首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
  1. Global trade in non-native ornamental species coupled with high connectivity among countries is well known to result in worldwide biological invasions, which pose challenges for the conservation and management of biodiversity.
  2. There are few studies aimed at implementing management strategies that have examined differences in the potential invasiveness of non-native species between neighbouring political regions within the same ecoregion.
  3. To compare the potential risk of invasiveness of non-native ornamental fishes with high commercial value in the river basins of two neighbouring regions of East and Southeast Asia, 32 extant and horizon species were screened with the aquatic species invasiveness screening kit (as-isk ) for the lower Pearl River basin (South China) and the Chao Phraya River basin (Thailand). Both regional (i.e. basin level) and combined risk-ranking thresholds were determined by receiver operating characteristic curve analysis.
  4. Of the 32 species screened, 14 were categorized as posing a high risk and seven were categorized as posing a medium risk of being invasive in both regions, under current and future climate conditions. These species have a history of invasiveness and the climate of their native ranges is similar to that of the two study regions. Pterygoplichthys pardalis received the highest risk score in both regions. The risk ranks of 11 species differed between the two regions, based on either the combined or regional thresholds, and this was partly related to the different risk of invasiveness between the two regions, coupled with cognitive subjectivity among the assessors.
  5. The results of the present study suggest that the invasion of non-native ornamental fish species could pose similar threats to biodiversity in neighbouring regions. This will serve to inform policy makers of neighbouring countries in the development of coordinated, mutually beneficial regulations and management strategies to enhance the conservation of native species.
  相似文献   

2.
Biological invasions are a major driver of global environmental change as invasive non-native species can exert severe environmental impacts on invaded ecosystems. Estuaries are especially vulnerable to biological invasions, which in highly urbanised areas are further facilitated by introduction pathways linked to commercial activities. This study provides a risk screening of non-native invasive species for the highly urbanised River Neretva Estuary (Eastern Adriatic Sea: Croatia and Bosnia–Herzegovina). In total, 12 species of non-native aquatic organisms were identified and screened for their invasiveness with the Aquatic Species Invasiveness Screening Kit. Of these species, eight were classified as carrying a high risk of invasiveness under current climate conditions and nine under future climate conditions. Amongst the high-risk species, blue crab Callinectes sapidus has already caused impacts in the risk assessment area, where it also represents an important economic resource. The “horizon” species Pacific oyster Crassostrea gigas and Manila clam Ruditapes philippinarum also carried a high risk of invasiveness, which for the latter species applied under predicted global warming. The present findings will contribute towards preventative management and control measures for the conservation of the natural ecosystem of the River Neretva Estuary whilst accounting for aquatic farming demands.  相似文献   

3.
The Fish Invasiveness Screening Kit (FISK) version 2 was used to assess the invasiveness potential of 40 introduced and translocated freshwater fish species to Croatia and Slovenia. Based on a priori classification of invasiveness, receiver operating characteristic analysis of FISK scores from two independent assessors resulted in a statistically significant calibration threshold of 11.75. This indicated that FISK was able to discriminate reliably between non‐native species likely to pose a high risk of being invasive and those likely to pose a medium or low risk of invasiveness. Seven species were categorised as ‘medium risk’ and the other 33 as ‘high risk’, whereas no species was categorised as ‘low risk’. The two highest scoring species were European catfish Silurus glanis and North African catfish Clarias gariepinus. Mean scores for all species classified a priori as invasive were ranked as ‘high risk’ sensu lato and fell into the ‘moderately high risk’ subcategory. FISK proved to be a valid tool for assessing the risks posed by non‐native fishes in Croatia and Slovenia. For this reason, it can be adopted as a reliable tool for the prevention of new translocations or introductions of potentially invasive species in the risk assessment area, as well as to assist in decisions regarding future management (i.e. monitoring, control and eradication) and conservation strategies.  相似文献   

4.
We investigated whether isotopic niche partitioning could mediate the coexistence between native (Hoplias sp. B) and non-native (Hoplias mbigua) trahira in a Neotropical floodplain. We hypothesised that during the dry season both species inhabit isolated sites (i.e. lakes) and thus rely on distinct food resources to sustain their coexistence. We found evidence of trophic segregation among native and non-native freshwater fish in the Upper Paraná River, Brazil. Even though both species rely on the same primary littoral carbon sources and present similar trophic diversity, trophic segregation was attained through larger niche amplitude and smaller isotopic niche width for the non-native fish. Three decades after initial invasion, non-native Hoplias have distinct foraging behaviour and do not compete for trophic resources with native trahira; this is likely due to morpho-anatomical differences. Limited morphological similarity between these congeneric species might be the strongest factor contributing to their coexistence in the Paraná River floodplain during the dry season.  相似文献   

5.
A popular species for food and sport, the European catfish (Silurus glanis) is well‐studied in its native range, but little studied in its introduced range. Silurus glanis is the largest‐bodied freshwater fish of Europe and is historically known to take a wide range of food items including human remains. As a result of its piscivorous diet, S. glanis is assumed to be an invasive fish species presenting a risk to native species and ecosystems. To assess the potential risks of S. glanis introductions, published and ‘grey’ literature on the species’ environmental biology (but not aquaculture) was extensively reviewed. Silurus glanis appears well adapted to, and sufficiently robust for, translocation and introduction outside its native range. A nest‐guarding species, S. glanis is long‐lived, rather sedentary and produces relatively fewer eggs per body mass than many fish species. It appears to establish relatively easily, although more so in warmer (i.e. Mediterranean) than in northern countries (e.g. Belgium, UK). Telemetry data suggest that dispersal is linked to flooding/spates and human translation of the species. Potential impacts in its introduced European range include disease transmission, hybridization (in Greece with native endemic Aristotle’s catfish [Silurus aristotelis]), predation on native species and possibly the modification of food web structure in some regions. However, S. glanis has also been reported (France, Spain, Turkmenistan) to prey intensively on other non‐native species and in its native Germany to be a poor biomanipulation tool for top‐down predation of zooplanktivorous fishes. As such, S. glanis is unlikely to exert trophic pressure on native fishes except in circumstances where other human impacts are already in force. In summary, virtually all aspects of the environmental biology of introduced S. glanis require further study to determine the potential risks of its introduction to novel environments.  相似文献   

6.
7.
Abstract –  We investigated somatic condition, growth rate, diet and food resources of the native (lower Danube) and non-native (upper Danube) populations of invasive bighead goby Neogobius kessleri and round goby N. melanostomus within the Danube River to answer the question whether prey availability and type may have facilitated successful goby invasion to the upper Danube. The non-native populations of both species were in better somatic condition and grew faster. The biomass of nonmollusc macrozoobenthos, dominated by Amphipoda, was markedly higher in the non-native range while molluscs were recorded frequently in both the native and non-native ranges. Amphipods were far the most consumed prey by non-native fish, whereas native fish combined two main prey types – amphipods and fish (bighead goby) and amphipods and bivalves (round goby). A laboratory experiment was conducted to reveal whether the low consumption of bivalves by the round goby in the non-native range reflects prey encounter rates or alternatively prey selectivity. When bivalves and amphipods were offered simultaneously in excess to the experimental fish, round goby showed strong preference towards amphipods. Molluscs are hypothesised to be an alternative rather than the most preferred prey for the round goby. Rich food resources utilised by the non-native bighead and round goby contribute to their invasive success in the upper Danube.  相似文献   

8.
Introduced fishes can develop invasive populations that impact native species and ecosystems. Understanding the population ecology of introduced species in their extended ranges and how this compares to their native ranges is therefore important for informing their management. Here, the age and somatic growth rates of the piscivorous freshwater fish pikeperch Sander lucioperca were analysed across their invasive and native ranges to determine their spatial patterns and drivers. Analyses were initially completed in their invaded range in central and western England. Populations varied spatially in their growth rates; being slowest for a population in a narrow and shallow canal and fastest in a large, impounded lowland river. A meta‐analysis of parameters of the von Bertalanffy growth model then revealed that across their native and invasive ranges, their theoretical ultimate lengths (L) and growth coefficients (K) were significantly related to latitude, but not longitude. Their relationships with latitude were nonlinear, with higher values of L and lower values of K being evident towards their northerly and southerly range limits. Faster growth rates were evident in the middle of their range (45 to 55°N), suggesting temperatures here were most optimal for growth, but were in a trade‐off with reduced ultimate lengths. These spatial patterns suggest that whilst introduced S. lucioperca can colonise new waters across a wide area, the expression of their life‐history traits will vary spatially, with potential implications for how invasive populations establish and integrate into native fish communities.  相似文献   

9.
10.
为揭示麦穗鱼入侵云南后群体的遗传多样性和遗传分化差异现状,实验采集了云南澜沧江、怒江、红河、伊洛瓦底江水系13个样点,及黄河、长江、珠江原产地水系6个样点的麦穗鱼群体共计220尾样本,利用线粒体细胞色素b基因(Cyt b)全序列作为分子标记,初步分析了麦穗鱼群体的遗传多样性、遗传结构和遗传分化情况。结果显示,共检测到72个变异位点,定义25个Cyt b单倍型。云南四大水系麦穗鱼单倍型多样性和核苷酸多样性分别为0.828±0.014和0.005 44±0.001 18。云南四大水系和黄河、长江、珠江水系相比,具有较高的遗传多样性。单倍型系统发育树与单倍型网络图显示,黄河群体单倍型独立,云南各水系单倍型与珠江、长江单倍型混杂,推测云南麦穗鱼主要来源于珠江和长江,这与云南省引种经济鱼类历史一致。分子变异分析(AMOVA)显示,云南四大水系麦穗鱼群体间具有程度较高的遗传分化,其中大多数遗传变异存在于群体内(72.60%),群体间的遗传变异为28.62%,水系间为1.22%。结果发现麦穗鱼遗传分化与当前水系的分布格局不吻合。Fu’s Fs中性检验结果和核苷酸不配对分析结果均表明,云南四大水系麦穗鱼群体未发生扩张。麦穗鱼进入云南各水系后,单倍型多样性较高,可能来源于多个地区。在后续对麦穗鱼的管理过程中,需要注意避免单倍型特殊的群体与其他地区群体的交流,减少水系间相互引种。此外,通过开发麦穗鱼资源利用方式来提高麦穗鱼利用率,以控制其群体数量,从而减小其对当地土著物种和渔业养殖的危害。  相似文献   

11.
12.
Trout and charr, members of the salmonid family, have high conservation value but are also susceptible to anthropogenic threats in part due to the specificity of their habitat requirements. Understanding historical and future threats facing these species is necessary to promote their recovery. Of freshwater trout and charr in the Canadian Rocky Mountain region, westslope cutthroat trout (Oncorhynchus clarkii lewisi), bull trout (Salvelinus confluentus; a charr species) and Athabasca rainbow trout (Oncorhynchus mykiss) are of conservation concern. And indeed, range contractions and declining populations are evident throughout much of their ranges. Range contraction was most evident in the southern Alberta designatable unit (DU) of westslope cutthroat trout. Diminished populations were also evident in the downstream watersheds of the Alberta bull trout range, and throughout the Athabasca rainbow trout range. We assessed historical and future threats to evaluate the relative importance of individual threats to each DU and compare their impact among species. Individual threats fall into the broad categories of angling, non-native species and genes, habitat loss and alteration, and climate change. Severity of each threat varies by DU and reflects the interaction between species’ biology and the location of the DU. Severity of threats facing each DU has changed over time, reflecting extirpation of native populations, changes in management and industry best practices, expansion of non-native species and progressing climate change. The overall threat impact for each DU indicates a high probability of substantial and continuing declines and calls for immediate action.  相似文献   

13.
  1. The Yaqui catfish, Ictalurus pricei, is the only native ictalurid species described from north-west México and south-west USA. It is an endangered species owing to the decline and loss of most of its historical populations, mainly because of competition and hybridization with the non-native channel catfish, Ictalurus punctatus. The Arroyo Cajón Bonito is one of the few remnant populations of Yaqui catfish in the Yaqui River basin, and it is threatened by the presence of channel catfish that escaped from private culture facilities.
  2. Phylogenetic analysis of two mitochondrial and two nuclear genes was used to detect evidence of hybridization with channel catfish in a collection of 20 catfish from Arroyo Cajón Bonito. Fourteen putatively pure Yaqui catfishes, five hybrids and one channel catfish were detected.
  3. This study further highlights hybridization between channel and Yaqui catfish as the main threat to the remaining Yaqui catfish populations. We recommend urgent evaluation of the remnant populations of native catfish elsewhere and their current conservation status.
  相似文献   

14.
15.
  1. The mahseer (Tor spp.) fishes of South and Southeast Asia are iconic megafaunal species that are highly valued by recreational anglers. Knowledge on their populations is limited owing to the challenges associated with sampling these large‐bodied fishes (>50 kg) in remote monsoonal rivers.
  2. Despite its global iconic status among recreational anglers, the hump‐backed mahseer of the Cauvery River (South India) lacked a valid scientific name and was on a trajectory towards extinction until its rapidly declining population status was established by analyses of angler catch records.
  3. Angling records from 1998 to 2012 showed that mahseer catch rates had increased in this period. The resulting publication in Aquatic Conservation (AQC) highlighted the positive role of catch‐and‐release angling in providing information on data‐poor species. However, further analyses showed that these catches comprised not one but two distinct phenotypes.
  4. Before 1993, all mahseer captured were hump‐backed; since then, a blue‐fin phenotype appeared in catches and subsequently dominated them. These results triggered further studies indicating that the hump‐backed mahseer was the endemic Tor remadevii and that the blue‐fin was the invasive Tor khudree, introduced in 1976 and then stocked periodically from hatcheries.
  5. The initial AQC publication successfully demonstrated the high value of organized angling as a monitoring tool for data‐poor fishes and its application to assessing the temporal population patterns of large‐bodied fishes in monsoonal rivers. It was also the catalyst for initiating subsequent studies on T. remadevii that, together, enabled its recent assessment as ‘Critically Endangered’ on the International Union for Conservation of Nature (IUCN) Red List. In the absence of the AQC paper, and the subsequent studies that it triggered, it is highly probable that the species would have remained on a trajectory towards rapid extinction. Instead, the first major steps to safeguarding its future have been taken.
  相似文献   

16.
Abstract  Salmonid fishways have been used in many countries for non-salmonid fishes, including Australia, but generally with poor results. Trapping the entrance and exit of a 1:9 gradient salmonid fishway on the Murray River confirmed very poor passage of native fish, with <1% of the most abundant species ascending. Fifty years of fish passage monitoring showed the numbers of three native species declining by 95–100% and non-native fish becoming dominant. Fishways are now being designed for native fish and being quantitatively assessed, but daily flow management also needs to be addressed. The ecological model for passage of potamodromous fishes has changed from passing adults of a few species to one that incorporates the whole fish community, specifically: immature fish of large-bodied species that dominate numbers migrating upstream; a diverse range of movement strategies; and small-bodied species, crustaceans and low numbers of less-mobile species.  相似文献   

17.
  • 1. Arizona's native fish species are among the most imperilled fauna in North America. Knowing the current distribution of native fish and their habitat is critical to their management and conservation, but the last detailed mapping effort was more than 30 years ago and pre‐dated computer mapping techniques.
  • 2. Current distribution of 34 native fish species was modelled by identifying perennial stream segments for which species presence had been documented. A composite of these single‐species maps displays a pattern of species richness that can inform conservation, especially when overlaid with maps of management status or invasive species.
  • 3. The map overlays suggest that conservation priorities should include Eagle Creek, the Verde River and its tributaries, Aravaipa Canyon, the Virgin River and Black Draw, which together hold 63% of native fish species. Of the 32 streams that support five or more native species, 28 have at least one non‐native fish species, indicating that a more aggressive programme of removing non‐natives may be critical to maintaining those native populations.
  • 4. The U.S. Forest Service and Native American tribes administer the majority of occupied stream habitat (30% and 27%, respectively). While private lands hold the third‐highest amount of occupied habitat (19%), they control streams occupied by the greatest total number of native species (30). Conservationists should work more with private land owners, while also coordinating efforts with the U.S. Forest Service and North American tribes.
  • 5. These data are publicly available (on the Internet, URL: www.azconservation.org ) to encourage refinement and use.
Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
19.
  1. Commodity-driven forest conversion represents one of the most severe threats to freshwater biodiversity in Southeast Asia, notably causing population declines and the extinction of freshwater fish species.
  2. Although a variety of freshwater taxa are likely to be adversely affected by forest conversion, little is known about the impact on ecologically and economically important invertebrates such as decapod crustaceans.
  3. This study evaluated the impact of forest conversion and land-use change on freshwater Macrobrachium shrimp species, using species richness, abundance, and environmental data collected from 20 streams across southern Peninsular Malaysia. Streams were located in three types of landscape: forest; oil palm plantation; and mixed land use, comprising young secondary forest, small-scale plantations, patches of open and sparsely vegetated areas, and agricultural fields and clearings.
  4. Generalized linear models showed that even incomplete change from forest habitats to mixed land use and oil palm plantation resulted in significantly lower Macrobrachium native species richness and higher non-native species abundance. Native species richness was positively correlated with canopy cover, leaf litter, substrate size, and dissolved oxygen, and was negatively correlated with water temperature and conductivity. Native species richness was also negatively correlated with non-native species abundance, with non-native species abundance increasing along the human disturbance gradient.
  5. These results highlight the need for riparian habitat protection to conserve native Macrobrachium and limit the spread of non-native species. A management priority should be to maintain or restore optimum instream habitat conditions for shrimps, which would also benefit fish and other benthic macroinvertebrates. Suitable riparian management requires substantial support and funding from multiple stakeholders, but it can be aligned with other catchment-based strategies to optimize the use of limited resources available for freshwater biodiversity conservation.
  相似文献   

20.
Tributaries of the Colorado River Basin, historically home to a complex of endemic omnivores collectively referred to as the ‘three species’; flannelmouth sucker (Catostomus latipinnis), bluehead sucker (C. discobolus) and roundtail chub (Gila robusta), have experienced the establishment of numerous non‐native fish species. In this study, we examine the impacts of the trophic ecology of non‐native fishes on the ‘three species’ in the San Rafael River, Utah, USA. We employ a suite of abundance comparisons, stable isotope techniques and size‐at‐age back‐calculation analyses to compare food web structure and growth rates of the ‘three species’ in study areas with and without established populations of non‐native species. We found that the ‘three species’ are more abundant in areas with few non‐native fishes present, regardless of habitat complexity. Stable isotope analyses indicate non‐native fishes lengthen the food chain by 0.5 trophic positions. Further, the trophic niche spaces of the native fishes shift and are narrower in the presence of non‐native fishes, as several non‐native species’ trophic niche spaces overlap almost entirely with each of the ‘three species’ (bluehead sucker and flannelmouth sucker 100%, roundtail chub 98.5%) indicating strong potential for competition. However, the ‘three species’ demonstrated no evidence of reduced growth in the presence of these non‐native fishes. Collectively, these results suggest that while non‐native fishes alter the food web structure presenting novel sources of predation and competition, mechanisms other than competition are controlling the size‐structure of ‘three species’ populations in the San Rafael River.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号