首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unground 15N-labelled medic material (Medicago littoralis) was mixed with topsoils at 3 field sites in South Australia, allowed to decompose for about 8 months before sowing wheat, and then for a further 7 months until crop maturity. The site locations were chosen to permit comparisons of recoveries and distribution of 15N in soils (organic N and inorganic N to 90 cm depth) and wheat (grain, straw and roots to 20 cm depth) in areas where rainfall (and wheat yields) differed greatly. Soils differed also in their texture and organic matter contents. Recoveries of applied 15N in wheat plus soil were 93.1% from a sandy loam (Caliph) and 92.3% from a sandy soil (Roseworthy) despite differences in rainfall and extent of leaching of the 15NO3? formed from the decomposing medic residues. From a heavy clay soil (Northfield), which received the highest rainfall, the 15N recovery was 87.7%. The loss of 15N at this site was not due to leaching, as judged by 15NO3? distribution in the soil profile at seeding and crop maturity.Wheat plants took up only 10.9–17.3% of the 15N added as legume material. Percentage uptakes of 15N were not related to grain yields. The proportions of wheat N derived from decomposing medic residues were 9.2% at Caliph (input medic, N, 38 kg N ha?1), 10.5% at Roseworthy (input medic N, 57 kg N ha?1), and only 4.6% at Northfield (input medic N, 57 kg N ha?1). Most (51–70%) of the 15N recovered in wheat was accounted for in the grain. Inorganic 15N in the soil profiles was depleted during the cropping phase, and at wheat harvest represented from 0.6 to 3.1% only of 15N inputs. The major 15N pool was soil organic 15N accounting for 71.9–77.7% of 15N inputs.We conclude that, in the context of N supply from decomposing medic tissues to wheat crops, the main value of the legume is long-term, i.e. in maintaining soil organic N concentrations to ensure adequate delivery of N to future cereal crops.The N of the wheat was not uniformly labelled, root N being generally of the highest atom% enrichmensts, and straw N of the lowest. Nevertheless, at the Roseworthy site, the enrichments of wheat N were similar to those of NO3? N in the profile at seeding, indicating that the proportions of 14N and 15N in the inorganic N pool did not change appreciably during the cropping period. By assuming equilibrium at this site, we calculate that during 15 months decomposition the soil plus legume delivered about 189 kg N ha?1, of which 93.2 kg ha?1 (49.3%) was taken up by the wheat, 37.2 kg ha?1 (19.7%) was immobilized or remained as fine root residues, and 17.3 kg ha?1 (9.2%) remained as inorganic N in the soil profile; 41.7 kg ha?1 (22.1%) was unaccounted for in the soil-plant system, and was probably lost via inorganic N. Thus about 6.5 kg inorganic N ha?1 was supplied by the soil plus medic residues per 100 kg dry matter ha?1 removed as wheat grain.  相似文献   

2.
Using 15N-labelled legume material (Medicago littoralis) and fertilizers (urea, (NH4)2SO4, KNO3), a direct comparison has been made of the fate of nitrogen from these sources and their residues, in soils sown with two successive wheat crops. The availability of N from each source to both crops is discussed in terms of the release, movement and immobilization of N in the soil profiles.For fertilizer 15N, uptake by crops, distribution as inorganic 15N in soil profiles, total recovery and percentage recovery in organic residues in soil were not significantly influenced by the form of fertilizer applied. For both legume and fertilizer 15N, uptake by both crops was directly related to input; and uptake by the second crop was directly related to the amounts of 15N residual in soil after the first crop. About 17% of applied legume N was taken up by the tops of the first wheat crop, and, at the time of sowing of the second crop, about 62% remained as organic residues; total recovery in crop and soil averaged 84%. By contrast, about 46% of applied fertilizer N was taken up by crop 1, and at sowing in the following year 29% was present as organic residues, and total recovery in soil plus crop averaged 80% The availabilities of N from both legume and fertilizer residues to a second wheat crop declined markedly but continued to differ significantly (P < 0.01) from each other. Expressed as percentages of total residual 15N present in soils at sowing, the second crop took up about 6% of legume-derived N and about 9% of fertilizer-derived N.Fertilizer N directly contributed 5% and 0.5% respectively of the N of first and second wheat crops, per 10kg of fertilizer N applied ha−1. Under the same conditions, legume N directly contributed about 2% and 1% respectively of the N of successive crops, per 10 kg of legume N applied ha−1. The proportions of grain N derived from the applied sources were higher than those of straw N.For both legume and fertilizer 15N, the amounts of inorganic 15N present in soil profiles at sowing in successive years were directly related to 15N inputs. A small but statistically-significant departure from linearity was observed for inorganic 15N at sowing of crop 2 when related to total recoveries of 15N in soils at that time; the higher the amount of 15N recovered, the greater the proportion present as inorganic 15N in the soil profile. The respective contributions of legume and fertilizer N to the total inorganic N pool in soil at sowing declined each year, but were similar to their contributions to the N of the following wheat crop.Concentrations of inorganic N and 15N in soil profiles varied each year but their patterns of distribution in cropped soils were not influenced by the nature and amount of the initial amendments. The 15N atom% enrichments of the inorganic N at sowing in the cropped soils were relatively uniform throughout the profile.  相似文献   

3.
Soil nitrogen (N) supply for wheat N uptake can be manipulated through legume and fertilizer N inputs to achieve yield potential in low‐rainfall sandy soil environments. Field experiments over 2 years (2015–2016) were conducted at 2 different sites in a low‐rainfall sandy soil to determine the soil N supply capacity relative to wheat N uptake at key growth stages, after a combination of crop residue (removed, wheat or lupin) and fertilizer N (nil, low or high N) treatments were manipulated to improve wheat yield. We measured the temporal patterns of the soil profile mineral N and PAW to 100 cm depth, wheat aerial biomass and N uptake in both years. In 2016 we also measured the disease incidence as a key environmental variable. There was 35 kg ha?1 more soil mineral N to 100 cm depth following lupin than wheat residues at the end of the fallow on average in both years. In a below average rainfall season, wheat biomass produced on lupin residues was responsive to N input with soil profile mineral N depleted by increased crop N uptake early in the season. In an above average rainfall season, a higher soil mineral N supply increased actual and potential grain yield, total biomass, N uptake, harvest index and water use efficiency of wheat, regardless of the source of N. Our study showed that the combination of lupin residues with high N rate increased soil profile mineral N at early growth stages, providing a greater soil N supply at the time of high wheat N demand, and the inclusion of a legume in the rotation is critical for improving the N supply to wheat, with added disease break benefits in a low‐rainfall sandy soil environment.  相似文献   

4.
5.
Uptake of nitrogen from the subsoil (30–200 cm) by winter wheat has been measured in field experiments on deep loess-parabrown soils in northern Germany and at Rothamsted (England) for different crop rotations and manuring schemes. The results can be summarised as follows:
  • 1 The mineral nitrogen content of the subsoil varies widely depending on farming practice.
  • 2 The effective depth limit for N uptake by winter wheat appears to be 150 cm.
  • 3 Averaged over 22 sites, 33% of the total N uptake was from the subsoil (range 9–75%); 25% was from the 30–90 cm soil layer and 8% from the 90–150 cm soil layer.
  • 4 Decreasing the N supply to the topsoil increased N uptake from the subsoil.
  • 5 N uptake from the subsoil is not dependent on water uptake from the subsoil; nitrate is readily transported to absorbing roots by diffusion.
  • 6 When deciding on the rate of fertilizer N to apply in early spring, soil mineral N to a depth of 90 cm should be taken into account. For subsequent dressings, the soil mineral N between 90–150 cm depth needs to be considered.
  相似文献   

6.
Seasonal drought in tropical agroecosystems may affect C and N mineralization of organic residues. To understand this effect, C and N mineralization dynamics in three tropical soils (Af, An1, and An2) amended with haricot bean (HB; Phaseolus vulgaris L.) and pigeon pea (PP; Cajanus cajan L.) residues (each at 5 mg g−1 dry soil) at two contrasting soil moisture contents (pF2.5 and pF3.9) were investigated under laboratory incubation for 100–135 days. The legume residues markedly enhanced the net cumulative CO2–C flux and its rate throughout the incubation period. The cumulative CO2–C fluxes and their rates were lower at pF3.9 than at pF2.5 with control soils and also relatively lower with HB-treated than PP-treated soil samples. After 100 days of incubation, 32–42% of the amended C of residues was recovered as CO2–C. In one of the three soils (An1), the results revealed that the decomposition of the recalcitrant fraction was more inhibited by drought stress than easily degradable fraction, suggesting further studies of moisture stress and litter quality interactions. Significantly (p < 0.05) greater NH4+–N and NO3–N were produced with PP-treated (C/N ratio, 20.4) than HB-treated (C/N ratio, 40.6) soil samples. Greater net N mineralization or lower immobilization was displayed at pF2.5 than at pF3.9 with all soil samples. Strikingly, N was immobilized equivocally in both NH4+–N and NO3–N forms, challenging the paradigm that ammonium is the preferred N source for microorganisms. The results strongly exhibited altered C/N stoichiometry due to drought stress substantially affecting the active microbial functional groups, fungi being dominant over bacteria. Interestingly, the results showed that legume residues can be potential fertilizer sources for nutrient-depleted tropical soils. In addition, application of plant residue can help to counter the N loss caused by leaching. It can also synchronize crop N uptake and N release from soil by utilizing microbes as an ephemeral nutrient pool during the early crop growth period.  相似文献   

7.
Following application of fertiliser-N to the seedbed of potato crops, concentrations of extracted mineral-N were up to 3 times greater than would be anticipated by calculation. The rates at which both NO 3 -N and NH 4 + -N apparently appeared and disappeared in the soil solution were, at various times, also much greater than could be attributable to any transformations resulting from microbial activity. This suggests that the involvement of other factors in this phenomenon must be considered. The effect of certain physical parameters such as water movement, resulting from capillary action and evaporation from the soil surface, may be implicated. We suggest that soil microbes are not directly involved in the early fate of fertiliser-N, primarily due to C-limitation in arable soils. N dynamics in fertilised potato systems require further studies targeting the relationships between nutrient concentrations in soil solution and mass flow of soil water.  相似文献   

8.
The release and fate of nitrogen from 15N-labelled perennial ryegrass (Lolium perenne L.) and white mustard (Sinapis alba L.) catch crops were studied in field microplots. The initial decline in 15N-labelled organic N, after incorporation of the material in early December, was more rapid from mustard containing 2.6% N than from ryegrass containing 1.4% N. After 9 months of decomposition, the residual organic 15N from the two materials declined at the same rate; the average decay constant for the following 2 years of decomposition was 0.30 a?1. After 33 months of decomposition, 23% and 34% of the mustard and ryegrass 15N, respectively, was recovered in organic residues in the topsoil. Seven per cent of the ryegrass N was leached below 45 cm in micro-lysimeters during the winter following incorporation. Three spring barley (Hordeum vulgare L.) crops, which succeeded ryegrass incorporation, accumulated 19%, 4% and 2%, respectively, of the ryegrass N in the above-ground plant parts. Perennial ryegrass swards recovered a total of 26% of the ryegrass and 22% of the mustard catch-crop N within 2 years. After 2 years of decomposition in unplanted soil, 82% of the ryegrass N was accounted for. The 15N that was not accounted for may be present in the 10–45 cm depth, or it may have been lost by denitrification.  相似文献   

9.
An understanding of the C and N dynamics of crop residues is important for efficient nutrient management. The present experiment was conducted to determine the rate of mass and N loss from alfalfa, faba bean, barley, and rape crop residues in a subarctic agricultural soil. Mass, C, and N losses were measured from residues contained in mesh bags and placed on the soil surface or buried 15 cm below the surface. The mass loss from October, 1988, to May, 1989, was the same for surface and buried alfalfa, barley, and rape residues, averaging 40, 20, and 61%, respectively, while surface and buried faba bean residue sustained 30 and 40% mass loss, respectively. The mass loss of the buried residues continued over the summer but not of those placed on the soil surface, resulting in an average 23% greater mass loss of the buried materials after 1 year. The N loss from October to May was similar from the surface and from the buried placements for the alfalfa, faba bean, and rape residues, averaging 11.3, 10.3 and 38.4 g N kg-1 residue, respectively, while the surface and buried barley lost 2.9 and 4.2 g N kg-1, respectively. The C:N ratio of all of the residues increased during the winter. These data indicate that the rate of decomposition and N mineralization from crop residues in subarctic environments can equal that measured in temperate climates. Furthermore, the concurrent loss of mass and N combined with an increase in the C:N ratio of the residues suggests that physical rather than biological processes were functioning during the winter. Most of the mass and N loss from these residues occurred during the winter, out of phase with crop demand, thereby creating the potential for N loss from the system and inefficient use of crop residue N.  相似文献   

10.
Soils with greater levels of microbial biomass may be able to release nutrients more rapidly from applied plant material. We tested the hypothesis that the indigenous soil microbial biomass affects the rate of decomposition of added green manure. Cowpea (Vigna unguiculata L.) Walp.] leaves were added to four soils with widely differing microbial biomass C levels. C and N mineralization of the added plant material was followed during incubation at 30°C for 60 days. Low levels of soil microbial biomass resulted in an initially slower rate of decomposition of soil-incorporated green manure. The microbial biomass appeared to adjust rapidly to the new substrate, so that at 60 days of incubation the cumulative C loss and net N mineralization from decomposing cowpea leaves were not significantly affected by the level of the indigenous soil microbial biomass.  相似文献   

11.
The field experiments were conducted for two crop years of 1997?–?98 and 1998?–?99 at the Indian Agricultural Research Institute, New Delhi to study the effect of wheat, legume and legume enriched wheat residue (WR) on soil fertility under the rice-wheat cropping system. A rice-wheat cropping system without incorporation of residue depleted organic C over initial level by 0.061%, kjeldahl-N by 0.012%, available P by 0.7?kg ha???1 and available K by 36?kg ha???1, whereas incorporation of Sesbania green manure (SGM), mungbean residue (MBR), SGM?+?WR and MBR?+?WR increased organic C over the initial level by 0.071, 0.100, 0.163 and 0.133%, respectively, kjeldahl-N by 0.001, 0.004, 0.001 and 0.005% respectively, available P by 2.7, 5.0, 8.5 and 3.2?kg ha???1, respectively and available K by 35, 5, 92 and 12?kg ha???1, respectively in 2 years. As compared with no residue control, incorporation of WR increased organic C by 0.036?–?0.102%, kjeldahl-N by 0.002?–?0.007% and available K by 23?–?45?kg ha?1, whereas incorporation of SGM and MBR increased organic C by 0.082?–?0.132 and 0.103?–?0.161%, respectively, kjeldahl-N by 0.009?–?0.023 and 0.005?–?0.013%, respectively and available K by 5?–?71 and 4?–?45?kg ha???1, respectively. Incorporation of WR with SGM and MBR was more effective and increased organic C by 0.121?–?0.224 and 0.125?–?0.194%, respectively, kjeldahl-N by 0.005?–?0.029 and 0.010?–?0.021%, respectively and available K content by 23?–?128 and 11?–?116?kg ha???1. Nitrogen application to rice also increased organic C, kjeldahl-N, available P and available K content in soil and also increased effects of crop residues. Crop residues had no significant effect on available P content in soil. Incorporation of WR with SGM and MBR with adequate fertilizer-N is, thus, recommended for building up organic C, kjeldahl-N and available K content in soil.  相似文献   

12.

Purpose  

Legume crops often present an important option to maintain and improve soil nitrogen (N) quality and fertility in a dryland agroecosystem. However, the work on the integral assessment of the symbiotic N2 fixation (Nfix) and their effects on soil N availability under field conditions is scare.  相似文献   

13.
Eleven rice varieties differing in grain size were grown under controlled environmental conditions during the grain-filling period. The grain weight of upper grains in a panicle was examined at successive stages of growth during the grain-filling period. The effect of temperature on the rate and the duration of the period of grain-filling was determined using Khao Lo, a large-grain variety, and Bom Dia, a small-grain variety. Both the grain-filling rate and duration of the period of grain-filling differed among rice varieties and were positively and significantly correlated with the grain size. The duration of the grain-filling period from flowering to the time when almost maximum grain weight was attained ranged from 12 days at 32/24°C in Bom Dia to 36 days at 20/12°C in Khao Lo. The grain-filling rate was low in small-grain varieties, and generally increased with increasing grain size.

By lowering the temperature, the grain-filling rate decreased, the duration of the grain-filling period increased but the grain weight was almost constant.

Weight per grain was closely correlated with hull size. No relationship was found between weight per grain and nitrogen percentage of brown rice.  相似文献   

14.
Predicting nitrogen (N) and sulfur (S) mineralization of crop residues from the preceding crop might be a useful tool for forecasting soil N and S availability. Two soils from eastern North Dakota and three crop residues – corn, spring wheat, and soybean were used in an 8-week incubation study to estimate N and S mineralization from crop residues. The cumulative N and S mineralized were fit to a first-order kinetic model. Cumulative N mineralized ranged between 0.34 and 2.15 mg kg?1 and 0.45 to 3.41 mg kg?1 for the Glyndon and Fargo soils, respectively. Un-amended soils showed higher N mineralization than residue treated soils. For S, the highest mineralization occurred in un-amended Glyndon soil and in spring wheat-amended Fargo soil. This study indicates that crop residue additions can have a negative impact on plant available nutrients due to immobilization of N and S during the time when crops need the nutrients most.  相似文献   

15.
The immobilization of nitrogen by straw decomposing in soil   总被引:3,自引:0,他引:3  
Immobilization of nitrogen (N) in decomposing straw varies between soils, and the objective of this study was to identify the mechanisms responsible. Internode segments of wheat straw were incubated in Denmark and in Scotland in arable soils fertilized with NH4NO3, labelled with 15N, for periods up to 1 year. Straw was recovered from the soils periodically and analysed for microbial biomass and different forms of N using chemical methods and CPMAS 15N NMR spectroscopy. The total N content of the straw increased, as long as the soil was not too wet, such that there was overall immobilization. This was accompanied by a rapid increase in the content of amino acid N and to a lesser extent of glucosamine N and a concomitant decrease in the carbohydrate content of the straw. Using direct and plate counts for bacterial and ergosterol content for fungal estimation, we found that fungal biomass was much greater than that of bacteria. This correlated with the forms of N in the straw as determined by CPMAS 15N NMR, which showed spectra that were more typical of fungi than of bacteria. It seems that immobilization of N is primarily caused by fungi as they decompose the straw.  相似文献   

16.
Summary In two field experiments, plant materials labelled with 15N were buried separately within mesh bags in soil, which was subsequently sown with barley. In the first experiment, different parts of white clover (Trifolium repens), red clover (T. pratense), subterranean clover (T. subterraneum), field bean (Vicia faba), and timothy (Phleum pratense) were used, and in the second, parts of subterranean clover of different maturity. The plant materials were analysed for their initial concentrations of total N, 15N, C, ethanol-soluble compounds, starch, hemicellulose, cellulose, lignin, and ash. After the barley had been harvested, the bags were collected and analysed for their total N and 15N. In the first experiment the release of N was highest from white clover stems + petioles (86%) and lowest from field bean roots (20%). In stepwise regression analysis, the release of N was explained best by the initial concentrations of lignin, cellulose, hemicellulose, and N (listed according to decreasing partial correlations). Although the C/N ratio of the plant materials varied widely (11–46), statistically the release of N was not significantly correlated with this variable. The results of the second experiment using subterranean clover of different maturity confirmed those of the first experiment.  相似文献   

17.
Soil from field plots (Hokkaido Agricultural Experiment Station, Memuro, Japan) that had been treated once a year with pentachlorophenol (PCP) and from untreated plots was tested for PCP-decomposing activity in the laboratory. When PCP as an aqueous solution of pentachlorophenolate was added to both sets of soil samples, no significant difference was noticeable in the PCP-decomposing activity, despite a 1000-fold difference in the number of PCP-decomposing microorganisms. When PCP was added as a PCP-celite mixture, however, PCP-decomposing activity was related to the history of the plot's treatment. The activity of the soil from PCP field plots was consistently higher than that from non-treated plots. When PCP was added to the untreated soil and incubated, the number of PCP-decomposing microorganisms increased, reaching the same order as that of PCP-treated soil plots after 3–4 weeks.  相似文献   

18.
19.
Leek (Allium porrum) plants from organic farming were harvested at 15, 59, and 210 days after seed germination. Organochlorine pesticide (OCP) levels were quantified by GC-ECD in vegetative tissues (roots and aerial), bulk soil and rhizosphere. Leek plant bioaccumulate OCPs efficiently in their aerial and root tissues and alter the concentration of the soil where they are grown. OCPs distribution pattern of bulk soil was endosulfans > DDTs > dieldrin, while it was endosulfans > HCHs > DDTs in leek tissues. There were statistically significant declines in DDTs, chlordane, dieldrin, and heptachlor in the rhizosphere, indicating that recalcitrant residues of OCPs may be removed from contaminated soil using leek crops under normal growing conditions. The DDE/DDT and alpha-/gamma-HCH ratios of < 1 would indicate recent inputs of DDT and lindane in the environment. The occurrence of OCPs in this farm could be the result of atmospheric deposition and/or surface runoff of these pesticides.  相似文献   

20.
Summary A roller bed and rotary end-over-end shaker were compared for the extraction of mineral N from a variety of soil types; both were equally efficient with an optimum extraction time of 30 min. However, the roller bed permitted a greater operational capacity, a faster throughput of samples, and easier identification of sample bottles compared with the end-over-end shaker. More NH4 +-N and NO3 -N (P<0.001) was recovered from soil by 2 M KCl than by any other extractant, in a soil: extractant ratio of 1 to 5 (w:v), except water, which was equally efficient at removing NO3 -N from soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号