首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
不同钝化剂和培养时间对Cd污染土壤中可交换态Cd的影响   总被引:4,自引:0,他引:4  
原位化学钝化技术是修复重金属污染土壤的重要途径之一,通过施入一些钝化剂以降低土壤中重金属有效态含量,从而减少其迁移及对植物的毒害。选取羟基磷灰石(HA)、磷矿粉(PRX和PRH)、沸石、赤泥、新鲜植物残体、玉米秸秆粉末以及相应的处理共21种钝化剂,在同一培养条件和添加浓度下,比较其对人工Cd污染土壤中可交换态Cd含量的影响,并分析了其在不同培养时间对钝化效果的时间效应,试验的结果对于筛选Cd污染土壤钝化剂有着重要的意义。结果表明,纳米化赤泥、羟基磷灰石和纳米化酸洗赤泥可显著降低土壤中可交换态Cd含量,钝化比例高达35%-55%;赤泥、酸洗赤泥、沸石达15%-25%;富含巯基植物蒜苗、油菜、大葱植物残体也可达20%-25%。磷矿粉、大葱粉末、玉米秸秆和巯基化玉米秸秆的钝化效果相对较差;HA、铵型沸石、纳米赤泥、酸洗纳米赤泥、干油菜粉末、酸洗赤泥对可交换态Cd的钝化效果的时间效应不明显;赤泥、大葱残体、特别是玉米秸秆和巯基玉米秸秆随时间增长钝化效果增加显著,在8周和16周时段钝化效果较好。  相似文献   

2.
Different soil amendments, including 1% zeolite, 1% bentonite,5% Penghu soil (PHS), 5% Penghu soil + 1% manganese oxide (PHS + MO), 1% MO, and 1.5% silicate slag (SS), were used to immobilize Cd and Pb in two contaminated soils evaluated by single and sequential extractions and by uptake of Chinese cabbage (Brassica Chinensis L.). Results indicated that the PHS and MO significantly (p < 0.05) reduced the 0.1 M HCl extractable Cd and Pb in the two contaminated soils. Allamendment treatments did not change the organic and residual amounts of Cd and Pb in soils A and B, but the PHS andPHS + MOtreatments significantly reduced the exchangeable amounts of Cdand Pb in the two soils as measured by sequential extraction. Thecombination of PHS and MO amendments was associated with ahigh pH value and negative soil surface charge showed the best immobilizing efficiency of Cd and Pb in this study. All soil amendments investigated did not increase the dry matter weight of the plant, and most of them decreased the uptake of Cd and Pb, especially for the PHS and MO. The PHS and MO treatments reduced the extractability of Cd and Pb in two soils and theiruptake by the plant, but only the Pb content in Chinese cabbagefrom the amended soils was less than the background levels of heavy metals in leaf vegetables of Taiwan.  相似文献   

3.
Abstract

A column study was conducted to determine the effect of city compost, lime, gypsum, and phosphate on cadmium (Cd) mobility in three well‐recognized benchmark soils of India [viz., (Islamnagar) Vertisol, (Amarpur) Inceptisol, and (Khala) Alfisol]. Columns made of PVC were filled with soil treated with different treatment doses [viz., 0.5% city compost, 1% city compost, 2% city compost, 2.5 t lime/ha, 5 t lime/ha, 2.5 t lime/ha+0.5% city compost, 2.5 t gypsum/ha, 2.5 t gypsum/ha+0.5% city compost, and 100 kg P2O5/ha as potassium phosphate (KH2PO4). The columns were leached with 100 mg L?1 Cd under saturated condition. The amount of water moving through the soils was measured as the pore volume. A delayed breakthrough curve (BTC) of Cd in the presence of lime has been observed in all the studied benchmark soil series. Among the treatments, lime application reduced the movement of Cd from surface soil to lower depth of soil to a large extent resulted in 9, 25, and 45% more retention of Cd in surface soil of the Islamnagar, Amarpur, and Khala series respectively. Explanation for reduced Cd mobility in limed soil can be derived from pH changes of soils. In comparison to control soil, phosphate application caused 6, 21, and 30% more retention of Cd in surface soil in the Islamnagar, Amarpur, and Khala series, respectively. Combined application of lime and city compost reduced the movement of Cd in the soil profile. It appears that organic matter controls the sorption of Cd in soils. The amount of Cd sorbed increased with increasing organic carbon content, but gypsum application may leach Cd beyond the root‐zone depth. A rapid breakthrough curve was observed under gypsum‐treated soils. Retardation factor revealed that a somewhat lower degree of Cd retention occurred in the Khala series, which might possibly be attributed to less clay content and low pH. Overall, the column study indicated that total Cd accumulation occurred up to depths of 5–7.5 cm, 7.5–10 cm, and 10–15 cm in soils of Islamnagar, Amarpur, and Khala series, respectively.  相似文献   

4.
Irrigation with untreated effluent in periurban agriculture could result in accumulation and bioconcentrations of cadmium (Cd) and lead (Pb). Different amendments were used to investigate their effect on availability, concentration, and uptake of metals by wheat in texturally different soils. Crop was irrigated with water containing Cd and Pb at 20 mg L?1, thereby adding 260 mg pot?1 of each metal. Amendments included calcium carbonate at 6 or 12%, gypsum at 50 or 100% of the soil gypsum requirement, farm manure at 7.50 or 15.00 g kg?1 soil, and a control. Amendments decreased ammonium bicarbonate diethylenetriaminepentaacetic acid (AB-DTPA)–extractable Cd and Pb concentrations and uptake by wheat. Dry matter, concentration, uptake, and extractability of Cd and Pb were greater in sandy loam soil compared with those in sandy clay loam soil irrespective of amendments. Sequential extraction showed that more metals were extracted from the control in all fractions and that predominantly metals were found in the carbonate fraction.  相似文献   

5.
Column experiments were conducted to evaluate the feasibility of using a rhamnolipid foam to remove heavy metals (Cd and Ni) from a sandy soil contaminated with Cd (1706 ppm) and Ni (2010 ppm). Best results were obtained from the foam generated by a 0.5% rhamnolipid solution with an initial pH value of 10.0 after flushing with 20-pore-volume of solution. These conditions removed 73.2% of the Cd and 68.1% of the Ni. Removal efficiencies by foam generated by a chemical surfactant, Triton X-100, were investigated as a comparison. It removed 65.5% of the Cd and 57.3% of the Ni under the same conditions. After a 20-pore-volume liquid solution flushing, 0.5% rhamnolipid (initial pH 10.0) without foam generation removed 61.7% of the Cd and 51.0% of the Ni, whereas 0.5% Triton X-100 (initial pH 10.0) removed 52.8% of the Cd and 45.2% of the Ni. Distilled water with adjusted pH only was also used to flush through the contaminated soil column as a control. It removed 17.8% of the Cd and 18.7% of the Ni. This study shows that rhamnolipid foam technology can be an effective means for the remediation of cadmium and nickel contaminated soil.  相似文献   

6.
ABSTRACT

The contamination of soil and water with cadmium (Cd) is an environmental issue worldwide. Using lettuce (Lactuca sativa cv. ‘Cos’) in a glasshouse-based growth trial, two cation exchange materials [a zeolite and a kaolin amorphous derivate (KAD)] were examined for their ability to remove Cd from the soil solution and hence decrease the uptake of Cd by plants. Zeolite (applied at a rate of 2.5 t ha? 1) was ineffective at reducing Cd uptake and accumulation in lettuce. When applied at a rate of 2.5 t ha? 1, the KAD significantly reduced Cd uptake in all soils examined (ranging from a 26 to 64% reduction). Thus, KAD is considered to be potentially beneficial for the growth of plants in Cd-contaminated soils, although care must be taken to ensure that growth is not limited by deficiencies of the other nutrients for which KAD has a high affinity.  相似文献   

7.
8.
不同改良剂对重金属污染土壤中小麦镉吸收的影响   总被引:2,自引:0,他引:2  
为探讨不同改良剂及用量对重金属污染土壤的修复作用和效果,采用土壤盆栽试验,研究不同改良剂(K2HPO4、鸡粪、Na2S)对小麦生物量、不同组织镉吸收量、土壤pH及土壤有效态镉含量的影响。结果表明:3种改良剂均增加了小麦籽粒和茎秆重,对小麦的生长起到了促进作用,24g/kg鸡粪(B3)处理下,小麦籽粒重和茎秆重最高;不同改良剂均可降低小麦地上部和根系镉含量,0.004 8g/kg Na_2S(C3)处理水平下,地上部和根系镉含量与对照相比分别下降了69.72%,59.42%,下降幅度最大。其中,24g/kg鸡粪(B3)处理水平下转运系数最小,对重金属从根系向地上部迁移的抑制力最强;鸡粪(B)、Na_2S(C)可显著降低小麦籽粒中的镉浓度,K2HPO4(A)对降低小麦籽粒镉浓度无显著影响,但随着用量的增加,小麦籽粒镉浓度呈现降低的趋势,3种改良剂对降低小麦籽粒镉浓度的作用效果为Na_2S鸡粪K_2HPO_4;施加改良剂增加了土壤pH,土壤有效态镉含量随改良剂用量的增加呈下降趋势,24g/kg鸡粪(B3)与对照相比下降幅度最大,达48%。  相似文献   

9.
为了解施用不同种类有机物对污染农田土壤重金属行为的影响,布设了田间小区试验,观察研究施用6种不同类型有机物对土壤水溶性重金属和农作物对重金属吸收等的影响。试验设7个处理,分别为对照(不施有机肥)、施新鲜水稻秸秆、新鲜鸡粪、鸡粪堆肥、新鲜猪粪、猪粪堆肥和商品有机肥,动态检测土壤中水溶性重金属含量、田面水中重金属浓度及收获水稻籽粒中重金属含量的变化。结果表明,与不施有机物的对照处理比较,施用各类有机物在试验前期均可明显提高土壤中水溶性重金属和田面水中重金属的含量,总体上以施用新鲜猪粪的最高,其次为新鲜鸡粪,施用商品有机肥的最低。土壤中水溶性重金属含量随试验时间增长逐渐下降。施用各类有机物对水稻籽粒中重金属的积累影响不明显。土壤中水溶性重金属及田面水中重金属含量均与相应的水溶性碳(DOC)浓度呈显著相关性,表明因有机物施用增加土壤中DOC浓度可能是土壤中水溶性重金属含量增加的主要原因;而不同有机物对土壤重金属活性影响的差异可能与有机物本身的分解程度及可释放DOC大小有关。但施用有机物引起的农田土壤水溶性重金属含量的增加是暂时的,对水稻生长后期籽粒中重金属积累的影响不明显。  相似文献   

10.
石灰和海泡石对镉污染土壤的修复效应与机理研究   总被引:22,自引:1,他引:22  
研究了稻作和旱作两种种植制度下,施用石灰、海泡石及两种改良剂配施对镉污染土壤pH值、土壤镉形态变化及作物对镉的吸收等的影响.结果表明,施用改良剂使稻作条件下的土壤pH提高0.3~1.8个单位,旱作条件下土壤pH提高幅度为0.3~2.0个单位:两种种植制度下,作物有效性较高的酸提取态镉含量显著减少,而作物有效性较低的可还原态和残渣态镉含量显著增加,进而引起了水稻和萝卜对镉的吸收量降低.其中以石灰和海泡石配施的效果最好,单施海泡石次之,单施石灰效果最差,且各处理均随改良剂用量的增加效果增强,虽然,施用改良剂可以有效降低土壤中镉的作物有效性,但对水稻产量和生物量及镉在水稻和萝卜两种作物地上部分的分配规律均没有明显的影响.  相似文献   

11.
Phytoremediation is an attractive, economical alternative to soil removal and burial methods to remediate contaminated soil. The objective of this study was to investigate the effects of adding different rates of Bacillus megaterium on the capacity of Brassica napus plants to take up boron (B), lead (Pb), and cadmium (Cd) from polluted soils under field conditions. Field experiments were conducted using a randomized complete block design with control (without pollution and B. megaterium application) and B, Pb, and Cd in two doses (0 and 100 mg kg?1), B. megaterium with four doses (no application and 108 cfu B. megaterium ml?1 sprayed at 50 ml plot?1, 100 ml plot?1, 150 ml plot?1). Results indicated that soil pollution treatments significantly decreased seed (SDMY), shoot (SHDMY), root (RDMY), and total dry-matter yield (TDMY) of plants at 42.9, 3.8, 62.6, and 23.4% for B-polluted treatment; 25.8, 8.7, 17.6, and 14.2% for Pb-polluted treatment; and 33.2, 7.0, 14.0, and 16.4% for Cd-treatment without B. megaterium application, respectively. However, the application of B. megaterium ameliorated the negative effects of B, Pb, and Cd at 41.4, 52.7, and 10.9% for B; 24.4, 21.6, and 4.9% for Pb; and 22.8, 22.0, and 3.3% for Cd, respectively. The potentially bioavailable and relatively available fraction of soil B, Pb, and Cd increased with increases in the B. megaterium application but total fraction and stable fraction decreased. It is concluded that the seed and shoot parts of B. napus can be used as hyperaccumulators for plant B, Pb, and Cd remediation according to remediation factors but the shoot is the biggest part of the plant, and thus an important portion of the plant to remove B, Pb, and Cd from the B-, Pb-, and Cd-contaminated soils. To decrease desired concentration for 8 mg B kg?1, 4 mg Pb kg?1, and 3 mg Cd kg?1 in the active rooting zone of soil, approximately 2, 6, and 21 years would be necessary with only 150 ml plot?1 B. megaterium–sprayed soil cultivated with B. napus, respectively.  相似文献   

12.
贵州省典型污染区土壤中镉的空间分布及影响机制   总被引:1,自引:0,他引:1  
《土壤通报》2014,(5):1252-1259
镉(Cadmium)是自然环境中普遍存在且毒性极强的重金属元素,几乎所有土壤、地表水和植物体内均含有镉。选择贵州碳酸盐岩地质条件下的典型重金属污染区(铅锌矿区、煤矿区、赤泥坝区、污灌区等)为研究对象,探索在镉的地球化学高背景下,不同来源镉在土壤中的空间分布及其影响机制研究。结果表明,研究区域内72%土壤镉含量超过国家土壤质量二级标准,其中都匀铅锌矿区由于存在独立镉矿床,故其镉含量平均值高达23.36 mg kg-1;镉在土壤水平方向上的含量分布受污染源的影响较大,以污染源为中心向四周呈呈幅射状递减;镉在土壤剖面上的含量分布呈现表层高,在0.80 m内逐渐降低,后在0.80~1.20m之间镉含量急剧升高,出现明显的淀积层,镉在土壤剖面上的分布主要受土壤pH、黏粒积累和底部滞水层等因素影响;在酸性土壤的铅锌矿区和污灌区,镉的赋存形态主要以与铁锰结合的易还原态和酸可交换态为主,占总量的60%~80%,容易从土壤进入食物链和水体,存在较高的人体健康风险和环境风险。  相似文献   

13.
Six chelating compounds: ethylenediamine-tetraacetic acid (EDTA), ethylenediamine-N, N'-disuccinic acid (EDDS), tartaric acid, citric acid, glycine and histidine, were tested as potential agents to mobilize copper (Cu) and lead (Pb) from two soils polluted with the emissions from copper smelters. Copper was mobilized with the following efficiency: EDTA > citric and tartaric acids > histidine > EDDS and glycine, while Pb extractability followed the order: EDTA > EDDS >> tartaric and citric acid >> glycine and histidine. With respect to these results, EDTA and EDDS were chosen for a pot experiment on chelate-induced phytoextraction of Cu and Pb by maize (Zea mays). Chelates were applied at the rates of 0.2, 0.5, and 1.0 mmol kg?1, and this experiment was carried out at two different watering regimes. Both EDTA and EDDS caused significant increase of Cu uptake from soils, but its concentrations in biomass were far below those required for efficient soil remediation. Lead uptake was only slightly affected by chelate application. Losses of Cu from soil by leaching were much higher than those caused by plant uptake.  相似文献   

14.
The effectiveness of sequential application of gypsum followed by matured mixed municipal solid waste (MSW) compost was investigated for the reclamation of saline-sodic soils. Soil plots were treated with 50 dt/ha (dry tone/hectare) of gypsum, followed by the addition of matured MSW compost at the 50, 100, and 150 dt/ha with five replications for each treatment. A number of physical, chemical and biological properties were investigated. The results from different treatments were compared with the Tukey-Kramer method. The results of this study show that the sequential application of gypsum followed by matured MSW compost can effectively restore degraded soils suffering from high soluble salts and exchangeable sodium content.  相似文献   

15.
Cadmium-contaminated soils can be re-used and also produce biomass energy if we plant soybeans or other biomass crops in the contaminated sites. In this study, two soils with pH values of 5.9 and 6.7 were artificially spiked to make their final total concentration as CK (about 1.0), 3.0, and 5.0 mg Cd kg?1. Different amendments were mixed with these artificially Cd-contaminated soils to study the effect on the growth and Cd uptake of soybean, which include control (without amendment addition), powder-activated carbon (1%), and biosolids (sludge, 5%), respectively. Three kilograms of the treated soils was added into each pot and sowed 10 seeds of soybean (Leichardt species). The experiment was conducted in a 25°C greenhouse and controlled the soil water contents in the levels of 50–70% water holding capacity during the experimental period. Plants were harvested after growing for 90 days, and their fresh weights, dry weights, and plant heights were determined and recorded. Compared with the lower pH soil (5.9), soybeans were higher and have higher fresh weights and dry weights when growing in the higher pH soil (6.7). For most of the treatments, the two amendments had no significant effects on the plant heights of soybeans. For 3.0 or 5.0 mg Cd kg?1 soil, the application of biosolids has significant effect on increasing the fresh weights and dry weights of soybeans (p?<?0.05). However, there were no specific effects of applying activated carbons on the fresh weights and dry weights of soybeans.  相似文献   

16.
ABSTRACT

Soil degradation due to salinization and sodication is the paramount threat in Indo-Gangetic plains. The studies on reclamation and management of such soils can provide a pragmatic solution for improving fertility and productivity of these soils. Lack of organic matter and poor availability of nutrients are the major factors for low productivity of sodic soils. Rice-wheat is a major cropping system in Indo-Gangetic alluvial plain region even in reclaimed sodic soils and farmers used inorganic fertilizers only to get higher yields. In this study, we used different organic sources of amendments in conjunction with different nitrogen (N) doses supplied through inorganic fertilizers to investigate the combined effect of organic and inorganic amendments on soil fertility and the productivity of rice- wheat system in sodic soils. Salt tolerant varieties of rice and wheat were grown in sodic soil (pH: 9.30, EC: 1.12 dSm?1 and exchangeable sodium percentage, ESP: 52) during 2014–15 to 2016–17 in a field experiment with 13 treatment combinations of organic and inorganic amendments (T1- (control) 100% of recommended dose of N (RDN), T2-municipal solid waste compost (MSWC) @10 t ha?1 + 50%RDN, T3- MSWC @10 t ha?1 + 75% RDN,T4- MSWC @10 t ha?1 + 100%RDN, T5-Vermicompost (VC) @10 t ha?1 + 50% RDN, T6- VC @10 t ha?1 + 75% RDN, T7-VC@10 t ha?1 + 100% RDN, T8- Farm yard manure (FYM) @ 10 t ha?1 + 50% RDN,T9- FYM@10 t ha?1 + 75%RDN, T10- FYM@10 t ha?1 + 100% RDN, T11-Pressmud (PM) @10 t ha?1 + 50% RDN, T12-PM@10 t ha?1 + 75%RDN, and T13- PM @ 10 t ha?1 + 100% RDN). Use of organic amendments supplemented with reduced dose of N through inorganic fertilizer has significantly improved soil bio-physical and chemical properties. Application of VC@10 t ha?1 + 100% RDN (T7) decreased soil bulk density, pH, EC, ESP and Na content to 2.0, 4.2, 26.5, 42.8, and 56.6% respectively and increased soil organic carbon by 34.6% over control (T1). Soil fertility in terms of available N, P, K, Ca, and Mg increased by 20.5, 33.0, 36.4, and 44%, respectively, over control (T1). Soil microbial biomass carbon, nitrogen, and phosphorus also improved significantly due to combined use of organic amendments and inorganic fertilizers over the only use of inorganic fertilizers. Decreasing in soil sodicity and increasing soil fertility showed significant increase (P < 0.05) in crop growth, growth indices, and grain yields of rice and wheat. The study revealed that combined use of VC or MSW compost @10 t ha?1 in conjunction with 75% RDN through inorganic fertilizers in sodic soils proved sustainable technology for restoration of degraded sodic soils and improving crop productivity.  相似文献   

17.
Abstract

Effects of long-term use of phosphate fertilizers on extractable soil Cd in relation to its concentrations in plants were investigated. “Paired” soil samples were collected from newly and long-term cultivated fields and analyzed for Cd by extraction with NH4OAc, DTPA, NH4OAc-EDTA, NH4NO3, HCl and CaCl2. Plant samples were also collected and analyzed for Cd. Significant differences in extractable Cd by all the extractants except NH4NO3 were observed between the newly and long-term cultivated soils. The Cd concentrations in plants were not increased by the elevated extractable Cd. Although significant relationships were observed between plant Cd and extractable soil Cd, none of the extractants used alone gave a good assessment of plant-available Cd for all the samples used in this study.  相似文献   

18.
The goal of this study was to measure the As, Cu, Fe, Pb and Zn contents of soils amended with municipal solid waste (MSW) and MSW-biosolids compost and to determine the long-term transport of these metals to lower soil horizons. Lead, Cu, Cd and Zn contents in the composts were 3–20 times more concentrated in the compost compared to the soil at the Calverton, NY, U.S.A. farm. As a result, Pb, Cd, Cu and Zn were elevated in the upper 5 cm soil layer following compost application and the metal enrichment was proportional to the amount of compost applied (21–62 Mg ha-1). In addition, Pb, As and Cu contents of the non-compost amended Calverton soils were enriched above the tillage depth (20–25 cm). Cu, Pb and As enrichment was attributed to the historical use of sodium arsenite, lead arsenate and copper sulfate insecticides and fungicides. Results of the metal analyses of soil cores collected 16 and 52 months following compost application showed that Cu, Zn and Pb remained confined to the upper 5 cm soil layer. The low water extractable fraction of these metals in MSW and MSW-biosolids compost was a major factor limiting the transport of these metals to lower soil horizons. In contrast, Cd leaching from the upper 0–5 and 5–10 cm soil layers was continuous over the 52 month study period and was attributed primarily to the presence of soluble Cd in phosphate fertilizer initially applied to the Calverton farm soil.  相似文献   

19.
Abstract

Municipal waste compost can improve the fertility status of tropical soils. The redistribution of iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu) in tropical soils after amendment with solid municipal waste compost was investigated. Four tropical agricultural soils from Mali characterized by poor trace‐element status were amended with compost and incubated for 32 weeks at 35°C. The soil were analyzed at the beginning and the end of the incubation experiment for readily available fractions, organic fractions, and residual fractions as operationally defined by sequential extraction. Readily available Fe increased significantly with compost application in most soils. Readily available Mn was mostly unaffected by compost application. After 32 weeks, readily available Zn had increased, and readily available Cu had decreased. Readily available levels of the elements remained greater than deficiency levels in the compost‐amended soils. Organic fractions of the elements increased after compost addition. The organic fractions and residual forms, depending on the element and the soil, remained constant or increased within the duration of the experiment.  相似文献   

20.
Municipal solid waste (MSW) compost was applied at rates of 56 and 112 t/ha (incorporated) and 224 t/ha (mulch) to mitigate topsoil loss in nursery stock production. In two years, nitrate concentrations in ground water beneath all plots remained below 10 ppm with no significant differences between treatments.

In another experiment, nitrate in ground water was measured beneath a high coductive sandy terrace soil amended with a variety of composts. In one experiment, spent mushroom compost (SMC) and chicken manure compost (CMC) were applied yearly at rates of 56 and 112 t/ha to provide all the fertilizer requirements for intensive vegetable production. Nitrate concentrations in ground water beneath all compost-amended plots remained below 10 ppm during the three-year study, while concentrations beneath the fertilized control reached 14.7 ppm in an unusually wet spring. After heavy rains, control plots were more susceptible to nitrate leaching than compost-amended plots in the first two years of the study. The overall mean of the control (4.2 ppm) was significantly higher than all the other compost amended plots except SMC amended at 56 t/ha (3.4 ppm). Nitrate concentrations in ground water from CMC plots amended at 112 t/ha peaked at 9.2 ppm after three consecutive years of compost application suggesting a cumulative effect which was substantiated by soil analysis.

The first experiment is described below. Results of the second experiment were previously presented in Compost Science & Utilization (“Nitrate Leaching From Compost Amended Soils” (1993) Vol 1, No. 2, 65-72).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号