首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biological control of Botrytis spp. by the fungal antagonist Ulocladium atrum is based on their interaction in plant tissue. U. atrum is effective against B. cinerea in commercial cyclamen crops but not effective against B. elliptica in lily crops. Based on the necrotrophic nature of the Botrytis spp. and the saprophytic nature of U. atrum it is hypothesised, and experimentally confirmed, that the interaction between Botrytis spp. and U. atrum, resulting in a biocontrol effect, only takes place in necrotic plant tissue. The role of necrotic tissue in the epidemiology of B. cinerea in cyclamen and B. elliptica in lily was found to be different. Removal of symptomless senescing leaves resulted in a significant reduction of the area under the disease severity progress curve (AUDPC) for B. cinerea in cyclamen but had no effect on the disease severity in lily. U. atrum applications significantly reduced B. cinerea AUDPC values in cyclamen but were less efficient than the removal of senescing leaves. In lily, disease severity was not affected by applications of U. atrum. It is concluded that necrotic cyclamen tissue, not killed by B. cinerea, plays an important role in the onset of disease. Colonisation of this tissue by U. atrum prevents saprophytic colonisation of those leaves by B. cinerea. In contrast, conidia of B. elliptica directly infect healthy lily leaf tissue. U. atrum applications aimed at blocking the infection pathway from a saprophytic base are therefore not effective against B. elliptica. Control options based on competitive interactions in and around B. elliptica lesions resulted in a reduced production of conidia by B. elliptica but proved ineffective against disease development. The potential of U. atrum as a biocontrol agent against Botrytis spp. and possibly against other necrotrophs appears to be determined by the competitive saprophytic ability of the antagonist in mutual substrates of pathogen and antagonist and by the role of these substrates in disease epidemiology.  相似文献   

2.
Ammonium molybdate was tested as a potential fungicide for use in apples (cv Golden Delicious) against blue and grey mould, important post‐harvest diseases of pome fruits. In tests in vivo at 20 °C, ammonium molybdate (15 mM ) reduced lesion diameters of Penicillium expansum, Botrytis cinerea and Rhizopus stolonifer by 84%, 88% and 100% respectively. When apples treated with ammonium molybdate were stored at 1 °C for three months, a significant reduction in severity and incidence of P expansum and B cinerea was observed in both years of study (1998 and 1999). In the second year of the experiment the reduction in disease severity was greater than 88% for both pathogens, and the level of control was similar to, or greater than, that observed with the fungicide imazalil. When ammonium molybdate was applied as a pre‐harvest treatment, a significant reduction in blue mould decay was observed after three months in cold storage. In vitro, ammonium molybdate greatly inhibited spore germination of P expansum and B cinerea, although better inhibition was obtained against grey mould. Ammonium dimolybdate, sodium molybdate and potassium molybdate were also tested in vitro in comparison with ammonium molybdate as inhibitors of spore germination, but only ammonium molybdate inhibited spore germination by more than 50%. © 2001 Society of Chemical Industry  相似文献   

3.
Field studies were conducted near Lethbridge, Alberta, Canada, in 2001, 2004 and 2005 to determine the efficacy of the antagonistic fungusUlocladium atrum for control of white mold of bean caused bySclerotinia sclerotiorum. Results of the 3 years of field trials showed that, compared with the untreated control, foliar application of a spore suspension ofU. atrum (300 ml m−2 of 106 spores ml−1 suspension) significantly reduced incidence and severity of white mold, increased seed yield and reduced contamination of bean seed by sclerotia ofS. sclerotiorum. The level of control of white mold observed in the treatment ofU. atrum was similar to that of the mycoparasitic fungusConiothyrium minitans, but lower than the fungicide treatments of Ronilan (vinclozolin) at the rate of 1200 g ha−1 per application in 2001, or Lance (boscalid) at the rate of 750 g ha−1 per application in 2004 and 2005. The potential for use ofU. atrum as a biological control agent for sclerotinia diseases is discussed. http://www.phytoparasitica.org posting Nov. 12, 2006.  相似文献   

4.
The antifungal activity of hexanoic acid on the phytopathogen Botrytis cinerea was studied. This chemical inhibited both spore germination and mycelial growth in vitro in a concentration‐ and pH‐dependent manner, and stopped spore germination at a very early stage, preventing germ‐tube development. The minimum fungicidal concentration (MFC) for in vitro spore germination was 16 mm . Hexanoic acid also inhibited in vitro mycelial growth of germinated spores at an MFC of 12 mm . Studies performed to characterize the mechanisms underlying the antimicrobial effect of hexanoic acid showed that it alters fungal membrane permeability. In addition, hexanoic acid treatment increased the levels of spermine, spermidine, putrescine and cadaverine in B. cinerea mycelia. Spray application of hexanoic acid at fungicidal concentrations on 4‐week‐old tomato plants prior to fungal inoculation reduced necrosis diameter by approximately 60%. Application of the same hexanoic acid concentrations on previously infected plants reduced further necrosis expansion by around 30%. The results suggest that this chemical acts as a preventive and curative fungicide. Interestingly, treatments with hexanoic acid at concentrations below the MFC in hydroponic solution prior to fungal inoculation significantly reduced necrosis area. These results suggest an inducer effect of plant responses for hexanoic acid treatments at these concentrations. Hexanoic acid is a good candidate for safe antifungal treatments for the control of B. cinerea, which is responsible for many economic losses on fruits, vegetables and flowers.  相似文献   

5.
Sixty isolates of saprophytic microorganisms were screened for their ability to reduce the severity of grey mould (Botrytis cinerea) infection and sporulation. Isolates of the bacteriaXanthomonas maltophilia, Bacillus pumilus, Lactobacillus sp., andPseudomonas sp. and the fungusGliocladium catenulatum reduced germination of conidia of the pathogen and controlled disease on bean and tomato plants. Their activity under growth room conditions was good, consistent, and similar to the activity of the known biocontrol agent,Trichoderma harzianum T39 (non-formulated). Although the tested isolates may for nutrients with the germinating conidia ofB. cinerea, resistance induced in the host by live or dead cells were also found to be involved. Inhibitory compounds were not detected on treated leaves. Sporulation ofB. cinerea after its establishment on leaves was also reduced by the above mentioned isolates and byPenicillium sp.,Arthrinium montagnei, Ar. phaeospermum, Sesquicillium candelabrum, Chaetomium globosum, Alternaria alternata, Ulocladium atrum, andT. viride. These sporulation-inhibiting fungi did not reduce the infection of leaves byB. cinerea. Most of these selected fungi and bacteria were capable of reducing lesion expansion.  相似文献   

6.
BACKGROUND: Botrytis cinerea Pers.: Fr. is a high‐risk pathogen for fungicide resistance development that has caused resistance problems on many crops throughout the world. This study investigated the fungicide sensitivity profile of isolates from kiwifruits originating from three Greek locations with different fungicide use histories. Sensitivity was measured by in vitro fungitoxicity tests on artificial nutrient media. RESULTS: Seventy‐six single‐spore isolates were tested for sensitivity to the SDHI fungicide boscalid, the QoI pyraclostrobin, the anilinopyrimidine cyprodinil, the hydroxyanilide fenhexamid, the phenylpyrrole fludioxonil, the dicarboxamide iprodione and the benzimidazole carbendazim. All isolates from Thessaloniki showed resistance to both boscalid and pyraclostrobin, while in the other two locations the fungal population was sensitive to these two fungicides. Sensitive isolates showed EC50 values to boscalid and pyraclostrobin ranging from 0.9 to 5.2 and from 0.04 to 0.14 mg L?1 respectively, while the resistant isolates showed EC50 values higher than 50 mg L?1 for boscalid and from 16 to > 50 mg L?1 for pyraclostrobin. All QoI‐resistant isolates carried the G143A mutation in cytb. Sensitivity determinations to the remaining fungicides revealed in total eight resistance phenotypes. No isolates were resistant to the fungicides fenhexamid and fludioxonil. CONCLUSION: This is the first report of B. cinerea field isolates with resistance to both boscalid and pyraclostrobin, and it strongly suggests that there may be a major problem in controlling this important pathogen on kiwifruit. Copyright © 2010 Society of Chemical Industry  相似文献   

7.
BACKGROUND: Grey mould caused by the fungus Botrytis cinerea Pers. ex Fr. is one of the major diseases in grapes. The use of fungicides is a simple strategy to protect grapes against B. cinerea disease. However, phenotypes exhibiting resistance to fungicides have been detected in B. cinerea populations. The variation of fungicide‐resistant B. cinerea isolates renders B. cinerea disease control difficult in grapevine fields. RESULTS: The authors have developed a nested polymerase chain reaction–restriction fragment length polymorphism (PCR‐RFLP) method to detect fungicide‐resistant B. cinerea isolates at an early growth stage of grapes in grapevine fields. The nested PCR‐RFLP method was carried out to detect benzimidazole‐, phenylcarbamate‐ and/or dicarboximide‐resistant B. cinerea isolates from grape berries and leaves at Eichorn–Lorenz growth stage 25 to 29. This method successfully detected fungicide‐resistant B. cinerea isolates at an early growth stage of grapes. In addition, only 8 h was required from tissue sampling to phenotyping of fungicide resistance of the isolates. CONCLUSION: It is proposed that the early diagnosis of fungicide‐resistant B. cinerea isolates would contribute to further improvement of integrated pest management against B. cinerea in grapevine fields, and that the nested PCR‐RFLP method is a high‐speed, sensitive and reliable tool for this purpose. Copyright © 2008 Society of Chemical Industry  相似文献   

8.
采用菌丝生长速率法和孢子萌发法,分别测定了烟草灰霉病菌对多菌灵、嘧霉胺、异菌脲和丙环唑的敏感性,同时通过离体叶片法评估了这4种杀菌剂对烟草灰霉病的保护和治疗作用。结果表明:4种杀菌剂对烟草灰霉病菌的菌丝生长和孢子萌发均表现出了不同程度的抑制活性,并对灰霉病同时具有保护和治疗作用。其中多菌灵对菌丝生长的抑制活性最强,EC50平均值为0.06 mg/L,其次为丙环唑、嘧霉胺和异菌脲,EC50平均值分别为0.36、0.53和0.60 mg/L;异菌脲和丙环唑对烟草灰霉病菌孢子萌发的抑制活性较强,EC50平均值分别为2.05和2.21 mg/L,其次为嘧霉胺和多菌灵,EC50平均值分别为10.56和131.23 mg/L。异菌脲和多菌灵对灰霉病的保护作用和治疗作用均最强,当药剂质量浓度为200 mg/L时,其对离体叶片的保护和治疗作用防效分别为100%、100%和98.3%、91.8%。研究结果可为烟草灰霉病的科学防治提供依据。  相似文献   

9.
10.
BACKGROUND: With the objective of exploring the fungicidal activity of 2‐oxocyclohexylsulfonamides (2), a series of novel 2‐amino‐6‐oxocyclohexenylsulfonamides (6 to 23) were synthesised, and their fungicidal activities against Botrytis cinerea Pers. were evaluated in vitro and in vivo. RESULTS: The compounds were characterised by IR, 1H NMR and elemental analysis. Bioassay results of mycelial growth showed that compounds 6 to 23 had a moderate antifungal activity against B. cinerea. N‐(2‐methylphenyl)‐2‐(2‐methylphenylamino)‐4,4‐dimethyl‐6‐oxocyclohexenylsulfonamide (13) and N‐(2‐chlorophenyl)‐2‐(2‐chlorophenylamino)‐6‐oxocyclohexenylsulfonamide (21) showed best antifungal activities, with EC50 values of 8.05 and 10.56 µg mL?1 respectively. Commercial fungicide procymidone provided an EC50 value of 0.63 µg mL?1. The conidial germination assay showed that most of compounds 6 to 23 possessed excellent inhibition of spore germination and germ‐tube elongation of conidia of B. cinerea. For in vivo control of B. cinerea colonising cucumber leaves, the compound N‐cyclohexyl‐2‐(cyclohexylamino)‐4,4‐dimethyl‐6‐oxocyclohexenylsulfonamide (19) showed a better control effect than the commercial fungicide procymidone. CONCLUSION: The present work demonstrated that 2‐amino‐6‐oxocyclohexenylsulfonamides can be used as possible new lead compounds for further developing novel fungicides against B. cinerea. Copyright © 2011 Society of Chemical Industry  相似文献   

11.
Saprophytic antagonists were evaluated for suppression of sporulation ofBotrytis allii andB. cinerea on artificially killed segments of onion leaves that were pre-inoculated with the pathogens. During incubation of the antagonisttreated leaf segments in moist chambers, periods of leaf wetness and leaf dryness were alternated to simulate conditions in the field. Interruption of humid conditions with dry periods had a differential effect on antagonists.Alternaria alternata, Chaetomium globosum, Ulocladium atrum andU. chartarum suppressed sporulation ofB. allii almost completely under continuously wet conditions, and when the leaf wetness periods were interrupted with drying periods of 9h imposed 16, 40, and 64 h after the antagonists were applied. When leaf wetness was interrupted 16 h after antagonist application, the number of conidia ofB. allii produced cm–2 leaf surface after eight days was under the detection limit of 5.2 × 103 conidia on leaves treated with these antagonists compared to 3.7 × 105 conidia on leaves that were not treated. On the other hand,Gliocladium roseum, G. catenulatum andSesquicillium candelabrum, all highly efficient under continuously wet conditions, were of low to moderate efficiency when leaf wetness periods had been interrupted 16 h after application of the antagonists. The antagonists showed the same differentiation and sensitivity to interrupted wetness periods when tested withB. cinerea.  相似文献   

12.
Leaf populations ofTrichoderma were studied on tomato, pepper and geranium plants incubated under various conditions. Treatments involved high (>90%) or lower (75–85%) relative humidity (r.h.), temperatures of 15±3°C or 25±3°C, and soil fertilization with formulations of 2,2,5%, 3,3,8% or 5,3,8% NPK. The size of populations on leaves treated with the fungusTrichoderma harzianum differed according to plant species, leaf age, length of incubation, atmospheric conditions, and plant nutrition.T. harzianum populations were promoted in many cases by high r.h. and by 3,3,8% NPK. Interactions of introduced populations ofBotrytis cinerea with populations ofT. harzianum on tomato leaves under combinations of the above conditions showed that the population ofB. cinerea wasca tenfold lower in the presence ofT. harzianum than in the absence of this fungus.  相似文献   

13.
人参灰霉病拮抗细菌的筛选及鉴定   总被引:1,自引:0,他引:1  
为获取对灰葡萄孢Botrytis cinerea Pers.ex Fr.防效优良的菌株,采用滤纸片法和牛津杯法从105株菌株中筛选出7株拮抗性良好的菌株,采用平板对峙法对抑菌效果较好的菌株SZ-35进行抑菌谱测定,采用盆栽法研究其对人参灰霉病的防效及在人参体内的定殖能力,并通过形态学、生理生化特征、16S rDNA及gyrB基因测序确立其分类地位。结果显示,菌株SZ-35对灰葡萄孢的抑制作用最强,抑菌率和抑菌带宽分别为86.53%和12.20 mm,且具有广谱抑菌能力;菌株SZ-35可有效定殖于人参体内,对人参灰霉病的防效达76.42%,显著高于70%代森锰锌可湿性粉剂;通过形态特征、生理生化特征观察,以及16S rDNA及gyrB同源性序列对比分析,鉴定菌株SZ-35为解淀粉芽胞杆菌Bacillus amyloliquefaciens(GenBank登录号为KC511113)。研究表明,解淀粉芽胞杆菌SZ-35对灰葡萄孢具有良好的抑菌能力,且在人参中的定殖能力较好。  相似文献   

14.
海洋生境贝莱斯芽孢杆菌TCS001的鉴定及抑真菌活性   总被引:1,自引:1,他引:0  
为研究海洋生境芽孢杆菌TCS001的分类地位和抑菌活性,通过形态和生理生化特征观察,并结合gyrA序列同源性分析对菌株进行了鉴定;通过平板对峙培养法测定了菌株TCS001对多种植物病原真菌的抑菌谱;采用菌丝生长速率法和凹玻片法,测定了不同浓度TCS001菌株发酵滤液对靶标菌黄瓜灰霉病菌Botrytis cinerea菌丝生长和孢子萌发的影响。结果显示:该菌株为贝莱斯芽孢杆菌Bacillus velezensis,其对6种供试病原菌均有一定的抑制效果,其中对黄瓜灰霉病菌的抑制率最高,达87.66%。不同稀释倍数下,TCS001发酵滤液对黄瓜灰霉病菌均有一定的抑制作用,其中,稀释5倍时对菌丝生长和孢子萌发的抑制率最高,分别为96.24%和98.05%,稀释20倍时抑制率也均达90%以上。形态学观察发现,TCS001发酵滤液可导致黄瓜灰霉病菌孢子萌发芽管中间或顶端膨大畸形。研究表明,海洋生境贝莱斯芽孢杆菌TCS001极具开发为微生物农药的潜能。  相似文献   

15.
A novel, high‐resolution melting (HRM) analysis was developed to detect single nucleotide polymorphisms (SNPs) associated with resistance to fenhexamid (hydroxyanilides) and boscalid (succinate dehydrogenase inhibitors) in Botrytis cinerea isolates. Thirty‐six single‐spore isolates arising from 13 phenotypes were selected and tested for fungicide sensitivity. Germ tube elongation assays showed two distinct sensitivity levels for each fungicide. Sequencing revealed that resistance to fenhexamid was due to a nucleotide change in the erg27 gene, resulting in an amino acid replacement of phenylalanine (F) with serine (S) or valine (V) at position 412 of the protein, whereas in isolates resistant to boscalid, a nucleotide change in the sdhB gene resulted in the replacement of histidine (H) with arginine (R) or tyrosine (Y) at position 272 of the respective protein. In each case, melting curve analysis generated three distinct profiles corresponding to the presence of each nucleotide in the targeted areas. HRM analysis successfully detected and differentiated the substitutions associated with resistance to both fungicides. In vitro bioassays, direct sequencing and high‐resolution melting analysis showed a 100% correlation with detection of resistance. The results demonstrate the utility of HRM analysis as a potential molecular tool for routine detection of fungicide resistance using known polymorphic genes of B. cinerea populations.  相似文献   

16.
Botrytis cinerea is a non-specific, necrotrophic pathogen that attacks many plant species, including Arabidopsis and tomato. Since senescing leaves are particularly susceptible to infection by B. cinerea, we hypothesized that the fungus might induce senescence as part of its mode of action and that delaying leaf senescence might reduce the severity of B. cinerea infections. To examine these hypotheses, we followed the expression of Arabidopsis SAG12, a senescence-specific gene, upon infection with B. cinerea. Expression of SAG12 is induced by B. cinerea infection, indicating that B. cinerea induces senescence. The promoter of SAG12, as well as that of a second Arabidopsis senescence-associated gene, SAG13, whose expression is not specific to senescence, were previously analyzed in tomato plants and were found to be expressed in a similar manner in the two species. These promoters were previously used in tomato plants to drive the expression of isopentenyl transferase (IPT) from Agrobacterium to suppress leaf senescence (Swartzberg et al. in Plant Biology 8:579–586, 2006). In this study, we examined the expression of these promoters following infection of tomato plants with B. cinerea. Both promoters exhibit high expression levels upon B. cinerea infection of non-senescing leaves of tomato plants, supporting our conclusion that B. cinerea induces senescence as part of its mode of action. In contrast to B. cinerea, Trichoderma harzianum T39, a saprophytic fungus that is used as a biocontrol agent against B. cinerea, induces expression of SAG13 only. Expression of IPT, under the control of the SAG12 and SAG13 promoters in response to infection with B. cinerea resulted in suppression of B. cinerea-induced disease symptoms, substantiating our prediction that delaying leaf senescence might reduce susceptibility to B. cinerea. Contribution from the Agriculture Research Organization, The Volcani Center, Bet Dagan, Israel, No. 127/2006 series.  相似文献   

17.
Botrytis cinerea causes gray mold disease and affects hundreds of plant species, including tomato (Lycopersicon esculentum). The wild nightshade, Solanum lycopersicoides, is cross compatible with tomato and is more resistant to B. cinerea, thus representing a potential source for crop improvement. Tests involving droplet inoculation of detached leaves and spray inoculation of entire seedlings demonstrated that resistance to B. cinerea varies among S. lycopersicoides accessions, with S. lycopersicoides LA2951 being the most resistant accession tested. Expression of resistance in the intergeneric hybrid (L. esculentum cv. 'VF36' × S. lycopersicoides LA2951) suggested that resistance is at least partially dominant in tomato. A green fluorescent protein-tagged B. cinerea strain was used for confocal microscopic comparison of infection in leaves of S. lycopersicoides and tomato. Even though S. lycopersicoides supported spore germination, there was evidence for hyphal lysis and death 3 days after inoculation, at a time when lesions were expanding on susceptible tomato plants. The reduced frequency of B. cinerea lesion spread on S. lycopersicoides explains why this fungus produced fewer spores in this wild nightshade than in tomato.  相似文献   

18.
Between 2003 and 2005, 337 isolates of Botrytis cinerea collected from greenhouse vegetables were characterized for resistance to fungicides. A low level of chlorothalonil resistance was detected and in these resistant isolates there was cross-resistance to captan and thiram. To the best of our knowledge, this is the first report of chlorothalonil resistance in B. cinerea from vegetables in China. The sub-population of B. cinerea highly resistant to benzimidazoles developed quickly during the years 2003 to 2005. Rapid spread of double resistance to benzimidazoles and diethofencarb was also observed. Resistance to dicarboximides was of low-level character and no highly resistant isolates were detected. In contrast, emergence of resistance to pyrimethanil, the only anilinopyrimidine fungicide used in China at present, was detected in 2003 just 3 years after pyrimethanil introduction. Pyrimethanil-resistant isolates demonstrated fitness comparable with that of wild sensitive isolates. These results suggest that pyrimethanil has a high risk of leading to resistance development in B. cinerea in greenhouse vegetables.  相似文献   

19.
The horizontal and vertical distribution of airborne conidia ofBotrytis cinerea in a gerbera crop in two glasshouses (100 m2 and 350 m2) was studied during 18 months in 1988 and 1989. Conidia ofB. cinerea were caught in simple spore traps consisting of agar in Petri dishes placed in a regular pattern at three different heights in the glasshouse and counted as colonies, after incubation. Lesions due to conidial infection were counted on gerbera petals. The horizontal and vertical distribution of conidia ofB. cinerea in a gerbera crop grown under glass was fairly uniform in both distinct glass-houses. Conidia ofB. cinerea trapped in a glasshouse can originate from sources inside and outside the glasshouse. No significant interaction was found between location and time for the colony counts and for the log transformed (ln(N+1)) lesion counts. The results of this study suggest that spore trapping at one height and at a limited number of locations and dates is sufficient for efficient monitoring ofB. cinerea in a glasshouse.  相似文献   

20.
The epidemiology of Botrytis cinerea was studied in five annual strawberry crops using waiting-bed transplants, a system widely adopted in the Netherlands. On dead leaves of transplants the incidence of B. cinerea varied from 26.7% to 52.6%, but the leaf area with potential sporulation was low (3.5–15.6%). During each crop cycle, the availability of necrotic leaf substrate for spore production of B. cinerea was generally low and varied between seasons and with the quality of transplants. B. cinerea sporulated on a maximum of 15.5 cm2 of leaf area per plant, measured as potential sporulation. The aerial concentration of B. cinerea conidia in untreated plots did not differ from the concentration in plots where all dead leaves had been removed, nor from the concentration at 25–50 m distance from the strawberry plots. B. cinerea incidence on flowers ranged from 5% to 96%, but no correlation was found with the potential spore production on necrotic leaves. Grey mould at harvest varied from 1.4% to 11.3% and was correlated with the average precipitation during the harvesting period but not with B. cinerea incidence on flowers. Post-harvest grey mould ranged from 2.1% to 32.6% and was correlated with petal colonisation by B. cinerea. The results suggest that in the annual cropping system with waiting-bed transplants, necrotic leaves are not a significant source of B. cinerea inoculum, unlike in other strawberry production systems. Therefore, control measures of grey mould in this annual system should focus on protection of flowers and young developing fruits, and not on the reduction of inoculum production on leaf debris.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号