首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 46 毫秒
1.
为研究青海省小麦品种之间的遗传关系和遗传多样性,选取93个青海小麦品种,基于55K SNP芯片对其进行全基因组扫描,并进行遗传多样性分析。结果共扫描到53 063个SNP位点,选择分型成功率(call rate, CR)≥0.90、缺失率<10%、MAF>0.05的SNP位点,获得多态性SNP位点50 243个,多态性比率为94.68%。其中多态性位点在第2同源群中分布最多,在第4同源群中分布最少,在基因组中分布呈现B>A>D,特别是4D染色体上的多态性SNP分布最少。93个小麦品种的多态性信息含量(PIC)为0.00~0.59,平均值为0.33,为中度多态性位点;两两品种间的遗传距离为0.00~0.67,平均值为0.41。通过聚类分析表明,根据遗传距离可将93个小麦品种划分为8个类群。综上,青海省现有小麦品种的遗传关系较近,需要引进外来品种来丰富青海省小麦品种的遗传多样性,推动小麦品种的选育及研究工作。  相似文献   

2.
小麦新品种陕农78的丰产性稳定性及适应性分析   总被引:27,自引:1,他引:27  
为了更全面详细地了解小麦新品种陕农78的生产特性,以1999—2002年度陕西省关中灌区小麦区域试验(高肥组)结果为资料,通过产量、变异系数和回归系数分别对陕农78和对照品种(陕229、小偃22)的丰产性、稳定性和适应性进行比较、分析,以促进该品种在生产中的推广应用。结果表明:陕农78的丰产性、稳定性和适应性优于对照品种,是一个比较理想的高产小麦新品种。  相似文献   

3.
为明确小麦骨干亲本川麦44的遗传特性,利用小麦660K SNP芯片对川麦44及其衍生品种进行解析。结果表明,川麦44在6个衍生品种中的遗传贡献率为23.77%~72.63%,平均为48.58%,衍生品种存在遗传偏亲现象。川麦44特异性标记在不同染色体和染色体组中分布不均匀,衍生品种中特异性标记数具有B染色体组A染色体组D染色体组的共同特征。在除1B和6A外的染色体上,共筛选出52个川麦44高遗传率片段,片段长度为0.10~76.20 Mb,其中5B上的片段数量最多,累计长度最大。本研究结果为进一步明确骨干亲本川麦44的重要基因组区段及其功能奠定了基础。  相似文献   

4.
绥农33是黑龙江省农业科学院绥化分院和黑龙江省龙科种业集团有限公司经有性杂交育成的高产抗病大豆新品种,于2012年1月经黑龙江省农作物品种审定委员会审定推广。该品种2009—2010年黑龙江省区域试验平均产量2710.1公斤/公顷,较对照品种绥农28增产12.0%;2011年黑龙江省生产试验平均产量2601.8公斤/公顷,较对照品种绥农28增产9.8%。品种适宜黑龙江省第二积温带以及吉林、内蒙、新疆等省区相适应的积温区域种植。  相似文献   

5.
杂交稻新品种陕农优206高产制种技术   总被引:1,自引:0,他引:1  
陕农优206是汉中市农业科学研究所以陕农1A为母本、陕恢206为父本配组选育而成的三系籼型杂交稻新品种,该品种具有优质、高产、抗倒、生育期短等特点。2017年通过陕西省农作物品种审定(陕审稻2017007号)。根据陕农优206在陕南地区亲本特征特性及多年制种试验,对陕农优206高产制种技术进行总结,为其大面积推广提供技术支持。  相似文献   

6.
川麦104是西南麦区近年来选育的主栽小麦品种,为研究其高产、抗病遗传特性,利用3种小麦基因芯片(660K SNP、50K SNP和35K SNP)对川麦104及其双亲川麦42、川农16进行分析,探究川麦104的遗传构成.结果表明,在能定位于小麦不同染色体的SNP中,川麦104中与双亲相同的共有等位变异位点数目远多于其他...  相似文献   

7.
贵协3号对当前的条锈病流行小种表现为近免疫或高抗。为更好地利用贵协3号,拓宽小麦抗性育种资源,以Avocet S(来自澳大利亚的高感条锈病小麦品种)为母本、贵协3号为父本构建的F2:7代重组自交系(RIL)群体为材料,运用集群分离分析法(BSA)并结合转录组测序(BSR-Seq)和小麦55K SNP芯片技术对抗条锈病QTL进行遗传定位。结果表明,共检测到有7个抗条锈病QTL,分别位于小麦1B(1)、2A(2)、2D(1)、5A(2)和6B(1)染色体上。其中位于2AS染色体上的 Qyr.gaas.2A在三个环境中均被检测到,置信区间为AX-108824773~AX-111675237(0~2.5 cM),对应的物理区间为15.87~31.89 Mb(16.02 Mb),可解释17.07%~34.59%的表型变异。为了进一步提高该QTL的定位精度,在2AS染色体目标区段内设计了103对SSR标记引物,并选择2AS染色体上已报道的22个SSR标记,在双亲、抗感池和RIL群体中进行筛选和验证。最终筛选出6个多态性标记(Xcfd36、Xwmc382、hls-2A-04、h...  相似文献   

8.
九农33号是由吉林省吉林市农业科学院大豆研究所经有性杂交选育而成的大豆新品种。该品种年需活动积温2700℃,生育日数132d。具有产量高、抗病性强、适应性广等特点。适宜吉林省中晚熟区域种植。  相似文献   

9.
为分析优质小麦品种的遗传多样性,探讨其亲缘关系,以45个优质小麦品种和5个优质高代品系为试验材料,利用55K SNP芯片对其杂合度、遗传相似度、群体遗传结构和染色体低多态性区段进行分析。结果表明,45个优质小麦品种的遗传相似度系数(GS)为0.488~0.928,平均值为0.603,其中16个品种与其他品种的GS均高于0.800;50个优质小麦品种(系)可分为2个类群7个亚群,其中类群1可分为6个亚群。除亚群Ⅴ的10个品种外,其余亚群品种的遗传聚类结果与品种系谱来源较为吻合。B基因组的多态性SNP位点最多,A基因组次之,D基因组最少。在21条染色体中,4D染色体上的多态性SNP位点最少。A基因组和D基因组染色体低多态性区段高于B基因组。在优质小麦选育过程中,A基因组和D基因组受到的选择压力高于B基因组。  相似文献   

10.
本文论述了陕229小麦品种开发过程中的几个特点,包括该品种的选育特点、品种表现特点及其异地鉴定、开发与区域 同步实验、栽培与推广有机结合结合等,为小麦常规新品种迅速 经为现实生产力提供依据。  相似文献   

11.
黑农48是黑龙江省农业科学院大豆研究所选育的高蛋白大豆品种,具有高产、抗旱、抗病等特点,深受农民的欢迎,目前在市场占有较大份额。通过对其亲本进行追溯,建立系谱树,分析其亲本的遗传来源及核遗传贡献率,以期为高蛋白大豆育种亲本选择以及选配高蛋白组合提供参考。结果表明:黑农48的细胞质传递过程是:四粒黄→黄宝珠→满仓金→绥农3号→绥农4号→黑农40→黑农48。细胞核传递是由金元、四粒黄、白眉、平地黄、克山四粒荚、十胜长叶、永丰豆、佳木斯突荚子、熊岳小黄豆、通州小黄豆、小粒黄、Amsoy、Anoka、柳叶齐和东农20这15个祖先亲本提供,细胞核遗传贡献率分别是:7.04%、7.04%、5.08%、7.03%、5.47%、12.50%、7.04%、1.95%、2.34%、3.13%、1.56%、6.25%、6.25%、1.56%和0.78%。研究结果表明在选择育种亲本时,应以适应当地气候条件的具有广适性的主栽高蛋白品种为母本,以融入地理远缘基因和生态远缘基因的材料为父本。  相似文献   

12.
小麦周8425B及其衍生品种与黄淮麦区主栽品种的遗传解析   总被引:1,自引:0,他引:1  
为了解小麦骨干亲本周8425B及其衍生品种与黄淮麦区主栽品种的遗传结构和遗传多样性,利用Illumina 90KiSelect SNP标记技术对周8425B及其16份衍生品种和23份黄淮麦区主栽品种进行全基因组扫描。结果显示,在40份小麦材料中,有22 466个多态性SNP位点被定位在21条染色体上,不同基因组间多态性SNP标记的分布依次为BAD。周8425B及其衍生品种的遗传相似系数变化范围为0.640 5~0.926 4,平均值为0.739 8,与黄淮麦区主栽品种间遗传差异较小。供试材料的遗传相似系数变化范围为0.530 1~0.963 4,平均值为0.672 1,并被划分为4个类群,聚类分析结果与系谱较为吻合。周8425B对其衍生一代、二代、三代的平均贡献率为79.48%、76.73%和74.24%,随世代的增加而不断降低,且在不同基因组间的遗传贡献率表现为DAB。全基因组扫描结果显示,周8425B衍生品种共有6 789个SNP位点保留了周8425B的遗传基因,不同基因组继承的SNP位点数不同,依次为BAD,这些选择位点可能与重要基因的遗传传递有关,可能是周8425B成为骨干亲本的主要遗传特征。  相似文献   

13.
为研究黑龙江大豆育成品种的遗传解析及增产潜势规律,以黑龙江省农业科学院牡丹江分院选育的大豆品种牡试6号为研究对象,进行品种的亲本血缘特点和遗传贡献率分析。结果表明:牡试6号是通过四粒黄细胞质遗传的,具体选育过程:四粒黄→黄宝珠→满仓金→克交5501-3→绥农3号→绥农4号→绥81-242→黑农40→黑农48→牡试6号。细胞核由祖先亲本ZYD355野生豆、十胜长叶、嫩78631-5、四粒黄、金元、五顶珠、白眉、克山四粒荚、平地黄、Amsoy、Anoka、小粒黄、永丰豆、通州小黄豆、熊岳小黄豆、佳木斯突荚子、柳叶齐和东农20共同提供,核遗传贡献率分别是:25.00%、18.74%、12.50%、6.58%、6.58%、6.25%、3.14%、3.14%、3.14%、3.13%、3.13%、1.95%、1.56%、1.56%、1.19%、0.98%、0.78%、0.39%。牡试6号高度聚合了东北大豆核心种质的优良基因,经过大豆杂交重组基因,具有高产高蛋白的遗传基础潜力,其遗传解析及增产潜势的研究能够为大豆育种工作提供理论支持。  相似文献   

14.
基于小麦55K SNP芯片检测小麦穗长和株高性状QTL   总被引:1,自引:0,他引:1  
为了进一步挖掘小麦穗长和株高的QTL位点,将小麦品系‘20828’和国审小麦品种川农16杂交后得到的重组自交系群体(RIL)于2016-2018年种植在四川崇州、温江和雅安以及孟加拉国库尔纳市,进行穗长和株高的遗传分析。结果表明,在RIL群体内,穗长和株高均呈正态分布,符合数量性状遗传特点。在3年8个环境中共检测出44个控制穗长和株高的QTL,其中稳定的穗长QTL有5个,分布于2D、4B和5B染色体上,贡献率为2.90%~26.26%;控制株高的稳定QTL有3个,分布于2D、4B和4D染色体上,贡献率为1.96%~21.22%。在2D染色体AX-86171316~AX-109422526标记区间和4B染色体AX-109526283~AX-110549715标记区间均同时检测到了控制穗长和株高的QTL,推测为一因多效位点。 QSl.sau.2D.1、 QSl.sau.2D.2、 QSl.sau.4B.1、 QSl.sau.4B.2、 QSl.sau.5B、 QPh.sau.2D和 QPh.sau.4B可能为新的稳定QTL。本研究鉴定的这些位点对增加穗长、降低株高以及提高小麦的产量具有重要作用。  相似文献   

15.
叠氮化钠诱变普通小麦陕农33突变体库的构建和初步评估   总被引:2,自引:0,他引:2  
为了用叠氮化钠(NaN3)构建一个小麦突变体库,分别用浓度为0、5、10、15、20 mmol·L-1的NaN3处理普通小麦陕农33的种子,检测了各处理发芽指标和田间M1群体的生理及形态特征。结果表明,10mmol·L-1的NaN3是诱变普通小麦较适宜的浓度。在以10mmol·L-1的NaN3诱变普通小麦得到的M2群体中发现了322份茎、叶、穗和其他性状变异的突变体,其中204份茎秆性状突变、65份叶片性状突变、24份穗部性状突变和115份其他性状突变,突变频率分别为5.18%、1.65%、0.61%、2.92%。采用RAPD分子标记技术估计该群体的突变密度为1/57.0kb。经M3代田间鉴定,共获得可遗传突变株系58个。本研究所构建的突变体库可为小麦功能基因组学研究和小麦育种提供材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号