首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanical weed control in low competitive, organic vegetable production systems is challenging, particularly in fields with large populations of Galinsoga spp. (Asteraceae). Various false seedbed techniques are used prior to crop planting or sowing to prevent weed emergence, albeit with variable success. This study investigated the impact of machinery type (flamer, hoe and harrow), number of passes (2 and 4), tillage depth (1–4 cm) and intensity (double and single hoeing, and hoeing with or without additional harrowing) on weed emergence and seedbank density in 0–5 cm topsoil of organic vegetable fields. False seedbed machinery that did not or minimally disturb the soil was most appropriate for preventive control of Galinsoga quadriradiata (Hairy galinsoga) and total weed seeds, with reductions in seedling emergence up to 99% and 73%, respectively, for flaming, and 74% and 67%, respectively, for 1 cm deep hoeing, 1 month after false seedbed creation. Compared with 1 cm deep hoeing, 1 cm deep harrowing was 16% less effective in the control of emerged seedlings, while flaming was highly effective in preventing weed seedling emergence, even after a low number of passes. Tillage intensity was less important than tillage depth for the reduction in weed emergence and seedbank density. Overall, tillage was more effective for seedbank reduction than flaming.  相似文献   

2.
Galinsoga quadriradiata (hairy galinsoga) and Galinsoga parviflora (smallflower galinsoga, gallant soldier) are very troublesome weeds in many vegetable row crops in Europe. To optimise management strategies for Galinsoga spp. control, an in‐depth study of germination biology was performed. Germination experiments were conducted to evaluate the impact of light and alternating temperatures on germination of a large set of Galinsoga populations. Seedling emergence was investigated by burying seeds at different depths in a sandy and sandy loam soil. Dormancy of fresh seeds harvested in autumn was evaluated by studying germination response in light at 25/20°C with and without nitrate addition. Seed longevity was investigated in an accelerated ageing experiment by exposing seeds to 45°C and 100% relative humidity. Galinsoga spp. seeds required light for germination; light dependency varied among populations. Seedling emergence decreased drastically with increasing burial depth. Maximum depth of emergence varied between 4 and 10 mm depending on soil type and population. In a sandy soil, emergence percentages were higher and seedlings were able to emerge from greater depths than in a sandy loam soil. Freshly produced G. parviflora seeds, harvested in autumn, showed a varying but high degree of primary dormancy and were less persistent than G. quadriradiata seeds that lack primary dormancy. Lack of primary dormancy of freshly harvested G. quadriradiata seeds and light dependency for germination may be used to optimise and develop Galinsoga management strategies.  相似文献   

3.
In 1996, a study was conducted on the seedbanks of a pre‐alpine valley in northern Italy which had been organically farmed since 1986. The seedbanks were evaluated using soil cores taken from 16 organic fields located at various altitudes and seed numbers were determined using the ‘seedling emergence method’. Thirteen soil properties were also evaluated. In 2003, the germinable seedbank was assessed in five other fields chosen at random. Soil properties were evaluated by the same method as in 1996. Using the data of the first 16 fields as the analysis data set and those of the latter five as an independent validation data set, a quadratic weed seedbank‐soil properties model was built with partial least square regression analysis. The model estimates the relative abundance of the various species as the sum of the contribution of individual soil properties and has a high predictive capacity. With a novel graphic approach, it is possible to describe the nonlinear relationship between each soil property and weed species relative abundance, giving a rational, quantitative, explanation as to why some species are widespread (e.g. Chenopodium album, Galinsoga parviflora and Chenopodium polyspermum), whereas others tend to concentrate in specific fields (e.g. Spergula arvensis). The approach can, when some hypotheses hold, give a rational basis for the explanation of the relative abundance of species in a weed community and constitutes a useful methodology for study and research.  相似文献   

4.
Weed seeds in and on the soil are the primary cause of weed infestations in arable fields. Previous studies have documented reductions in weed seedbanks due to cropping system diversification through extended rotation sequences, but the impacts of different rotation systems on additions to and losses from weed seedbanks remain poorly understood. We conducted an experiment in Iowa, USA, to determine the fates of Setaria faberi and Abutilon theophrasti seeds in 2‐, 3‐ and 4‐year crop rotation systems when seed additions to the soil seedbank were restricted to a single pulse at the initiation of the study. Over the course of the experiment, seedlings were removed as they emerged and prevented from producing new seeds. After 41 months, seed population densities dropped >85% for S. faberi and >65% for A. theophrasti, but differences between rotation systems in the magnitude of seedbank reductions were not detected. Most of the reductions in seedbank densities took place from autumn through early spring in the first 5 months following seed deposition, before seedling emergence occurred, suggesting that seed predation and/or seed decay was important. For S. faberi, total cumulative seedling emergence and total seed mortality did not differ between rotation systems. In contrast, for A. theophrasti, seedling emergence was 71% lower and seed mortality was 83% greater in the 3‐ and 4‐year rotation systems than in the 2‐year system. Results of this study indicate that for certain weed species, such as A. theophrasti, crop rotation systems can strongly affect life‐history processes associated with soil seedbanks.  相似文献   

5.
Weed seedbanks are the primary source of weeds in cultivated soils. Some knowledge of the weed seedbank may therefore be appropriate for integrated weed management programs. It would also be very useful in planning herbicide programs and reducing the total herbicide use. However, a number of problems are inherent in the estimation of the seedbank size for arable weeds that usually have annual life cycles. In a long-term research project we have investigated the dynamics of weed seedbanks in corn fields for the past 8 years. Specific studies have included (i) developing cheap and efficient methods for estimating the weed seedbank; (ii) developing guidelines for efficient soil sampling (including the number and size of samples); (iii) influence of cultivation methods on weed seed distribution; (iv) mapping the spatial variability of the seedbank; (v) estimating the rate of seedbank decline for certain weed species; and (vi) assessing the potential of using the weed seed content in the soil to predict future weed problems. This paper reviews and summarizes the results of our research on the above aspects. The strong correlation between seedlings emerged in the greenhouse and seeds extracted in the laboratory for the most abundant weed species has demonstrated the potential for using the weed seed content of the soil to predict future weed infestations. The next step is to establish correlations with field emergence under commercial conditions using the sampling guidelines developed in our studies. Subsequently, we aim to offer the weed seedbank estimation as a commercial service to farmers for planning the most appropriate weed management options.  相似文献   

6.
The germinable soil seedbank was determined at two sites in central Queensland on four separate occasions between February 1995 and October 1996. These sites were infested with parthenium weed ( Parthenium hysterophorus L.), a serious invasive exotic weed. During this period, the seedbank varied between 3282 and 5094 seeds m−2 at the Clermont site, and between 20 599 and 44 639 seeds m−2 at the Moolayember Creek site. Parthenium hysterophorus exhibited a very abundant and persistent seedbank, accounting for 47–73% of the seedbank at Clermont and 65–87% of the seedbank at Moolayember Creek. The species richness and species diversity of the seedbank, and the seed abundance of many species, was lower at Moolayember Creek during spring (the time of year when the most dense infestations of the weed originate). Parthenium hysterophorus seedlings also emerged more rapidly from the soil samples than did those of all other species. Hence, it seems that various aspects of the weed's seed ecology, including abundance and the persistence of its seedbank and the rapid emergence of its seedlings, are major factors contributing to its aggressiveness in semiarid rangeland communities in central Queensland. The domination by P . hysterophorus of the seedbanks of these sites suggests that the weed is having a substantial negative impact on the ecology of these plant communities. The diversity of these seedbanks was found to be lower in comparison with that observed in other grassland communities that were not dominated by an invasive weed species. Hence, the prolonged presence of P . hysterophorus may have substantially reduced the diversity of these seedbanks, thereby reducing the ability of some of the native species to regenerate in the future.  相似文献   

7.
Weed infestations are a major cause of yield reduction in rice (Oryza sativa) cultivation, particularly with direct‐seeding methods, but the relationship between weed dynamics and water availability in Cambodian paddy fields has not been documented previously. We surveyed the weed abundance and weed seed banks in the soil of paddy fields with inferred differences in their water regime in 22 farm fields in three provinces of Cambodia in the 2005 and 2006 rainy seasons. We studied rain‐fed lowland fields in upslope and downslope topographic positions and fields at different distances from the irrigation water source inside an irrigation rehabilitation area. The weed seed banks were estimated by seedling emergence in small containers and weed abundance and vigor were estimated by a simple scoring system. The estimated weed seed bank in the top 5 cm of soil ranged from 52.1 to 167 × 103 seeds m?2 (overall mean of 8.5 × 103 seeds m?2) and contained a high proportion (86%) of sedge species, such as Fimbristylis miliacea L. and Cyperus difformis. Several fields had particularly large seed banks, including one near the reservoir. No clear difference was found in the weed seed banks between the irrigated fields that were located close to (upstream) and distant from (downstream) the water source or between the irrigated and rain‐fed lowland fields, but the weed scores were larger in the rain‐fed fields and the downstream fields within the irrigated area. A water shortage during the late growing season in 2005 led to a proliferation of weeds in some fields and an associated increase in weed seedbank size in 2006. However, the weed scores in 2006 were more strongly associated with that year's water conditions than with the weed seedbank size.  相似文献   

8.
The basic mechanism of soil inversion tillage for control of annual weeds is based on the vertical translocation of weed seeds from the soil surface to deeper soil layers. Buried weed seeds either remain dormant in the soil seedbank and are exposed to biological and chemical decay mechanisms, or they germinate but the seedlings cannot reach the soil surface (fatal germination). However, depending on the seed biology of the respective target species, frequent inversion tillage can lead to a build-up of the soil seedbank. For soil seedbank depletion based on available knowledge of the biology of Alopecurus myosuroides seeds, soil inversion tillage is suggested to be reduced to every third or fourth year with reduced or even no-tillage (direct seeding) in between (rotational inversion tillage systems). Including spring crops in the crop rotation could further help dampening the population growth and hence the seed return into the seedbank. This study investigated the effect of rotational inversion tillage in combination with reduced tillage or direct seeding on the soil seedbank and population development of A. myosuroides. In a long-term field trial, set up in 2012, these tillage strategies were compared with continuous inversion tillage in a 3-year crop rotation with two consecutive years of winter wheat (Triticum aestivum) followed by spring barley (Hordeum vulgare). The results showed a significant decline in the soil seedbank following the spring crop, irrespective of the tillage system. The continuous inversion tillage system and inversion tillage before spring cropping with reduced tillage (shallow tillage with a disc harrow) before winter wheat both led to accumulation of seeds in the soil seedbank. In contrast, inversion tillage before spring cropping with direct seeding of winter wheat depleted the soil seedbank significantly after only one crop rotation. Although only covering one intensively studied field site, these findings highlight the need for diversified cropping systems and indicate potential avenues for reducing soil tillage while controlling economically important weeds.  相似文献   

9.
Crops in shifting cultivation fields often suffer from severe weed infestation when long fallow periods are replaced by short fallow periods. The soil seedbank as a source of weed infestation was studied in four fields that differed in their last fallow duration. The effect of burning was analysed by comparing adjacent pre‐burn and post‐burn samples (two sites). Surface vegetation was monitored from burning to harvest in the plots from which soil samples were taken to determine the fraction of the seedbank germinating (three sites). Seedbank size (1700–4000 seedlings m?2) varied depending on a single species, Mimosa diplotricha. Burning reduced emergence of most species, but stimulated emergence in others. Densities in the seedbank were not correlated with above‐ground abundances in the field, except for some species. Most species emerging after 50 days from the soil samples (40% of seedlings) were absent from the field after 190 days. Whilst the data from this study are derived from only four fields, the weed problems after short‐term fallowing appeared to be due to a larger fraction of the seedbank emerging, possibly due to shallow burial, and to a floristic shift towards adaption to burning, rather than the size of the seedbank per se.  相似文献   

10.
Diversified cropping systems can have high soil microbial biomass and thus strong potential to reduce the weed seedbank through seed decay. This study, conducted in Iowa, USA, evaluated the hypothesis that weed seed decay is higher in a diversified 4‐year maize–soyabean–oat/lucerne–lucerne cropping system than in a conventional 2‐year maize–soyabean rotation. Mesh bags filled with either Setaria faberi or Abutilon theophrasti seeds and soil were buried at two depths in the maize phase of the two cropping systems and sampled over a 3‐year period. Setaria faberi seed decay was consistently greater at 2 cm than at 20 cm burial depth and was higher in the more diverse rotation than in the conventional rotation in 1 year. Abutilon theophrasti seeds decayed very little in comparison with seeds of S. faberi. Separate laboratory and field experiments confirmed differences in germination and seed decay among the seed lots evaluated each year. Fusarium, Pythium, Alternaria, Cladosporium and Trichoderma were the most abundant genera colonising seeds of both species. A glasshouse experiment determined a relationship between Pythium ultimum and S. faberi seed decay. Possible differences in seed susceptibility to decay indicate the need to evaluate weed seedbank dynamics in different cropping systems when evaluating overall population dynamics and formulating weed management strategies.  相似文献   

11.
Investigations were conducted during the 2003, 2004 and 2005 growing seasons in northern Greece to evaluate effects of tillage regime (mouldboard plough, chisel plough and rotary tiller), cropping sequence (continuous cotton, cotton–sugar beet rotation and continuous tobacco) and herbicide treatment on weed seedbank dynamics. Amaranthus spp. and Portulaca oleracea were the most abundant species, ranging from 76% to 89% of total weed seeds found in 0–15 and 15–30 cm soil depths during the 3 years. With the mouldboard plough, 48% and 52% of the weed seedbank was found in the 0–15 and 15–30 cm soil horizons, while approximately 60% was concentrated in the upper 15 cm soil horizon for chisel plough and rotary tillage. Mouldboard ploughing significantly buried more Echinochloa crus‐galli seeds in the 15–30 cm soil horizon compared with the other tillage regimes. Total seedbank (0–30 cm) of P. oleracea was significantly reduced in cotton–sugar beet rotation compared with cotton and tobacco monocultures, while the opposite occurred for E. crus‐galli. Total seed densities of most annual broad‐leaved weed species (Amaranthus spp., P. oleracea, Solanum nigrum) and E. crus‐galli were lower in herbicide treated than in untreated plots. The results suggest that in light textured soils, conventional tillage with herbicide use gradually reduces seed density of small seeded weed species in the top 15 cm over several years. In contrast, crop rotation with the early established sugar beet favours spring‐germinating grass weed species, but also prevents establishment of summer‐germinating weed species by the early developing crop canopy.  相似文献   

12.
The objective of this study was to obtain detailed information on the long‐term weed suppression potential of four winter soil cover types included in an arable crop system managed at various input levels. We used weed seedbank size and composition to assess weed suppression potential. A field experiment was established in 1993 as a split‐split‐plot design with four replications, including two tillage systems [a conventional system (CS) including ploughing in the cover crops and a low‐input system (LIS) including no tillage with surface mulching of the cover crops] in the main plots, three mineral nitrogen fertilization rates for the main crop in the sub‐plots and four soil cover types (main crop residue, rye, crimson clover and subterranean clover) in the sub‐sub‐plots. Seedbank sampling took place in winter 2000/01. The weed seedbank was analysed with the seedling emergence method. Data were analysed using anova and multivariate techniques. Results indicated that the seedbank density in the LIS was about five times higher than in the conventional input system. In the CS, use of a rye cover crop resulted in a lower seedbank density with respect to the crop residue treatment (?25%), whereas in the LIS the subterranean clover cover crop decreased weed seedbank density as compared with the other cover crops and the crop residue treatment (?22% on average). Differences in species composition were mainly related to tillage system. Implications for cover crop management and the development of sustainable cropping systems are discussed.  相似文献   

13.
Transitioning farmland to certified organic vegetable production can take many paths, each varying in their costs and benefits. Here, the effects of four organic transition strategies (i.e., tilled fallowing, mixed-species hay, low-intensity vegetables, and intensive vegetable production under high tunnels), each with and without annual compost applications for 3 years prior to assessment, were characterized. Although transition cropping strategies differed in soil chemistry (P < 0.05), the magnitude of the changes typically were marginal and pairwise comparisons were rarely significant. In contrast, the compost amendment had a much greater impact on soil chemistry regardless of cropping strategy. For example, percent C and total P increased by 2- to 5-fold and K increased from 6- to 12-fold. Under controlled conditions, damping-off of both edamame soybean (cv. Sayamusume) and tomato (cv. Tiny Tim) was reduced from 2 to 30% in soils from the mixed-hay transition. In the field, damping-off of both crops was also significantly lower in plots previously cropped to hay (P < 0.05). Although not always significant (P < 0.05), this pattern of suppression was observed in all four of the soybean experiments and three of the four tomato experiments independent of compost application. The compost amendments alone did not consistently suppress damping-off. However, plant height, fresh weight, and leaf area index of the surviving seedlings of both crops were greater in the compost-amended soils regardless of the transitional cropping treatment used (P < 0.05 for most comparisons). These data indicate that mixed-hay cropping during the transition periods can enhance soil suppressiveness to damping-off. In addition, although compost amendments applied during transition can improve crop vigor by significantly enhancing soil fertility, their effects on soilborne diseases are not yet predictable when transitioning to certified organic production.  相似文献   

14.
The parasitic weed Striga hermonthica poses a serious threat to cereal production in sub-Saharan Africa. Striga hermonthica seedbanks are long-lived; therefore, long-term effects of control strategies on the seedbank only emerge after several years. We developed a spatially explicit, stochastic model to study the effectiveness of control strategies in preventing invasion of S. hermonthica into previously uninfested fields and in reducing established infestations. Spatial expansion of S. hermonthica and decrease in millet yield in a field was slower, on average, when stochasticity of attachment of seedlings to the host was included and compared to the deterministic model. The spatial patterns of emerged S. hermonthica plants 4–7 years after point inoculation (e.g. seeds in a dung patch) in the spatial-stochastic model resembled the distribution typically observed in farmers' fields. Sensitivity analysis showed that only three out of eight life cycle parameters were of minor importance for seedbank dynamics and millet yield. Weeding and intercropping millet with sesame or cowpea reduced the seedbank in the long term, but rotations of millet with trap crops did not. High seedbank replenishment during years of millet monoculture was not sufficiently offset by seedbank depletion in years of trap crop cultivation. Insight from simulations can be employed in a participatory learning context with farmers to have an impact on S. hermonthica control in practice.  相似文献   

15.
Malva parviflora (little mallow) is a wild herb with agricultural importance in Egypt, where it is cultivated as a food crop. The main objective of the present work was to study the distribution and common associated species of the arable weed, M. parviflora, in the Nile Delta, Egypt. In addition, the diversity and behavior of the common species along the prevailing environmental conditions were assessed. Fifty stands, representing five common habitats (crop fields, orchards, canals, drains and roadsides), were selected. Eighty‐five species and one variety (50 annuals and 36 perennials) were recorded. Therophytes dominated the other life forms and biregional taxa contributed the highest chorological elements. Malva parviflora is a therophytic plant that has a Mediterranean distribution intermingled with Irano‐Turanian elements. Moreover, the highest coverage percentage of M. parviflora was recorded in the canal banks. Four vegetation groups that represented the distinct habitats were produced by the application of a two‐way indicator species analysis and a detrended correspondence analysis as a classification and ordination technique, respectively. Vegetation group C, which inhabited the crop fields, was the most diverse. A canonical correspondence analysis indicated that calcium carbonate, organic carbon, carbonate, potassium and the potassium adsorption ratio and electrical conductivity are the most effective soil variables on the distribution of M. parviflora and its associated species in the different habitats. It was found that M. parviflora was affected greatly by calcium carbonate, sand and magnesium. In addition, it was significantly associated with soil bicarbonate. Such a study could help in managing this important agricultural weed.  相似文献   

16.
Five fodder crop systems of different intensity (ranging from a double annual crop of Italian ryegrass + silage maize to a permanent meadow) were adopted for 30 years in the lowlands of Northern Italy under two input levels, differing mainly in their provision of organic fertiliser (manure). Herbicides were used in the maize crops included in all systems, except the meadow. After 30 years, the weed seedbank of all systems and input levels were assessed by the seedling emergence technique on soil samples from each plot. The cropping systems determined the abundance and composition of the weed assembly. Relatively few, frequent species made up the majority of the emerged seedlings in all systems, and there was no relationship between the total number of emerged seedlings and the mean number of species recorded in the different systems. Arabidopsis thaliana and Oxalis corniculata were abundant in the annual double crop and in the 3- and 6-year rotations that also comprised the annual double crop. These weeds, however, were unlikely to represent a major threat to the crops, due to their vigour and growth period. The permanent meadow tended to greater weed biodiversity than the other systems. The application of manure favoured the seedbank of species such as Lolium multiflorum, Digitaria sanguinalis and A. thaliana. Weed communities in the different systems were mainly determined by herbicide application, (through the ability of weeds to avoid its effects, determined by the weed life history and emergence period) and manure application (with its possible dual effect of spreading weed seeds and favouring nitrogen-responsive weeds).  相似文献   

17.
Physiological dormancy in weed species has significant implications for weed management, as viable seeds may persist in soil seedbanks for many years. The major stimulatory compound in smoke, karrikinolide (KAR1), promotes germination in a range of physiologically dormant weed species allowing targeted eradication methods to be employed. Control of Chrysanthemoides monilifera ssp. monilifera (boneseed), a Weed of National Significance in Australia, may benefit from adopting such an approach. In this study, we hypothesised that seeds of C. monilifera ssp. monilifera exhibit physiological dormancy, germinate more rapidly as dormancy is alleviated, show fluctuations in sensitivity to KAR1 and form a persistent soil seedbank. Seeds responded to 1 μM KAR1 (40–60% germination) even during months (i.e. March, April, July, August) when seeds were observed to be more deeply dormant (control germination: 7–20%). Seeds germinated readily over a range of cooler temperatures (i.e. 10, 15, 20, 20/10 and 25/15°C) and were responsive to KAR2 (~50% germination) as well. Eradication efforts for C. monilifera ssp. monilifera may benefit from use of karrikins to achieve synchronised germination from soil seedbanks, even at times of the year when C. monilifera ssp. monilifera seeds would be less likely to germinate, allowing more rapid depletion of the soil seedbank and targeted control of young plants.  相似文献   

18.
Seedbank density is an important aspect that determines the amount of damage that the parasitic weed, purple witchweed (Striga hermonthica; hereafter, called “Striga”), causes on its crop hosts. The seedbank depletion of Striga was measured in Mali and Niger during the 2004 rainy season under the host crops, pearl millet and sorghum, the non‐host crops, cowpea and sesame, the intercrops of pearl millet or sorghum with cowpea or sesame, and fallow with or without weeding. Two methods were used and compared; namely, a seed bag method and a soil‐sampling method. The fate of the seeds was assessed by a seed press test. Seed germination, as determined by the presence of empty seed coats, contributed most to the seedbank depletion of Striga under a variety of crop covers and fallow. The highest seedbank depletion was found under the monocultures of the host crops. The intercrops of the host and non‐host crops caused less seedbank depletion, followed by the monocultures of the non‐host crops, fallow, and bare soil. The seed bag method and the soil‐sampling method yielded similar percentages of seedbank depletion, while the former allowed for distinguishing between the germinated and diseased seeds. The results suggest that, although all the tested crop species can cause the seed germination and seedbank depletion of Striga, management by using host cereal crops causes the highest amount of germination and has the highest potential to deplete the soil seed bank, provided that seed production is prevented.  相似文献   

19.
Although we know that alterations in crop density, crop spatial pattern and inclusion of more selective weed control can improve weed suppression for organic growers, it is unknown whether these result in changes to the weed seedbank that increase cropping system profitability over time. Data collected from field trials conducted in 2009 and 2010 in Maine, USA, comparing regional grower practices (Standard) with management that aimed to (i) facilitate better physical weed control through the use of wide row spacing and inter‐row cultivation (Wide) or (ii) enhance crop–weed competition through increased seeding rate and narrow inter‐row spacing (Narrow HD), were used to construct a matrix population model with an economic sub‐model. Using field measurements of grain yield and weed survival and fecundity, we investigated the lasting implications of employing alternative organic spring wheat (Triticum aestivum) production practices on Sinapis arvensis population dynamics. In most scenarios, the model indicated that regional production practices were not sufficient to prevent an increase in the weed seedbank, even with excellent weed control. The two alternative methods, on the other hand, were able to limit weed population growth when initial densities were low or cultivation efficacy was >80%. Due to higher seed costs in the Narrow HD system, net returns were still lower after 10 years of simulation in this system compared with wide rows with cultivation, despite a lower weed seedbank.  相似文献   

20.
Diversity and weed community composition of mid-season plant stands and autumn seedbanks were examined in spring barley–red clover cropping systems that varied according to crop rotation, tillage and weed management. Weed plant and seed density data collected over 4 years were used in the calculation of species richness (number of species), evenness (Shannon's E) and diversity (Shannon's H′), and in multivariate analysis (canonical discriminant analysis) of weed communities. Weed diversity indices were low (H′ < 2.0) but sensitive to management practices. Evenness had intermediate values (E = 0.4–0.8), suggesting little evidence of truly dominant species, particularly in the seedbanks. The difference in the number of species between treatments was never large (approximately two to four species). Overall, diversity indices were highest in the low disturbance treatments, particularly those with minimum weed management. Factors affecting ordination were somewhat different from those affecting diversity. Tillage had little effect on weed diversity indices but had a more major role in determining weed community composition. Seedbanks in no-till and monoculture-chisel plough treatments appeared to have more distinctive species composition compared with other treatments. Weed species assembly in seedbanks showed little discrimination across treatments and over time, confirming the ability of seedbanks to buffer disturbances across a variety of cropping systems. The use of diversity indices revealed part of the complexity of weed communities associated with disturbance in cropping systems, whereas ordination singled out species–cropping systems associations, which may be more meaningful to weed management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号