首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the study was to evaluate the spatial variability pattern of some soil quality parameters at landscape‐scale, particularly soil microbial biomass‐C (Cmic) and ‐N (Nmic), and soil microbial activity (respiration) as well as soil organic carbon (Corg), and hot water extractable carbon (Chwe) by multivariate analyses of variance and canonical discriminant analyses (CDA). The study area was the Trier region, Rhineland‐Palatinate, which is characterized by a wide range of soil types developed from various parent materials. Additionally, the investigated fields differed in soil management intensity (conventional, integrated, organic farming) and crops grown. Within the whole study area CDA revealed a separation into three sub‐areas. Within the sub‐areas the soil quality parameters were significantly influenced by the soil management systems and the crops grown. Despite the spatial variability and the relationship to soil management, the contents of Cmic could be predicted by stepwise multiple linear regression models, both for arable and grassland soils. The explained variance for the regression models were 72 % for arable soils and 63 % for grassland soils, respectively. Regression models for predicting Nmic and microbial activity revealed an explained variance between 30 and 58 %.  相似文献   

2.
    
Within the Mediterranean basin, soil tillage enhances the mineralisation of soil organic matter. We assessed the short‐term impact of shallow tillage [field cultivator (FC), rotary tiller (RT) and spading machine (SM)] on some soil quality indicators [bulk density, water‐stable aggregates, total and labile organic C pools (microbial biomass and extractable organic C), soil respiration and related eco‐physiological indexes] in a Sicilian vineyard. Also no tillage was included. We hypothesized that (i) RT and FC worsened soil quality indicators more than SM, and (ii) within the same tillage system, labile C pools, soil respiration and eco‐physiological indexes will respond more efficiently than chemical and physical soil properties since the tillage starts. The experiment started at March 2009, and each tillage type was applied three times per year (March or April, May and June), with soil tilled up to 15‐cm depth. Soil was sampled (0–15 and 15–30‐cm depth) in March 2009, April 2010, May 2012 and June 2014. SM was very effective in preserving soil organic matter pool and in improving any monitored soil quality indicator, similarly to no tillage. By contrast, RT was the most deleterious machine as it worsened most investigated indicators. Such deleterious effects were due to drastic disruption of soil aggregates and consequent exposition of protected soil organic matter to further microbial mineralization. Labile organic C pools and microbial quotients were the most responsive soil parameters for assessing the impact of shallow tillage on soil quality, even in the short term (<5 years). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
To show the vegetation succession interaction with soil properties, microbial biomass, basal respiration, and enzyme activities in different soil layers (0--60 cm) were determined in six lands, i.e., 2-, 7-, 11-, 20-, 43-year-old abandoned lands and one native grassland, in a semiarid hilly area of the Loess Plateau. The results indicated that the successional time and soil depths affected soil microbiological parameters significantly. In 20-cm soil layer, microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), MBC/MBN, MBC to soil organic carbon ratio (MBC/SOC), and soil basal respiration tended to increase with successional stages but decrease with soil depths. In contrast, metabolic quotient (qCO2) tended to decrease with successional stages but increase with soil depths. In addition, the activities of urease, catalase, neutral phosphatase, β-fructofuranosidase, and carboxymethyl cellulose (CMC) enzyme increased with successional stages and soil depths. They were significantly positively correlated with microbial biomass and SOC (P < 0.05), whereas no obvious trend was observed for the polyphenoloxidase activity. The results indicated that natural vegetation succession could improve soil quality and promote ecosystem restoration, but it needed a long time under local climate conditions.  相似文献   

4.
    
Most important, yet least understood, question, how microbial activity in soil under saline water irrigation responds to carbon (C) varying qualitatively (most labile form to extreme recalcitrant form) with or without maintaining C/N ratio was investigated in an incubation experiment. Soil samples from a long-term saline-water (electrical conductivity, EC ≈ 0, 6, and 12 dS m?1)- irrigated field were incorporated with three different C substrates, viz., glucose, rice straw (RS), and biochar with or without nitrogen (N as ammonium sulfate, NH4SO4) and were incubated at 25 °C for 56 days. Cumulative respiration (CR), microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and dehydrogenase activity (DEA) concentrations decreased with increasing EC (P < 0.05), but less so in soils amended with glucose followed by RS and biochar. The addition of N to soils amended with different C substrates significantly decreased CR, MBC, DEA, and available phosphorus (P) concentrations at a given EC level.  相似文献   

5.
    
This study analyses soil organic carbon (SOC) and hot‐water extractable carbon, both measures of soil quality, under different land management—(i) conventional tillage (CT); (ii) CT plus the addition of oil mill waste alperujo (A); (iii) CT plus the addition of oil mill waste olive leaves (L); (iv) no tillage with chipped pruned branches (NT1); and (v) no tillage with chipped pruned branches and weeds (NT2)—in a typical Mediterranean agricultural area: the olive groves of Andalusia, southern Spain. SOC values in CT, A, NT1 and NT2 decreased with depth, but in NT2, the surface horizon (0–5 cm) had higher values than the other treatments, 47% more than the average values in the other three soils. In L, SOC also decreased with depth, although there was an increase of 88·5% from the first (0–10 cm) to the second horizon (10–16 cm). Total SOC stock values were very similar under A (101·9 Mg ha−1), CT (101·7 Mg ha−1), NT1 (105·8 Mg ha−1) and NT2 (111·3 Mg ha−1, if we consider the same depth of the others). However, SOC under L was significantly higher (p < 0·05) at 250·2 Mg ha−1. Hot‐water extractable carbon decreased with depth in A, CT and NT1. NT2 and L followed the same pattern as the other management types but with a higher value in the surface horizon (2·3 and 4·9 mg g−1, respectively). Overall, our results indicate that application of oil mill waste olive leaves under CT (L) is a good management practice to improve SOC and reduce waste. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Abstract

Soils from the A, B, and C horizons representing three natural drainage classes and differing textures were chosen to study relationships between denitrification rate and estimates of available carbon. The highest correlation with denitrification rate was obtained with total organic C. Water‐extractable C, mineralizable C and 0.1 N Ba(OH)2‐extractable C produced less satisfactory correlations. When soils of the B and C horizons only were included in the regression analysis, 0.1 N Ba(OH)2‐extractable C was found to be unsatisfactory as a predictor of available C for soil denitrifiers. None of the four methods for estimating available C were found adequate for B and C horizon soils which were relatively low in available C. Coarser‐textured soils with relatively low C levels had correspondingly low denitrification rates. Regressions of denitrification rate on mineralizable C or water‐extractable C were nonsignificant with poorly drained soils whereas they were highly significant with well or imperfectly drained soils.  相似文献   

7.
    
Lupin (Lupinus angustifolius L.) and pea (Pisum sativum L.) differ substantially in their root growth at pH≥6. The mechanisms underlying such a variation are not fully understood. The H+ buffering capacity of isolated cell wall and calcium binding property of intact roots of these two species were compared under various experimental conditions. The shape of the H+/OH titration curves of cell wall for lupin and pea showed no major discrepancy except with differed magnitudes. There appeared to be two H+‐titratable groups in root cell wall of both species—below pH 6 and above 8. The wall H+ buffering capacity of pea roots was lower at pH 4–5, but was greater at pH above 5.5 than that of lupin roots. The fractionation of apoplastic calcium demonstrated that the proportion of easily exchangeable Ca2+ was greater while that of tightly bound Ca2+ was smaller in pea roots than in lupin roots. In addition, Ca2+ in cell wall was more easily exchanged by H+ in pea than in lupin roots. The results suggest that the different sensitivity in root growth at pH≥6 of lupin and pea is related to the difference in H+ buffering and Ca2+ exchange capacities in the root apoplast of these species, and that the greater sensitivity of lupin roots to pH≥6 is partly due to a higher threshold of H+ concentration required for cell wall loosening.  相似文献   

8.
有机物料对红壤团聚体稳定性的影响   总被引:4,自引:2,他引:4  
试验设置了对照(CK)、秸秆混匀(M-Str)、秸秆覆盖(Str)、生物质炭混匀(BC)和猪粪混匀(SM)5个处理,采用室内培养法研究有机物料种类与施用方式对红壤团聚体稳定性的影响。结果表明,秸秆混匀与猪粪处理下土壤有机碳(SOC)、热水溶性有机碳(HWC)、土壤抗破碎性和团聚体水稳定性(MWD)显著提高(p0.05),而秸秆覆盖对土壤有机碳和土壤团聚体形成的提升作用不明显(p0.05)。相对于对照处理,生物质炭提高了土壤有机碳含量,但对团聚体稳定性的影响不显著(p0.05)。秸秆混匀和猪粪处理下团聚体稳定性的变化与土壤累积呼吸之间存在线性关系(p0.05)。可见,有机物的性质(秸秆、猪粪和生物质炭)与还田方式(混匀和覆盖)对红壤团聚体的稳定性存在显著差异。  相似文献   

9.
Abstract

Biochar application to soils can mitigate carbon dioxide (CO2) by increasing soil carbon (C) sink, but also causes increased CO2 released from soils through priming effects of soil organic carbon (SOC). However, priming effects of biochar application on SOC are complex, showing inconsistent results, and further complicated when applied with other substrates such as organic amendment (OA). Incubation experiments were conducted using Typic Durudand with bamboo (Phyllostanchys edulis Carrière) biochar (400°C) and OA (crotalaria) applied individually, simultaneously or with biochar applied 5 weeks prior to OA application. After 56 d of incubation, cumulative CO2 released from soils with no amendments (control), biochar only (BC), OA only (OA), simultaneous (BC+OA), and differently timed (BCP+OA) applications reached 313, 326, 1270, 1535 and 1311 mg CO2 kg?1, respectively. The OA application distinctly increased CO2 released from the soils due to its decomposition. The OA decomposition rates were comparable with OA and BC+OA, while those with BCP+OA were lower than those with other treatments during early incubation. Net CO2 (CO2-(treatment) ? CO2-control) from soils with BC, OA, BC+OA and BCP+OA yielded 13, 957, 1222 and 998 mg CO2 kg?1, respectively. Primed CO2-BC of 13 mg CO2 kg?1 was equivalent to 4.2% of priming effect relative to CO2-control. Primed CO2-BC+OA [net CO2-BC+OA ? (net CO2-BC + net CO2-OA)] and primed CO2-BCP+OA were 252 and 28 mg CO2 kg?1, equivalent to 26% and 2.9% of priming effects relative to sum of net CO2-BC + net CO2-OA, respectively. The priming effect with BC was negligible likely because of limited amounts of biochar labile C to induce co-metabolism, while BC+OA showed a modest priming effect most likely as a result of co-metabolism induced by additional mineralization of presumably SOC and/or biochar, because the OA decomposition rates were not affected by biochar application. The priming effect with BCP+OA was comparable to that with BC likely due to changes in soil properties caused by biochar application prior to OA, likely from slowed decomposition rates of OA.  相似文献   

10.
Abstract

Pressurized hot water and DTPA‐Sorbitol are two relatively new, proposed alternative soil boron (B) extraction methods for which no data on yield or plant nutrient uptake have been reported for validation. Both methods initially have shown significant correlation with the hot water extraction method in untreated soils as well as soils incubated with various levels of B. The objective of the research was to extract samples of B‐treated soils by using all three extraction methods and correlate the B values obtained to yield, B tissue concentration, and total B removal of alfalfa (Medicago sativa). Greenhouse and field experiments on alkaline and limed acid soils naturally low in hot water‐extractable B were conducted to test alfalfa response to B fertilizer. In the greenhouse, highly significant relationships exist between plant uptake and extractable B with all three methods at varying levels of applied B, but no alfalfa yield response was observed. All three methods result in accurate predictions of plant B tissue concentrations and total B removal. The field experiment exhibited a significant positive relationship between total alfalfa yield and extractable B using hot water and pressurized hot water extractions. Extractable B using DTPA‐Sorbitol was not related to total alfalfa yield in the field experiment. This work, coupled with the earlier incubation studies, supports the pressurized hot water extraction method as an improvement over hot water in diverse soil types. The lack of relationship in the acid soil supports DTPA‐Sorbitol as an improvement over hot water in alkaline soils.  相似文献   

11.
免耕和秸秆还田对潮土酶活性及微生物量碳氮的影响   总被引:9,自引:0,他引:9  
利用中国科学院封丘农业生态实验站玉米-小麦轮作保护性耕作定位试验平台,研究了全翻耕((T)、免耕((NT)、全翻耕+秸秆还田((TS)以及免耕+秸秆还田((NTS)处理分别对田间0 ~ 10、10 ~ 20和20 ~ 30 cm土层酶活性及土壤微生物量碳、氮的影响。结果表明:①在0 ~ 10和10 ~ 20 cm土层内,土壤碱性磷酸酶、转化酶、脲酶、脱氢酶活性为免耕处理大于全翻耕处理,有秸秆还田处理大于无秸秆还田处理,以NTS处理最高,T处理最低;在20 ~ 30 cm土层中,土壤碱性磷酸酶、转化酶、脱氢酶活性免耕处理大于全翻耕处理,土壤碱性磷酸酶、转化酶、脲酶活性有秸秆还田处理大于无秸秆还田处理。②在0 ~10和10 ~ 20 cm土层内,土壤微生物量碳、氮均为免耕处理大于全翻耕处理,有秸秆还田处理大于无秸秆还田处理;在20 ~ 30 cm土层中,微生物量碳以NTS处理最高,微生物量氮以TS处理最高;③4种处理下的土壤酶活性和微生物量碳、氮均随着土层的加深而减少,且在各土层中差异达显著水平。  相似文献   

12.
Yield‐response correlations with old and improved soil extraction methods for boron (B) are needed. Russet Burbank potato (Solanum tuberosum L.) was grown with two, four, and six B treatments applied in 2004, 2005, and 2006, respectively. Zero and 1.1, 2.2, or 3.4 kg B ha?1 soil and 0.22 or 0.28 kg B ha?1 foliar treatments were applied. Boron fertilization did not significantly increase tuber yield or quality despite initially low hot‐water‐extractable B (0.34–0.50 mg kg?1), although postseason B for unfertilized treatments increased (0.51–0.57 mg kg?1). Soil‐applied B generally reflected B application relative to the untreated control and the low foliar rates in all three years for the four soil extractions utilized [hot water, pressurized hot water, diethylenetriaminepentaacetic acid (DTPA)–sorbitol, and Mehlich III]. Boron content of potato petiole did reflect application of B in 2 years, but tuber and peel tissues did not consistently reflect application of B.  相似文献   

13.
Different management practices in six agroecosystems located near Goldsboro, NC, USA were conducted including a successional field (SU), a plantation woodlot (WO), an integrated cropping system with animals (IN), an organic farming system (OR), and two cash-grain cropping systems employing; either tillage (CT) or no-tillage (NT) to examine if and how microbial biomass and activity differ in response to alterations in disturbance intensity from six land management strategies. Results showed that soil microbial biomass and activity differed, with microbial activity in intermediately disturbed ecosystems (NT, OR, IN) being significantly higher (P < 0.01) than systems with either high or low disturbance intensities. There was also a significant and a highly significant ecosystem effect from the treatments on microbial biomass C (MBC) (P < 0.05) and on microbial activity (respiration) (P < 0.01), respectively. Multiple comparisons of mean respiration rates distinctly separated the six ecosystem types into three groups: CT < NT, SU and WO < OR and IN. Thus, for detecting microbial response to disturbance changes these results indicated that the active component of the soil microbial community was a better indicator than total biomass.  相似文献   

14.
连年翻压绿肥对植烟土壤微生物量及酶活性的影响   总被引:14,自引:1,他引:14       下载免费PDF全文
通过3年田间定位试验,研究连年翻压绿肥对植烟土壤微生物量碳、氮及酶活性的影响。结果表明,连年翻压绿肥能提高土壤微生物量碳、氮及土壤脲酶、酸性磷酸酶、蔗糖酶、过氧化氢酶的活性,且随翻压年限的增加而增加。整个生育期,翻压3年绿肥的处理与对照相比微生物量碳、氮分别提高31.0%~67.1%、23.0%~145.1%;土壤脲酶、酸性磷酸酶、蔗糖酶、过氧化氢酶活性分别提高34.4%~51.9%、11.0%~18.6%、58.0%~172.7%、24.0%~50.0%,表明翻压绿肥后土壤生物过程活跃,利于有机物质的转化和烤烟正常生长所需的营养供应。动态变化特征表明,翻压绿肥1、2、3年的各处理微生物量碳、氮均在团棵期出现峰值,土壤脲酶、酸性磷酸酶、过氧化氢酶均在旺长期出现峰值。在出现峰值时翻压3年的处理与对照相比微生物量碳、氮分别提高67.1%、60.7%;土壤脲酶、酸性磷酸酶、过氧化氢酶活性分别提高51.9%、14.2%、30.6%。此时正值生育旺期,利于烟株生长发育,说明连年翻压绿肥后培肥土壤效果显著。土壤微生物量C、N和酶活性能灵敏反映土壤肥力的变化,可作为评价土壤质量的生物学指标。  相似文献   

15.
    
In the traditional shifting cultivation system practiced by the Karen people in northern Thailand, the effects of burning on the content of extractable organic matter, microbial biomass, and N mineralization process of the soils were studied. Five plots (5×5 m2 quadrat) with 0, 10, 20, 50, and 100 Mg ha-1 of slashed materials were arranged and burned. Ten to 20 Mg ha-1 of slashed biomass corresponded to the amount commonly burned by the Karen people. During the burning process, the soil temperature at the depth of 2.5 cm in the 100 Mg ha-1 plot almost evenly increased to 300°C while the temperature in the 10 to 50 Mg ha-1 plots increased with large variations from 50 to 300°C. Burning caused a conspicuous increase in the contents of organic C and (organic + mineral)-N extracted at room temperature and a simultaneous decrease in the contents of microbial biomass C and N, especially in the soil of the 100 Mg ha-1 plot. In the rainy season, the values of the changes induced by burning reverted to the values recorded before burning, except for the microbial biomass in the 100 Mg ha-1 plot, which still remained lower. Based on an incubation experiment, N mineralization rate was higher in the soils taken just after burning, especially in the 100 Mg ha-1 plot, than in the soils taken during the rainy season. However, the soil in the 100 Mg ha-1 plot was considered to have the lowest ability to supply mineral N among the soils in the rainy season. Burning of 10 to 20 Mg ha-1 biomass corresponding to the values recorded in Karen peoples' shifting cultivation system was more compatible with soil ecology in terms of N supply at the initial stage of crop growth and of microbial biomass recovery during the rainy season, compared to the burning of 100 Mg ha-1 biomass corresponding to the value recorded in a natural forest. Thus, the shifting cultivation system implemented by the Karen people can be considered to be a well-balanced agricultural system.  相似文献   

16.
以渭北黄土高原苹果园土壤为研究对象,设置传统苹果(Malus domestica Borkh.)园清耕及间作白三叶(Trifolium repens L.)两个处理,测定和分析了不同土层(0—5 cm,5—10 cm,10—20 cm及20—40 cm)的土壤微生物量碳(SMBC)、氮(SMBN)、4种土壤酶活性、有机碳(SOC)和全氮(TN)等指标,从土壤微生物碳、氮及酶活性的角度探讨间作白三叶对苹果/白三叶复合系统土壤的影响。结果表明:间作白三叶能够显著提高土壤微生物量碳、氮的含量和土壤酶活性,提高土壤微生物对有机碳和全氮的利用效率,其作用随着土层深度的增加而降低,在表层土壤效果更为显著。土壤微生物量碳、氮及土壤酶活性与土壤有机碳、全氮呈极显著相关或显著性相关。苹果园土壤微生物量碳、氮及土壤酶活性能敏感响应生草间作,可以作为评价果园生草对果园土壤影响的良好指标。  相似文献   

17.
杜薇  朱一波  张晓  耿玉清  林平 《水土保持通报》2016,36(3):358-362,368
[目的]探讨沙地添加木醋液后土壤微生物生物量和酶活性的变化,为沙地土壤生物学质量的改良提供理论依据。[方法]采用盆栽植草培养法,以添加自来水为对照,对沙地添加不同稀释倍数(200,150,100,50,20)木醋液后的土壤可溶性有机碳、氮和酚,土壤微生物生物量碳氮以及土壤酶活性进行研究。[结果]向沙土添加木醋液可以显著降低土壤pH值,显著提高土壤易氧化碳、土壤水溶性碳氮、土壤可溶性酚以及无机氮的含量。在添加木醋液稀释高于50倍范围内,随木醋液稀释倍数降低,土壤微生物生物量碳氮增加以及β-糖苷酶、碱性磷酸酶和脱氢酶活性提高。添加稀释20倍的木醋液,导致土壤微生物生物量碳氮以及β-糖苷酶、碱性磷酸酶和脱氢酶活性有所降低。在高于20的稀释倍数范围内,随着施用木醋液稀释倍数的降低,α-糖苷酶、亮氨酸氨基肽酶、酸性磷酸酶和酚氧化酶的活性有显著增加的趋势。[结论]添加不同稀释倍数的木醋液会影响沙地土壤微生物生物量和酶活性。  相似文献   

18.
19.
    
The effect of tillage systems and crop rotation on microbial biomass phosphorus (MBP) and acid phosphatase (P‐ase) activity, and the amount of different phosphorus (P) forms measured by 31P‐NMR spectroscopy were studied on a field experiment carried out in a temperate Ultisol from southern Chile. Two tillage systems, no tillage (NT) and conventional tillage (CT) and two crop rotations, oat–wheat (OW) and lupine–wheat (LW) were evaluated 4 yr after the start of the experiment to determine the effects of such management on some soil biological parameters and P forms at three depths (0–5, 0–10 and 10–20 cm). Microbial biomass P ranged from 6.5 to 22.6 mg/kg, whereas the mean total P (PT) was 1995 mg/kg for all treatments (OW and LW). Microbial biomass carbon (MBC) and surface P accumulation (at 0–5 cm depth), including Olsen P, MBP, orthophosphate monoesters (monoester‐P), were larger under NT than CT. Tillage effects were greater than crop rotation effects in enhancing P availability. The LW rotation showed enhanced P‐ase activity and increased monoester‐P forms (57 vs. 30% of the total integral area of the spectra, in average) compared with OW. Nevertheless, OW rotation increased orthophosphate (ortho‐P), especially at 10–20 cm. Microbial biomass carbon ranged from 532 to 2351 mg/kg, which represented 1.2–4.5% of total organic C (Co). Furthermore, MBP correlated positively with MBC (r = 0.80), Olsen P (r = 0.77), Co (r = 0.77), pH (r = 0.65), PT (r = 0.65) and P‐ase activity (r = 0.57), suggesting the importance of the microbial biomass on soil P availability.  相似文献   

20.
Hot water extraction is sometimes recommended as an easy method to estimate the readily mineralizable fractions of total C (Ct) and total N (Nt) in arable soils. However, the usefulness of this method for forest soils has not been adequately studied. The objectives of this study were to relate the hot water extractable C (Chw) and N (Nhw) to microbiological and chemical properties of the forest soils under beech (Fagus sylvatica L.) stands and to test the ability of near infrared spectroscopy (NIRS) to predict chemical and microbial properties of these soils. Soils differing in humus type, soil type and soil texture were collected from five locations and five depths. In all soils the amount of Chw was higher than the microbial biomass C (Cmic) indicating that a considerable part of Chw was of non-microbial origin. The amount of Chw in mineral soil correlated significantly (r =–0.30–0.53) with Cmic, basal respiration (BAS) and Ct/Nt ratio but was not related to Cmic/Ct ratio. The amount of Nhw was correlated with Cmic, BAS, Cmic/Ct ratio, and Ct/Nt ratio (r =–0.59–0.78). However, Ct and Nt values showed better relationships (r =–0.42–0.88) with all the parameters, indicating no advantage in using Chw and Nhw in forest soils. NIRS predicted satisfactorily Ct, Nt, Chw, Nhw, Cmic, Cmic/Ct ratio and BAS in the mineral soils [the regression coefficients (a) of linear regression (measured against predicted values) ranged from 0.84 to 1.17 and the correlation coefficients (r) ranged from 0.86 to 0.94] indicating the applicability of NIRS to estimate these properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号