首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of earthworms on the plant availability of phosphorus (P) in superphosphate and Chatham Rise phosphorite (CRP) was evaluated in a glasshouse experiment using perennial ryegrass over seven harvests. A mixed earthworm population of Lumbricus rubellus (Hoff.) and Allolobophora caliginosa (Savigny) was used. Increases in the yield of ryegrass in the presence of earthworms varied from 2 to 32%, whereas increases in P uptake by ryegrass ranged from 0 to 40% over seven harvests. With superphosphate, the initial increases in both ryegrass yield and P uptake by ryegrass in the presence of earthworms ranged from 20 to 40% at first harvest to less than 10% by the seventh. In marked contrast, earthworms increased the agronomic performance of pelletized CRP by 15 to 30% throughout the trial period. An increase in plant-available soil N concentrations due to earthworm activity probably explains the initial difference in the performance of superphosphate. The increased agronomic effectiveness of CRP appears to result from the incorporation and intimate mixing of the PR with the soil by earthworms. The implications of the results obtained in the present study to the interpretation of glasshouse and field trials evaluating P fertilizers are also discussed.  相似文献   

2.
To get a better understanding of earthworm’ responses towards flooding, three laboratory experiments were performed with the species Allolobophora chlorotica, Aporrectodea caliginosa and Lumbricus rubellus.Flooding response was determined in a pot experiment, in which the earthworms were incubated for 42 days in flooded or non-flooded soil, with or without heavy metal pollution. To determine moisture preference, earthworms were incubated for 9 days in aquaria with five compartments, containing soil with a moisture gradient (%, w/w), ranging from 35%, 45% (field capacity), 55%, 65% (saturated) to 65%+ (saturated and an extra water layer). Effects on earthworm health were studied by incubating earthworms of each species for 42 days in soil with the same range of moisture contents and determining the dry/wet weight ratio and dry weight gain as an indication of earthworm health.A. chlorotica was tolerant to water, although the worms tended to escape from flooded soil. Their health was significantly lower in the flooded soils (P<0.05). A. caliginosa showed little response to flooding. This species, however, was affected by the heavy metal pollution in the pot experiment. L. rubellus was sensitive towards flooding, with escape and avoidance behaviour being the main mechanism of survival. This species was able to survive when forced to stay in flooded soil for at least 42 days, but this significantly reduced its health (P<0.05).These results suggest that earthworms are able to survive in inundated soils, but there are large differences between species in response to flooding conditions.  相似文献   

3.
The earthworms Allolobophora catiginosa and Lumbricus rubellus were used to study the toxicity of 2,3,7,8-TCDD (dioxin) for earthworms. The earthworms were exposed to soil containing concentrations ranging from 0.05 to 5.0 μgg?1. No worms were killed or showed any other observable toxicological effects when exposed to concentrations up to 5 μg g?1 for 85 days in soil. The lethal threshold concentration for TCDD to earthworms falls between 5 and 10 μg g?1 in this study. In soils containing 0.05 μg g?1 earthworms accumulated TCDD up to 5 times the original soil concentration within 7 days. Worms were also exposed to TCDD on filter paper to study the behaviour of earthworms and the uptake of TCDD after surface contact. The earthworms did not avoid TCDD in their environment, indicating an indifference to it. No active penetration of TCDD into the body occurred where earthworms were exposed to surface concentrations. No indication was found of possible biological breakdown of TCDD on passing through the earthworm gut, although the search for metabolites was limited to the mono-, bi- and trichlorinated dioxins. There was a steady decrease (a T12-value of 80–400 days) in the amount of TCDD recovered from worm-worked soil compared to soil without worms.  相似文献   

4.
The effect of different densities of Lumbricus rubellus on the nematode community was studied in a field experiment. The stand, a cultivated meadow on peat-muck soil developed from moderately decomposed alder peat, was located on drained fens in the central basin of the Biebrza valley in the north-eastern part of Poland. Samples were taken from soil isolators into which 0, 2, 4 or 6 earthworms were previously introduced. The abundance and trophic structure of the nematode fauna in the different treatments were compared 30, 60, 90 and 120 d after the introduction of L. rubellus. The effect of L. rubellus on soil nematodes was most pronounced at the beginning of the experiment. Thirty days after introduction of L. rubellus, the total number of nematodes in all trials with earthworms was significantly lower than in the control, and nematode numbers decreased with increasing L. rubellus density. On later sampling dates, the results were less clear and 120 d after introduction of L. rubellus no significant effect on the total number of nematodes was observed in the treatments. The abundance of the bacterial-, fungal- and plant-feeding nematodes in the treatments with earthworms was lower than in the control 30 d after introduction of L. rubellus, but significant differences were found only in the case of bacterial feeders.  相似文献   

5.
A field survey was conducted to determine the numbers and biomass of earthworms in soils receiving different tillage and cropping treatments, and to investigate in a greenhouse study the effect of earthworms on the rate of breakdown of soybean (Glycine max) and maize (Zea mays L.) residues. The numbers and biomass of earthworms under continuous soybeans were greater than those present under maize, possibly due to the adverse effects of insecticide and anhydrous ammonia fertilizer used with maize. No-tillage doubled the population of earthworms under soybeans, when compared with ploughing. Numbers (141 m?2) and biomass (26.5 g m?2) of earthworms under no-till soybeans were still much lower than the numbers (1298 m?2) and biomass (224.5 g m?2) under pasture receiving heavy applications of animal manure. Using 16-1 pots in the greenhouse, the effect of 0, 15 (250m?2) and 30 (500m?2) earthworms (Lumbricus rubellus) pot?1 on the rate of breakdown during 54 days of 50 g of soybean or maize residues in the Raub silt loam (Aquic Argiudoll) was studied. At 36 days, 60% of the soybean residues were recovered from pots to which no earthworms had been added, whereas in the presence of earthworms, only 34% of the soybean residues remained. In the absence of earthworms, 85% of the maize residues were recovered at 36 days, compared with only 52% in the presence of earthworms. At 36 days, 48% of the original maize residues added were still > 2 mm in length in the absence of earthworms, whereas only 26% were > 2 mm in length in the presence of earthworms. Earthworms also increased the aggregate stability of the Raub soil, when determined on moist (19–22% w/w) samples, but had no effect on soil water retention at ?33 and ?1500 kPa. The possible implications of greater earthworm activity on increasing residue incorporation and breakdown and subsequent effects on soil temperatures under no-till maize production are also discussed.  相似文献   

6.
Earlier studies of postmining heaps near Sokolov, Czech Republic (0–46 years old) showed that massive changes in plant community composition occur around 23 year of succession when the heaps are colonized by the earthworms Lumbricus rubellus (Hoffm.) and Aporrectodea caliginosa (Savigny). The aim of the current study was to test the hypothesis that the introduction of earthworms into a postmining soil enhances growth of late succession plant species. In a laboratory experiment, earthworms significantly increased biomass of Festuca rubra and Trifolium hybridum grown in soil from a 17-year-old site. The biomass increase corresponded to a significant decrease in pH and an increase in oxidable C, total N, and exchangeable P, K, and Ca content. A second laboratory experiment showed higher biomass production of late successional plant community (Arrhenatherum elatius, Agrostis capillaris, Centaurea jacea, Plantago lanceolata, Lotus corniculatus, and Trifolium medium) in soil from late successional stage (46 years old); the introduction of earthworms into soil from an early successional stage (17 years old) increased biomass production. In a field experiment, introduction of L. rubellus to enclosures containing a 17-year-old soil not colonized by earthworms significantly increased the biomass of grasses after 1 year. The results support the hypothesis that colonization of postmining areas by earthworms can substantially modify soil properties and plant growth.  相似文献   

7.
This study investigated the possibility of a facilitative relationship between Chinese privet (Ligustrum sinense) and exotic earthworms, in the southeastern region of the USA. Earthworms and selected soil properties were sampled five years after experimental removal of privet from flood plain forests of the Georgia Piedmont region. The earthworm communities and soil properties were compared between sites with privet, privet removal sites, and reference sites where privet had never established. Results showed that introduced European earthworms (Aporrectodea caliginosa, Lumbricus rubellus, and Octolasion tyrtaeum) were more prevalent under privet cover, and privet removal reduced their relative abundance (from >90% to ∼70%) in the community. Conversely, the relative abundance of native species (Diplocardia michaelsenii) increased fourfold with privet removal and was highest in reference sites. Soils under privet were characterized by significantly higher pH relative to reference plots and privet removal facilitated a significant reduction in pH. These results suggest that privet-mediated effects on soil pH may confer a competitive advantage to European lumbricid earthworms. Furthermore, removal of the invasive shrub appears to reverse the changes in soil pH, and may allow for recovery of native earthworm fauna.  相似文献   

8.
Summary Nitrogenase activity associated with earthworms, their faeces and activity in soil was measured by the acetylene reduction technique. A clear increase in nitrogenase activity was found in field-deposited casts of Aporrectodea caliginosa in comparison with surrounding soil, although potential nitrogenase activity was significantly higher in soil than in casts. Nitrogenase activity associated directly with earthworms (Lumbricus rubellus ) was detected, indicating the presence of active N2-fixing bacteria on the body surface and/or in the gut. Laboratory experiments showed that nitrogenase activity in the casts of L. rubellus was higher than in unmodified soil, and that nitrogenase activity in soil was significantly increased by the burrowing and feeding activity of these worms. This paper discusses the possible causes of these earthworm effects on soil nitrogenase activity and some methodological problems of determining the nitrogenase activity.  相似文献   

9.
Previous laboratory studies using epigeic and anecic earthworms have shown that earthworm activity can considerably increase nitrous oxide (N2O) emissions from crop residues in soils. However, the universality of this effect across earthworm functional groups and its underlying mechanisms remain unclear. The aims of this study were (i) to determine whether earthworms with an endogeic strategy also affect N2O emissions; (ii) to quantify possible interactions with epigeic earthworms; and (iii) to link these effects to earthworm-induced differences in selected soil properties. We initiated a 90-day 15N-tracer mesocosm study with the endogeic earthworm species Aporrectodea caliginosa (Savigny) and the epigeic species Lumbricus rubellus (Hoffmeister). 15N-labeled radish (Raphanus sativus cv. Adagio L.) residue was placed on top or incorporated into the loamy (Fluvaquent) soil. When residue was incorporated, only A. caliginosa significantly (p < 0.01) increased cumulative N2O emissions from 1350 to 2223 μg N2O-N kg−1 soil, with a corresponding increase in the turnover rate of macroaggregates. When residue was applied on top, L. rubellus significantly (p < 0.001) increased emissions from 524 to 929 μg N2O-N kg−1, and a significant (p < 0.05) interaction between the two earthworm species increased emissions to 1397 μg N2O-N kg−1. These effects coincided with an 84% increase in incorporation of residue 15N into the microaggregate fraction by A. caliginosa (p = 0.003) and an 85% increase in incorporation into the macroaggregate fraction by L. rubellus (p = 0.018). Cumulative CO2 fluxes were only significantly increased by earthworm activity (from 473.9 to 593.6 mg CO2-C kg−1 soil; p = 0.037) in the presence of L. rubellus when residue was applied on top. We conclude that earthworm-induced N2O emissions reflect earthworm feeding strategies: epigeic earthworms can increase N2O emissions when residue is applied on top; endogeic earthworms when residue is incorporated into the soil by humans (tillage) or by other earthworm species. The effects of residue placement and earthworm addition are accompanied by changes in aggregate and SOM turnover, possibly controlling carbon, nitrogen and oxygen availability and therefore denitrification. Our results contribute to understanding the important but intricate relations between (functional) soil biodiversity and the soil greenhouse gas balance. Further research should focus on elucidating the links between the observed changes in soil aggregation and controls on denitrification, including the microbial community.  相似文献   

10.
In traditional environmental risk assessment for soils, interactions between biota, contaminants and soil functioning are seldom taken into account. Also, single species toxicity tests are conducted with a fixed number of test animals. The objective of this study was to investigate effects of zinc (0–620 mg Zn kg?1 dry soil) on soil ecosystem processes at different densities of the earthworm Lumbricus rubellus. Experiments were conducted using 1-liter microcosms equipped with respirometers. The presence of L. rubellus stimulated relevant soil processes and parameters: litter fragmentation, leaf litter mass loss from the soil surface, soil organic matter (SOM) content and soil respiration. Zinc was not lethal to L. rubellus, but negatively impacted soil respiration at the highest concentrations. Litter mass loss from the soil surface was also decreased by zinc and there was a significant interaction with worm density. The results of the study demonstrate that the impact of zinc on soil processes depends on the presence and densities of key soil organisms such as earthworms that influence decomposition and SOM content. The outcome of this research can be used to make existing models for site-specific risk assessment more ecologically relevant, linking effects of contaminants on soil fauna populations with effects on ecosystem functioning.  相似文献   

11.
Aim of this study was to determine effects of heavy metals on litter consumption by the earthworm Lumbricus rubellus in National Park the “Brabantsche Biesbosch”, the Netherlands. Adult L. rubellus were collected from 12 polluted and from one unpolluted field site. Earthworms collected at the unpolluted site were kept in their native soil and in soil from each of the 12 Biesbosch sites. Earthworms collected in the Biesbosch were kept in their native soils. Non-polluted poplar (Populus sp.) litter was offered as a food source and litter consumption and earthworm biomass were determined after 54 days. Cd, Cu and Zn concentrations were determined in soil, pore water and 0.01 M CaCl2 extracts of the soil and in earthworms. In spite of low available metal concentrations in the polluted soils, Cd, Cu and Zn concentrations in L. rubellus were increased. The litter consumption rate per biomass was positively related to internal Cd and Zn concentrations of earthworms collected from the Biesbosch and kept in native soil. A possible explanation is an increased demand for energy, needed for the regulation and detoxification of heavy metals. Litter consumption per biomass of earthworms from the reference site and kept in the polluted Biesbosch soils, was not related to any of the determined soil characteristics and metal concentrations.  相似文献   

12.
Earthworms and arbuscular mycorrhizal fungi (AMF) are known to independently affect soil microbial and biochemical properties, in particular soil microbial biomass (SMB) and enzymes. However, less information is available about their interactive effects, particularly in soils contaminated with heavy metals such as cadmium (Cd). The amount of soil microbial biomass C (MBC), the rate of soil respiration (SRR) and the activities of urease and alkaline phosphatase (ALP) were measured in a calcareous soil artificially spiked with Cd (10 and 20 mg Cd kg−1), inoculated with earthworm (Lumbricus rubellus L.), and AMF (Glomus intraradices and Glomus mosseae species) under maize (Zea mays L.) crop for 60 days. Results showed that the quantity of MBC, SRR and enzyme activities decreased with increasing Cd levels as a result of the elevated exchangeable Cd concentration. Earthworm addition increased soil exchangeable Cd levels, while AMF and their interaction with earthworms had no influence on this fraction of Cd. Earthworm activity resulted in no change in soil MBC, while inoculation with both AMF species significantly enhanced soil MBC contents. However, the presence of earthworms lowered soil MBC when inoculated with G. mosseae fungi, showing an interaction between the two organisms. Soil enzyme activities and SRR values tended to increase considerably with the inoculation of both earthworms and AMF. Nevertheless, earthworm activity did not affect ALP activity when inoculated with G. mosseae fungi, while the presence of earthworm enhanced urease activity only with G. intraradices species. The increases in enzyme activities and SRR were better ascribed to changes in soil organic carbon (OC), MBC and dissolved organic carbon (DOC) contents. In summary, results demonstrated that the influence of earthworms alone on Cd availability is more important than that of AMF in Cd-polluted soils; and that the interaction effects between these organisms on soil microorganism are much more important than on Cd availability. Thus, the presence of both earthworms and AMF could alleviate Cd effects on soil microbial life.  相似文献   

13.
Summary The earthworms Lumbricus rubellus (Hoffmeister) and Dendrobaena octaedra (Savigny) were studied in the laboratory to determine their effects on decomposition and nutrient cycling in coniferous forest soil. CO2 evolution was monitored, and pH, PO 4 3– –P, NH 4 + –N, NO 3 –N, total N, and total C in the leaching waters were measured. After three destructive samplings, numbers of animals, mass loss, pH, and KCl-extractable nutrients were analysed.The earthworms clearly enhanced the mass loss of the substrate, especially that of litter. L. rubellus stimulated microbial respiration by 15–18%, whereas D. octaedra stimulated it only slightly. The worms significantly raised the pH of the leaching waters and the humus; L. rubellus raised the value by 0.2–0.6 pH units and D. octaedra by 0.1–0.4 units. Both worms increased N mineralization. Although the biomass of both worms decreased during the experiment, the N released from decomposing tissues did not explain the increase in N leached in the presence of earthworms. The worms influenced the level of PO 4 3– –P only slightly.  相似文献   

14.
《Pedobiologia》2014,57(4-6):223-233
Mycorrhizal fungi and earthworms can individually or interactively influence plant growth and heavy metal uptake. The influence of earthworms and arbuscular mycorrhizal (AM) fungi either alone or in combination on maize (Zea mays L.) growth and cadmium (Cd) uptake was investigated in a calcareous soil artificially spiked with Cd. Soils were contaminated with Cd (10 and 20 mg Cd kg−1), inoculated or un-inoculated with the epigeic earthworm Lumbricus rubellus and two AM fungal species (Rhizophagus irregularis and Funneliformis mosseae) for two months of growth under greenhouse conditions. Generally, earthworms alone increased both shoot P uptake and biomass but decreased shoot Cd concentration and root Cd uptake. AM fungi individually often increased total maize P uptake, declined shoot Cd concentration, and consequently produced higher total biomass. However, R. irregularis enhanced shoot Cd uptake at low Cd level and root Cd uptake at high Cd level. In plants inoculated with F. mosseae species, earthworms increased shoot biomass and Cd uptake, decreased root biomass and Cd uptake at all Cd levels, and increased shoot Cd concentration at low Cd level. In plants colonized by R. irregularis species, however, earthworm addition decreased maize biomass only at high Cd level and root Cd concentration and total maize Cd uptake at both Cd levels. Earthworm activity decreased Cd transfer from the soil to maize roots at low Cd level, but this was counterbalanced in the presence of F. mosseae. Mycorrhizal symbiosis significantly reduced the transfer of Cd from roots to shoots, independence of earthworm effect. Overall, it is concluded that L. rubellus and AM fungi, in particular F. mosseae isolate, improved maize tolerance to Cd toxicity both individually and interactively by increasing plant growth and P nutrition, and restricting Cd transfer to the aboveground biomass. Consequently, the single and interactive effects of the two soil organisms might potentially be important not only in protecting maize plants against Cd toxicity, but also in Cd phytostabilization in soils polluted by this highly toxic metal.  相似文献   

15.
Earthworm activity may have an effect on nitrous oxide (N2O) emissions from crop residue. However, the importance of this effect and its main controlling variables are largely unknown. The main objective of this study was to determine under which conditions and to what extent earthworm activity impacts N2O emissions from grass residue. For this purpose we initiated a 90-day (experiment I) and a 50-day (experiment II) laboratory mesocosm experiment using a Typic Fluvaquent pasture soil with silt loam texture. In all treatments, residue was applied, and emissions of N2O and carbon dioxide (CO2) were measured. In experiment I the residue was applied on top of the soil surface and we tested (a) the effects of the anecic earthworm species Aporrectodea longa (Ude) vs. the epigeic species Lumbricus rubellus (Hoffmeister) and (b) interactions between earthworm activity and bulk density (1.06 vs. 1.61 g cm−3). In experiment II we tested the effect of L. rubellus after residue was artificially incorporated in the soil. In experiment I, N2O emissions in the presence of earthworms significantly increased from 55.7 to 789.1 μg N2O-N kg−1 soil (L. rubellus; p<0.001) or to 227.2 μg N2O-N kg−1 soil (A. longa; p<0.05). This effect was not dependent on bulk density. However, if the residue was incorporated into the soil (experiment II) the earthworm effect disappeared and emissions were higher (1064.2 μg N2O-N kg−1 soil). At the end of the experiment and after removal of earthworms, a drying/wetting and freezing/thawing cycle resulted in significantly higher emissions of N2O and CO2 from soil with prior presence of L. rubellus. Soil with prior presence of L. rubellus also had higher potential denitrification. We conclude that the main effect of earthworm activity on N2O emissions is through mixing residue into the soil, switching residue decomposition from an aerobic and low denitrification pathway to one with significant denitrification and N2O production. Furthermore, A. longa activity resulted in more stable soil organic matter than L. rubellus.  相似文献   

16.
Summary Decomposition of garden refuse was studied in containers with and without the earthworm species Eisenia andrei and Lumbricus rubellus. The reduction of cellulose and hemicellulose was greater where earthworms were present. Respiration was similar regardless of the presence of earthworms, whereas dry matter reduction, on average, was greatest without earthworms. The earthworm biomass decreased during the 58 days of the experiment; E. andrei increased in biomass, whereas L. rubellus died out.  相似文献   

17.
Earthworms can have a profound effect on a myriad of soil physical, chemical and microbial parameters. To better understand their role in the soil, they are often studied under controlled conditions. However, a persistent problem in such controlled experiments is the ability of earthworms to escape from experimental units with open tops (e.g. for plant growth). Here, we tested whether adhesive hook tape applied to the inside of mesocosms is effective in confining them to their experimental units. A mesocosm study was set up with hook tape treatments (control, one layer, two layers), mesocosm material (polyvinylchloride – PVC, polypropylene – PP) and earthworm species (Lumbricus rubellus (Hoffmeister), Aporrectodea caliginosa (Savigny), Lumbricus terrestris (L.) + Aporrectodea longa (Ude)) as different factors to study the escape of earthworms during 24 h. In the treatments without hook tape, individuals of L. rubellus and A. caliginosa escaped, with highest escape rates (80%) for L. rubellus from the PP mesocosms, and lowest escape rates (20%) for A. caliginosa from the PVC mesocosms. When hook tape was applied, in either one or two layers, no individuals of those species escaped. The two anecic earthworm species, L. terrestris and A. longa did not escape from any mesocosms, irrespective of the presence of hook tape. As not a single earthworm escaped from the hook tape treatments, we conclude that applying hook tape is a simple, inexpensive and effective method to keep earthworms confined to experimental units.  相似文献   

18.
Earthworms are important engineering species of many terrestrial ecosystems as they play a significant role in regulating C turnover. The effects of earthworms on moderating C decomposition processes differ across species and with interactions between species, which is not fully understood. We carried out an experiment to study the interactions of Lumbricus rubellus and Octolasion lacteum, and their effects on soil respiration. Laboratory mesocosms were set up using tulip poplar (Liriodendron tulipifera) leaf litter and varying densities of earthworms in single and combined species treatments. CO2 efflux rate was used as an indicator of C decomposition rates, and measured with CO2 sensors every five days over one month. L. rubellus induced higher leaf consumption rate and higher CO2 efflux than O. lacteum; meanwhile O. lacteum grew more than L. rubellus. Both litter consumption rate and growth rate of earthworms decreased with increasing earthworm density. Soil CO2 efflux increased with increasing earthworm density (from ∼1-2 μg CO2 g−1 hr−1 with no earthworms to ∼ 4 μg CO2 g−1 hr−1 with 8 earthworms). Combining the two species had a synergistic effect on leaf litter consumption, and neutralizing effects on soil respiration. The data suggest that the strength of intra- and inter-specific interactions among earthworm ecological groups varies at different absolute and relative densities, leading to altered leaf litter decomposition and C cycling.  相似文献   

19.
Earthworms burrow through the soil thereby accumulating many lipophilic organic pollutants from the surrounding environment, so they could be used to remove polycyclic aromatic hydrocarbons (PAHs) from soil. Sterilized and unsterilized soil was contaminated with phenanthrene (Phen), anthracene (Anth) and benzo[a]pyrene (BaP), with or without added Eisenia fetida and biosolid or vermicompost. Concentrations of PAHs were monitored in soil and earthworms for 70 days. Removal of PAHs increased in soil with earthworms added as 91% of Anth, 16% BaP and 99% Phen was dissipated compared to 42%, 3% and 95% in unamended soil. The microorganisms in the gut of the earthworm contributed to PAHs removal and 100% of Phen, 63% of Anth and 58% of BaP was removed from sterilized soil with E. fetida added. Biosolid and to lesser extent vermicompost accelerated removal of PAHs from soil. Applying earthworms to a contaminated site might be an environmentally friendly way to remove hydrocarbons from soil. However, a limitation might be the cost of the large amounts of earthworms required to remove PAHs from soil and the necessity to supply them with sufficient substrate while maintaining the water content of the soil high enough for their normal functioning.  相似文献   

20.
The sources of bioavailable metals for earthworms were investigated in a Zn-, Pb- and Cd-contaminated soil. Selective sequential extractions (SSE) of metals were performed on soil samples with different amounts of contamination and compared with the body burden concentration of metals in two earthworm species: Aporrectodea caliginosa and Lumbricus rubellus. The most labile forms (water extractable and exchangeable) of metals were poorly related with metal accumulation by the earthworms, except for Cd, whereas the moderately available forms (acid-soluble, bound to iron oxides and organic matter) were related to the pattern of metal accumulation by earthworms. This indicates that the ingestion of metals bound to soil components is likely to be a more important uptake route than the dermal uptake of dissolved ions for metals entering the body tissue of earthworms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号