首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Geoderma》2005,124(3-4):349-361
We tested termite mound materials belonging to different feeding groups: Cubitermes (soil-feeder), Trinervitermes (grass-feeder) and Macrotermes (litter-feeder), as natural microbial inoculum to promote plant growth and increase nutrient supplies from soil organic matter and inorganic amendments (rock phosphate), through their effects on soil microorganisms (functional diversity of soil microflora, arbuscular mycorrhizal fungi, rhizobia, fluorescent pseudomonads, actinomycetes and saprophytic fungi). Experiments were made in a pot experiment with Acacia seyal, a leguminous tree abundant in West Africa, with a sandy soil amended or not with rock phosphate. Results indicated a stimulation of plant growth with Cubitermes and Trinervitermes mound powder (plant height and shoot biomass), similar to what was obtained with rock phosphate alone. Leaf content in N was also increased in the termite treatments (except in Macrotermes soil), whereas mycorrhizal colonization was inhibited as compared to the control. The development of saprophytic fungi was significantly higher in the soils amended with rock phosphate and this effect was hypothesized to be related to the production of large quantities of oxalic acid by fungal populations. The fluorescent pseudomonad populations notably increased in the soils dually amended with mound powders and rock phosphate, and this could be due to the fact that some species of this bacterial group are able to dissolve rock phosphate. The organic and inorganic amendments decreased the soil catabolic evenness in all the mound powder treatments. Among the mound materials tested, Cubitermes mound powder had the most promising effect, especially on SIR response to oxalate. It is concluded that soils amended both with rock phosphate and Cubitermes mound soil could promote the development of microbial communities, which could help to metabolize this compound and consequently enhance plant growth.  相似文献   

2.
Summary The relationship between phosphatase activity and soil was studied in 14 mounds and adjacent control soils of plant debris-feeding termites from a Venezuelan savanna. The soils were assayed for acid phosphatase activity with p-nitrophenyl phosphate as substrate and for the effect of inorganic P (300 g P g–1). The proportion of organic matter in the mounds was four times that found in topsoils, indicating strong selection by the termites for organic-rich soil fractions. A comparison of phosphatase activities found no difference between mounds and adjacent soils. It seems possible that the expected increase of enzyme activity in mounds, due to a higher C content, was counteracted by enzyme inhibition due to higher levels of available inorganic P in the mounds. Addition of inorganic P to soil and mound material reduced enzyme activities by 10%–45%, but after a 2-day incubation period differences between the treated soil and the control tended to disappear.  相似文献   

3.
《Applied soil ecology》2007,37(2-3):156-163
Wood ants (Formica rufa group) are ubiquitous in European boreal forests and their large long-lived mound nests, which mainly consist of forest litter and resin, accumulate carbon (C) and nutrients. The C and nutrient dynamics of wood ant mounds in response to forest succession have received minor attention in boreal forests. We aimed to study whether the C, nitrogen (N) and phosphorus (P) concentrations and the bulk density of ant mounds differ from those of the surrounding forest soil, to estimate the C, N and P pools in ant mounds, and to test whether the concentrations and pools change with forest age. Norway spruce (Picea abies (L.) Karst.) stands on medium-fertile sites in 5-, 30-, 60- and 100-year stand age classes were studied in eastern Finland. Carbon and P concentrations in the above-ground mound material were higher than those in the surrounding organic layer. The C, N and extractable P concentrations were higher in the soil under the ant mounds than in the surrounding mineral soil (0–21 cm). The low bulk densities in the ant mounds and the soil below them could be a result of the porous structure of ant mounds and the soil-mixing activities of the ants. The C/N ratios were higher in the mounds than in the organic layer. Carbon concentrations in the ant mounds increased slightly with stand age. Carbon, N and P pools in the ant mounds increased considerably with stand age. Carbon, N and P pools in ant mounds were <1% of those in the surrounding forest soil. Nevertheless, the above- and belowground parts of the ant mounds contained more C, N and P per sampled area than the surrounding forest soil. Wood ants therefore increase the spatial heterogeneity in C and nutrient distribution at the ecosystem level.  相似文献   

4.
Abstract

This study was aimed at characterizing the effects of the activity of termites of the genus Nasutitermes on the physico‐chemical properties of the acid sandy soils of southern Nigeria. Selected morphological properties of the termite mounds were measured in the field. Outside portions of the termite mound and surface (0–15 cm) soil were collected and analyzed for some physical and chemical properties. Results obtained showed a density of 112 mounds ha‐1 with average height of 0.85 m. There were significantly higher proportions of clay, silt, and organic carbon, and higher pH, exchangeable potassium (K), calcium (Ca), magnesium (Mg), available phosphorus (P), effective cation exchange capacity and base saturation in the mounds of the Nasutitermes than in the surrounding topsoil. Mounds of Nasutitermes termites, if returned to the soil, could improve the properties of the soil in areas where termites occur in large numbers.  相似文献   

5.
Little is known about the effects of neotropical mound-building termites in soil chemical and physical properties. The influence of soil termite activity on soil characteristics was studied by assessing chemical, physical and micromorphological properties of a toposequence of Latosols (Oxisols). Soil samples were collected from the walls and inner parts of termite mounds and also from adjacent soil. A high diversity of termite genera was found in the mounds along the toposequence, together with the inquiline termites and other soil-dwelling arthropods. Chemical analyses showed that pH and the contents of organic C and N, P, Ca and Mg were significantly higher in termite mounds compared with adjacent areas, with an inverse trend for Al content. Significant differences in pH and exchangeable Al were observed between soil and mound across the slopes. The mound density across the landscape was higher at the upper slope segment, followed by the hill top, middle slope and lower slope segments. Considering a lifespan of 30 years and dimensions of termite mounds found in the toposequence we conclude that the textural and chemical uniformity of Latosols may be increased, following the pedobiological turnover during mound building, with local rates varying from 2.1 to 7.5 m3 ha− 1.  相似文献   

6.
Nest structures of two termite species (Trinervitermes spp.) with epigeal (above-ground) mounds were analyzed to compare their nutrient status with that of adjacent soils. To take into account soil variability, the observations and samplings were made in three toposequences of different and representative West African savanna soils. The data showed the high degree of adaptation of these termite species to a large range of soil types and environments. Mounds of Trinervitermes geminatus and Trinervitermes trinervius, both grass-feeders, contained more clay, organic matter (OM), and exchangeable cations than the surrounding surface layer soil. The storage of OM and exchangeable cations was determined for T. geminatus nests and compared to the surrounding soil. Despite substantial nutrient storage in mounds, its total weight appeared low when compared to the nutrient storage in the surrounding 0–15 cm of soil surface layer. This illustrates how contradictory points of view on the use of termite mounds in agriculture need to be clarified using a classical approach that takes into account data by species; and this also evaluates the contribution of different termite mounds to nutrient fluxes and storage and the exact stocking rate of living mounds.  相似文献   

7.
Twelve termite mounds and adjacent Ah and Ap horizons were sampled at three sites near Salisbury, Rhodesia. The mass of termite mounds occupied by M. falciger at one site was estimated at 620 t/ha, and contained the following amounts of nutrients expressed as percentages of the amounts in mounds and Ap horizon combined: extractable Ca 95%, mineral N 81% extractable K 69%, and available P 69%. Pot experiments using perennial ryegrass gave higher dry matter yields from termite mounds than from the Ap and Ah horizons. Crop production could therefore be increased by mixing termite mounds with the soil.  相似文献   

8.
《Applied soil ecology》2011,47(3):321-328
Biogenic structures produced by soil ecosystem engineers influence the soil architecture and mediate soil functions and ecosystem services. Ant mounds in meadow wetlands are important biogenic structures with the potential of altering carbon storage and nutrient cycling in these ecosystems. In this study, we examined the soil nutrient concentrations of ant mounds and their effects on the wetland nutrient storage functions in meadow wetlands of the Sanjiang Plain, in northeastern China. The aims of this study were to investigate C, N and P variation in active ant mounds produced by Formica sanguinea Latreille and Lasius flavus Fabricius to estimate the C, N and P pools of ant mounds in comparison with control soil. The average total N (TN), total P (TP) and available P (AP) concentrations in the ant mounds of both species were higher than in the control soil. Organic carbon (Corg), DOC, NH4+ and NO3 in F. sanguinea mounds were higher than in the control soil, but not for L. flavus mounds. Average concentrations of all the five types of nutrient were higher in F. sanguinea mounds than in L. flavus mounds. The variations in Corg, DOC, TN and TP concentrations in ant mounds were not significant at depths from 0 to 25 cm. NH4+ and NO3 concentrations differed by soil layers for F. sanguinea mounds but not for L. flavus mounds. The C/N ratios were generally lower in the mounds than in the control soil (at 5–25 cm), but no significant differences were found for C/P ratios (except at 10–15 cm). Carbon and DOC pools were smaller, TN and AP pools were larger in ant mounds compared with the control soil, but there was no significant difference for TP pools. NH4+and NO3 pools were substantially larger in F. sanguinea mounds, but smaller in L. flavus mounds, than those in the control soil. All of the five types of nutrient pools were larger in F. sanguinea than in L. flavus mounds. Ant mounds increased the spatial variability of soil nutrient pools in the wetland.  相似文献   

9.
Some physical and chemical properties of the two common termite mounds in southeastern Nigeria, Macrotermes (MM) and Cubitermes (CM) mounds, were compared and their relationships with the surrounding top and subsoils investigated. Percentage sand, silt, pH, calcium, magnesium, potassium, sodium, iron, and organic carbon were higher and clay and penetrometer resistance lower in the CM than the MM. Sand, silt, organic carbon, and calcium decreased and clay increased from the forest to the derived savanna in the CM, but no clear trend was shown with the other properties in both the CM and the MM. Most of the nutrients were higher in the CM than in the adjacent top or subsoil but the reverse was the case with the MM. More nutrients are associated with the inorganic fractions of the soil than with the organic carbon in the mounds and the soils surrounding them. The Ca:Mg ratio in the mounds and the top and subsoils adjacent to them was low for most crops but the K:Mg ratio was mostly adequate. Because of these differences in properties and sizes of the mounds, different management strategies are recommended for them and the soils around them.  相似文献   

10.
Termite(Macrotermes spp.) mounds are complex biological habitats originated by the termite activity and possessing peculiar physical, chemical and biochemical properties. In this study we examined the concentration of nutrients and the biochemical activity of abandoned soil and mounds colonized by termites of the genera Macrotermes located in the Borana District, Ethiopia. To elucidate the magnitude and persistence of the termite-induced effects, we also studied an abandoned mound, previously colonized by termites of the same genera formed on the same soil. Results confirmed that termite-colonized mounds are ‘hot spots' of nutrient concentration and microbial activity in tropical soils. This is due to the termite driven litter input and decomposition. The abandoned mounds showed higher microbial biomass and activity and displayed a nutrient redistribution and a greater microbial activity than the adjacent soils. These findings allowed us to hypothesize a model of nutrient cycling in colonized soils and a partition of the relative roles of termites and soil microorganisms in nutrient location and turnover in tropical soils. These results may be also useful for the optimal management of termite-colonized soils.  相似文献   

11.
Termite activities are known to significantly influence small-scale soil properties in tropical savannas. The lateral and vertical extent of the alterations to the nest's surrounding, and particularly resulting impacts on diagnostic soil horizons remain largely unresolved until today. We examined the effects of mound-building termites on soil genesis and constitutive chemical soil properties in and below their nests. Two transects to a soil depth of 100 cm were dug below three younger mounds of Cornitermes silvestrii (the primary nest builder), three older mounds in which C. silvestrii had died out and which were secondarily colonized mainly by Nasutitermes kemneri, and three reference sites in the Brazilian Cerrado. The samples were characterized by standard procedures for soil classification; in addition, phosphorus extractions were conducted on selected samples using NaHCO3 for labile P forms, and concentrated HCl for stable P forms. This data set was then used to build calibration models for the prediction of labile and stable inorganic (Pi) and organic (Po) P forms, as well as for contents of organic carbon (OC), for the remaining samples applying mid-infrared spectroscopy in combination with partial least squares regression (MIRS-PLSR). We can show that the termite influence on the soil was sufficiently large to change diagnostic characteristics of the soils under termite mounds. The MIRS-PLSR predictions were suitable for quantifying organic carbon and most of the labile and stable phosphorus fractions. They showed an enrichment of OC, NaHCO3-Po and NaHCO3-Pi contents in nests inhabited by primary and secondary termites by factors of 1.6–2.0 and 1.4–1.5, respectively. The soils surrounding the nests had higher contents of OC and NaHCO3-P under both nest types vertically down to 30 cm below the lower nest border, and OC and NaHCO3-Pi contents were elevated at minimum to a lateral distance of 60 cm away from the nest border. As the pattern of HClconc-Pi, which comprised 95% of total P, showed no variations, we conclude that the higher NaHCO3-Pi amount was formed in termite nests by changing the availability of the more stable HClconc-Pi. In contrast to the contents, the OC and NaHCO3-P stocks below the mounds inhabited by primary termites were comparable to those inhabited by secondary ones, because the bulk density of the secondarily inhabited nests was elevated. This was due to a transport of clay-rich material from the subsurface argic horizons into the nests. Here, the secondary termites even reverted the lessivation observed in the reference soils and under mounds inhabited by primary termites, thus causing the soil types to change from Alisols and Acrisols to the properties of Umbrisols.  相似文献   

12.
SOME EFFECTS OF MOUND-BUILDING TERMITES ON SOILS IN UGANDA   总被引:1,自引:0,他引:1  
Most large mounds in Uganda are built by termites of the genus Macrotermes. Except for those in valley bottoms they are composed of subsoil which is thought to be collected mainly from depths of 0.5 to 1.0 m, although the evidence is inconclusive. Mounds of both M. bellicosus and M. subhyalinus contain less sand than the subsoil when this is sandy, but only M. subhyalinus mounds contain less clay when the subsoil has a high clay content. In general both species tend to produce a stone-free topsoil whose physical properties are closer to a loam than the average subsoil. Mounds of both species in valley bottoms appear to be built from topsoil. The amounts of organic matter, nitrogen, calcium, phosphorus, and potassium in mounds were estimated together with their rates of turnover. In terms of the demands of two typical crop plants the quantities held in mounds and their rate of release to the surrounding topsoil were small. Only calcium was likely to be cycled in significant amounts. It seems that termites only slightly affect the physical and chemical properties of Ugandan soils, even where mounds are comparatively abundant.  相似文献   

13.
Nest structures of six termite species, four with epigeous (above-ground) and two with subterranean nests were analysed to find out how their building and feeding habits could be related to their nests phosphorus status compared with control soils. Termite nest structure was found to affect significantly the P status in savanna soils: mounds of the African Trinervitermes geminatus and the South American Nasutitermes ephratae (both grass-feeders) displayed a greater amount of available P, especially in the inner part of the nest, than the surrounding soil. The abundant quantities of dead grass material stored in the mound can explain the available soil P increase. A similar increase in P availability was also found for the soil-feeder Cubitermes severus. In mounds of Macrotermes bellicosus, on the other hand, there was a drastic increase in P sorption (and a corresponding decrease in available P) compared to adjacent soils, which was attributed to the building strategy of this species. M. bellicosus selected clay from subsoil to build its nest structure. The data obtained for the subterranean species Ancistrotermes cavithorax and Microtermes toumodiensis indicated also that there is an increase in P sorption in mounds when compared with associated topsoils. Consequently, the nest structures of only certain termite species should be considered, and utilised, as a soil amendment in place of fertilisers. This impact on the P cycle in savannas seems to be related to the termite feeding status and to the type of material utilised in nest building. This should be taken into account before using termite nest material in soil fertility status improvement.  相似文献   

14.
土地开发对农田土壤养分和盐分变异特征的影响   总被引:2,自引:0,他引:2  
武红旗  谷海斌  陈冰  盛建东 《土壤》2012,44(1):90-94
利用地统计学方法研究了新疆库尔勒市包头湖农场土地开发后土壤空间变异特征。结果表明:土地开发后种植区的土壤有机质和盐分降低,有效磷含量增加,碱解氮含量变化不大;尤其是土地开发后撂荒地土壤有机质含量下降明显。土壤盐分与有机质、碱解氮及速效钾的含量均呈显著正相关,与有效磷呈显著负相关。因此,土地开发后需增施有机肥,补充钾肥,并尽可能不撂荒。  相似文献   

15.
Ants significantly change the soil environment within the nest. The aim of this study is to contribute to ecology and thus the importance of two ant species Lasius niger and Lasius flavus in a post-mining landscape near the town of Sokolov in northwest Bohemia where both species are common. Chemical (total C, N, and available P) and microbiological parameters (respiration, cellulose decomposition and direct counts of bacteria) were investigated in both ant species in two different habitats: a tertiary clay heap after brown coal mining with a weakly developed organic layer and semi natural meadows with well developed organic horizons. Total C and N in the L. flavus mound was lower than in the surrounding soil in both stands, the same was true for total N in L. niger on the heaps. L. niger nests in both sites were significantly enriched by available P. A litter bag test with cellulose indicated lower decomposition in the ant nest in comparison with the surrounding soil. Respiration seems to be limited by lower soil moisture in the nest. However, microbial respiration, even in suitable moisture conditions, did not differ between the nest and soil (on heaps) or nest respiration was significantly lower (in L. flavus nests in the meadow). In meadow soil both species had a lower bacteria count than the surrounding soil, but the L. niger nest on the heap had higher bacterial numbers. Both species significantly alter soil conditions, although the effect on selected parameters is variable. Moreover, the result with lower nest moisture and lower decomposition rate in ant mounds indicates that soil moisture should be the next important factor limiting soil processes inside ant mounds.  相似文献   

16.
The role of mounds of the fungus-growing termite Macrotermes bellicosus (Smeathman) in nutrient recycling in a highly weathered and nutrient-depleted tropical red earth (Ultisol) of the Nigerian savanna was examined by measuring stored amounts of selected nutrients and estimating their rates of turnover via the mounds. A study plot (4?ha) with a representative termite population density (1.5?mounds?ha?1) and size (3.7?±?0.4?m in height, 2.4?±?0.2?m in basal diameter) of M. bellicosus mounds was selected. The mounds were found to contain soil mass of 9249?±?2371?kg?ha?1, composed of 7502?±?1934?kg?ha?1 of mound wall and 1747?±?440?kg?ha?1 of nest body. Significant nutrient enrichment, compared to the neighboring topmost soil (Ap1 horizon: 0–16?cm), was observed in the nest body for total nitrogen (N) and exchangeable calcium (Ca), magnesium (Mg) and potassium (K), and in the mound wall for exchangeable K only. In contrast, available (Bray-1) phosphorus (P) content was found to be lower in both the mound wall and the nest body than in the adjacent topmost soil horizon. Consequently, the mounds formed by M. bellicosus contained 1.71?±?0.62?kg?ha?1 of total N, 0.004?±?0.003?kg?ha?1 of available P, 3.23?±?0.81?kg?ha?1 of exchangeable Ca, 1.11?±?0.22?kg?ha?1 of exchangeable Mg and 0.79?±?0.21?kg?ha?1 of exchangeable K. However, with the exception of exchangeable K (1.2%), these nutrients amounted to less than 0.5% of those found in the topmost soil horizon. The soil nutrient turnover rate via M. bellicosus mounds was indeed limited, being estimated at 1.72?kg?ha?1 for organic carbon (C), 0.15?kg?ha?1 for total N, 0.0004?kg?ha?1 for available P, 0.15?kg?ha?1 for exchangeable Ca, 0.05?kg?ha?1 for exchangeable Mg, and 0.06?kg?ha?1 for exchangeable K per annum. These findings suggest that the mounds of M. bellicosus, while being enriched with some nutrients to create hot spots of soil nutrients in the vicinity of the mounds, are not a significant reservoir of soil nutrients and are therefore of minor importance for nutrient cycling at the ecosystem scale in the tropical savanna.  相似文献   

17.
Ant mounds often occur at high densities in marsh wetlands. However, little information is available regarding their impacts on soil nutrient pools in these ecosystems. We studied Corg, dissolved organic carbon (DOC), total nitrogen (TN), NO3 and NH4+ concentrations in above-ground ant mounds and in soils under mounds for three ant species (Lasius flavus, Lasius niger and Formica candida), and estimated their contribution to the total soil nutrient pools in a marsh wetland. Ant impacts were greatest in above-ground soils. All measured nutrient concentrations in above-ground mounds were significantly higher than the average values in reference soils (upper 25 cm). However, except for DOC, no significant differences for nutrient concentrations existed between soils under mounds and reference soils. The impacts of ant mounds on soil C and nutrient concentrations varied by ant species. L. niger above-ground mounds stored less Corg, TN and NO3 than F. candida and L. flavus mounds, or reference soils. At the ecosystem scale, soils in above-ground mounds and under ant mounds all contained less Corg per hectare than the reference soils. Total amounts in nutrient pools from mounds of the three ant species comprised from 5.3% to 7.6% of the total in natural marsh soils. More importantly, ant mounds increased the spatial heterogeneity of nutrient pools. Thus, ant mounds can be important to a fully integrated understanding of the structure and function of wetland nutrient cycles and balances.  相似文献   

18.
[目的]研究实现水稻稳产和土壤氮磷淋失低风险的肥料管理措施,以减少农田养分进入流域水域的风险,并提高农业生产的效益.[方法]田间试验在云南大理国家农田生态系统野外观测研究站进行,种植制度为水稻–大蒜–水稻–蚕豆轮作,试验连续进行了两年.设置8个水稻施肥处理:不施肥(CK);常规施肥(CF);减施20%常规肥(T1);等...  相似文献   

19.
The dynamics of the soil organic carbon pool and soil fertility were studied in soils with different number of growing years of alfalfa (Medicago sativa L.) in the semiarid Loess Plateau of China. The soil water content and soil water potential decreased and the depth of desiccated layers grew with the number of growing years of alfalfa. The soil organic C (SOC) cannot be enhanced on short timescales in these unfertilized and mowed-alfalfa grasslands in the topsoil, but the light fraction of organic C (LFOC), soil microbial biomass C (MBC) and microbial biomass N (MBN) all increased with the number of growing years. When alfalfa had been growing for more than 13 yr, the soil MBC increased slowly, suggesting that the MBC value is likely to reach a constant level. SOC, soil total P (STP), available P (AvaiP) and the ratio of SOC to soil total N (C/N) all decreased monotonically with the growing years of alfalfa up to 13 yr and then increased. SOC was significantly positively correlated with STP, AvaiP, soil total C (STC) and soil total N (STN) (R=0.627**, 0.691**, 0.497*, 0.546*, respectively). MBC and LFOC were significantly positively correlated with the number of growing years of alfalfa (R=0.873*** and 0.521*, respectively), and LFOC was more sensitive to vegetation components, degree of cover and landform than to the number of years of growth. SOC showed a significant negative correlation with LFOC/SOC and MBC/SOC (R=−0.689**, −0.693**, respectively). A significant positive correlation exists between MBC and soil inorganic C (SIC). LFOC, MBC, LFOC/SOC and MBC/SOC were all significantly positively correlated with each other. Therefore, practices that involve water-harvesting technologies and add residues and phosphate fertilizer to soils should be promoted to improve soil nutrients and hydration and to postpone the degradation of alfalfa grasslands under long-term alfalfa production.  相似文献   

20.
以浅沟集水区为研究对象,分析了子午岭地区林地被开垦破坏15年后裸露地在不同侵蚀强度和侵蚀方式下的土壤养分流失和土壤微生物数量的变化。结果表明,林地开垦破坏后,土壤侵蚀加剧发展,侵蚀强度达159.7t/(hm2a),是林地土壤侵蚀量的上千倍。开垦破坏15年后,裸露地浅沟集水区不同地形部位表层土壤全氮、有机碳、速效磷和土壤微生物总数显著减少,同林地相比,依次分别减少37.9%~82.6%、42.7%~86.4%、24.2%~80.3%和31.8%~92.0%。在裸露地浅沟集水区梁坡随坡长的增加,表层土壤有机碳、全氮和速效磷含量及微生物总数呈显著的下降趋势,且沟槽的土壤各养分含量及微生物总数明显低于沟间。裸露地浅沟集水区土壤养分流失强度及微生物数量减少幅度在浅沟集水区的空间分布与土壤侵蚀方式和侵蚀强度相对应。林地开垦破坏15年后,土壤养分以有机碳流失最严重,其次分别为速效磷、全氮;微生物中的真菌减少幅度最大,细菌次之,放线菌减少幅度最小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号