treatments.  相似文献   

15.
The effect of rice straw on parathion degradation in a flooded alluvial soil was investigated. In soils inoculated with an enrichment culture which exhibited an exceptionally high ability to hydrolyze parathion, rice straw amendments inhibited parathion hydrolysis to p-nitrophenol and diethyl thiophosphoric acid. On the other hand, in uninoculated soils, rice straw enhanced the degradation of parathion via nitro reduction. During the enhanced breakdown of parathion in uninoculated soils amended with rice straw, aminoparathion and an unidentified metabolite evidently possessing a PS bond were detected. Thus, the influence of organic matter on the persistence of parathion in flooded soil is governed by the metabolic pathway involved in the degradation.  相似文献   

16.
We examined the effects of an amended mixture of three pesticides, atrazine (72.7?g), S-metolachlor (54.5?g), and permethrin (both cis and trans isomers; 11.4?g), on 10-day sediment toxicity to Hyalella azteca in a managed natural backwater wetland after a simulated agricultural runoff event. Sediment samples were collected at 10, 40, 100, 300, and 500?m from inflow 13?days prior to amendment and 1, 5, 12, 22, and 36?days post-amendment. Background pesticide concentrations ranged from <1 to 977, <1 to 119, and <1 to 2???g?kg?1, for atrazine, S-metolachlor, and permethrin, respectively. Average post-amendment atrazine and S-metolachlor were 2,915?C3,927 and 3?C20???g?kg?1, respectively at 10?C40?m and 538?C872 and <1???g?kg?1, respectively at 300?C500?m. Average post-amendment permethrin was 65?C200???g?kg?1 at 10?C40?m and 1?C10???g?kg?1 at 300?C500?m. H. azteca 10-day survival varied spatially and temporally up to 100?m from inflow. Animal growth, independent of survival, was reduced 40 and 100?m from inflow on day?36, showing continued sediment toxicity of up to 100?m from inflow more than 1?month after amendment. Animal survival and growth were unaffected at 300 and 500?m from inflow throughout the study period. Correlations of pesticide concentrations and H. azteca responses indicated that observed sediment toxicity was primarily from permethrin with potential additional synergistic toxicity from atrazine and methyl parathion. Study results indicate that natural backwater wetlands can be managed to ameliorate pesticide mixture 10-day sediment toxicity to H. azteca within 300?m of inflow and smaller wetlands (??100?m) may require several months of effluent retention to mitigate effects.  相似文献   

17.
The effects of 10 urease inhibitors on nitrification in soils were studied by determining the effects of 10 and 50 parts/106 (soil basis) of each inhibitor on the amounts of nitrate and nitrite produced when soils treated with ammonium sulfate (200 μg of ammonium N/g of soil) were incubated (30°C) under aerobic conditions for 14 days. The urease inhibitors used (catechol. hydroquinone, p-benzoquinone, 2,3-dimethyl-p-benzoquinone, 2,5-dimethyl-p-benzoquinone. 2,6-dimethyl-p-benzoquinone. 2,5-dichloro-p-benzoquinone, 2,6-dichloro-p-benzoquinone. sodium p-chloromercuribenzoate, and phenylmercuric acetate) were those found most effective in previous work to evaluate more than 130 compounds as soil urease inhibitors. Their effects on nitrification were compared with those of three compounds patented as soil nitrification inhibitors (N-Serve. AM. and ST).Most of the urease inhibitors studied had little effect on nitrification when applied at the rate of 10 μg/g of soil. but had marked inhibitory effects when applied at the rate of 50 μg/g of soil. None inhibited nitrification as effectively as N-Serve. but phenylmercuric acetate inhibited nitrification more effectively than did AM or ST when applied at the rate of 10 μg/g of soil. Phenylmercuric acetate, 2,5-dimethyl-p-benzoquinone, and 2,6-dimethyl-p-benzoquinone had very marked effects on nitrification when applied at the rate of 50 μg/g of soil.  相似文献   

18.
Slaking characteristics of some Australian and British soils   总被引:4,自引:0,他引:4  
Aggregates (9.5–12.7 mm) from ten soils were equilibrated at a range of matric suctions (Ψa) between 1 kPa and 100 MPa before immersion in water or wetting on a porous plate at zero suction. The soils were from cultivated and grassland sites and included hardsetting and non-hardsetting Australian and British soils as well as a Vertisol. The initial rate of wetting of each aggregate, and the composition and size distribution of the slaked fragments were measured. There was a significant inverse linear relation between the amount of slaking produced by plate wetting air-dry soil (Ψa=100 MPa) and its organic carbon content (r= 0.82***). The three cultivated hardsetting soils shared several common features. Their slaking was the most pronounced after plate wetting and occurred at the smallest Ψa(10 kPa). Their slaking also increased linearly with rate of wetting and the particle-size distribution of their slaked fragments varied significantly and considerably with Ψa. This last observation demonstrates that it is not always helpful to call the fragments produced by slaking, microaggregates. Possible explanations for our results and their agricultural implications are discussed.  相似文献   

19.
Properties of diphenol oxidases extracted from salts. Salmine and SP-Sephadex C-25 were used to separate the enzyme system associated with humic materials in the neutral extracts of fresh soils (NAFS Extract). Electrophoresis on polyacrylamide gel shows that this preparation is heterogeneous. The elementary analysis of the soil enzyme is C 43·13%; N 5·09%; H 7·21%; O 44·58%. Chromatographic analyses indicate that the soil enzyme contains 53 per cent amino acids, 36 per cent sugars and amino sugars and 10 per cent ammonium and inorganic materials. The soil enzyme has a maximum absorption at 270–280 nm. The soil enzyme degrades the following substrates at the relative rate mentioned in parentheses : d-catechin (298);p-cresol (251); catechol (156); dl-DOPA (100);p-phenylene diamine (59);p-quinol (20) in terms of rate of oxygen absorption. This enzymatic preparation has the properties of an o- and p-diphenol oxidase. The rate of decarboxylation was measured using a radiorespirometer. The following relative values are dl-DOPA-l-14C (100); dl-tyrosine-l-14C (35) ; dl-tyrptophan-1-14C (7); dl-phenylalanine-l-14C (2). The dl-DOPA-2-14C was partially degraded to 14CO2. The O2 absorbed and CO2 (carboxyl) evolved in case of dl-DOPA was in the ratio of 1·8 at 37°C. The activation energy on dl-DOPA was 3·1 and 7·9 kcal/mole/°C for oxygen absorption and decarboxylation respectively. The enzymatic activity on dl-DOPA-l-14C was optimum in air and inhibited in a N2 atmosphere. Decarboxylation on dl-DOPA-l-14C followed the Michaelis-Menten law, from which we found that Km = 8·3 × 10?4M for decarboxylation. The oxidative decarboxylation was inhibited by H2O2 (74%); KCN (75%); ascorbate (92%); BAL (97%);DIECA(90%).Melanogenesis of dl-DOPA followed first order kinetics. The maximum absorption at 305 nm during melanogenesis shows the formation of dopachrome.  相似文献   

20.
14C-tracer technique and closed incubation method were used to study straw 14C decomposition and distribution in different fractions of newly formed humus under different moisture regimes. Decomposition of straw 14C was faster during the initial days, and slower thereafter. Decay rate constants of straw 14C varied from 3.29 × 10-3 d-1 to 7.06 × 10-3 d-1. After 112 d incubation, the amount of straw 14C mineralized was 1.17~1.46 times greater in submerged soils than in upland soils. Of the soil residual 14C, 9.08%~15.73% was present in humic acid (HA) and 31.01%~37.62% in fulvic acid (FA). Submerged condition favored the formation of HA, and HA/FA ratio of newly formed humus (labelled) was greater in submerged soils than in upland soils. Clay minerals affected the distribution of straw 14C in different humus fractions. Proportion of 14C present in HA to 14C remaining in soil was greater in Vertisol than in Ultisol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号