首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The recent pandemic caused by human influenza virus A(H1N1) 2009 contains ancestral gene segments from North American and Eurasian swine lineages as well as from avian and human influenza lineages. The emergence of this A(H1N1) 2009 poses a potential global threat for human health and the fact that it can infect other species, like pigs, favours a possible encounter with other influenza viruses circulating in swine herds. In Europe, H1N1, H1N2 and H3N2 subtypes of swine influenza virus currently have a high prevalence in commercial farms. To better assess the risk posed by the A(H1N1) 2009 in the actual situation of swine farms, we sought to analyze whether a previous infection with a circulating European avian-like swine A/Swine/Spain/53207/2004 (H1N1) influenza virus (hereafter referred to as SwH1N1) generated or not cross-protective immunity against a subsequent infection with the new human pandemic A/Catalonia/63/2009 (H1N1) influenza virus (hereafter referred to as pH1N1) 21 days apart. Pigs infected only with pH1N1 had mild to moderate pathological findings, consisting on broncho-interstitial pneumonia. However, pigs inoculated with SwH1N1 virus and subsequently infected with pH1N1 had very mild lung lesions, apparently attributed to the remaining lesions caused by SwH1N1 infection. These later pigs also exhibited boosted levels of specific antibodies. Finally, animals firstly infected with SwH1N1 virus and latter infected with pH1N1 exhibited undetectable viral RNA load in nasal swabs and lungs after challenge with pH1N1, indicating a cross-protective effect between both strains.  相似文献   

2.
Dual infection of pigs with swine influenza virus (SIV) and Mycoplasma hyopneumoniae was carried out to compare the clinical and pathological effects of dual infection in caesarian derived and colostrums deprived (CDCD) pigs, with that of a single infection with M. hyopneumoniae. In Experiment 1, 40-day-old CDCD pigs were inoculated only with SIV (A/Sw/Hok/2/81, H1N1). The virus was isolated from nasal swabs for 5-6 days. None of these pigs showed clinical signs of infection throughout the experimental period. These results suggested that this strain can infect pigs but is only slightly pathogenic when it is inoculated singly to a CDCD pig. In Experiment 2, 60-day-old CDCD pigs were inoculated with M. hyopneumoniae and then were inoculated with SIV (A/Sw/Hok/2/81) at 1 week (MHYO-7d-SIV-7d group) or 3 weeks (MHYO-21d-SIV-7d group) after M. hyopneumoniae inoculation. Macroscopically, dark red-to-purple lung lesions were observed in all of pigs at 14 or 28 days post-inoculation. Percentages of dark red-to-purple lung lesions in dual infection groups (MHYO-7d-SIV-7d group: 18.7 +/- 4.2%, MHYO-21d-SIV-7d group: 23.0 +/- 8.0%) were significantly (P < 0.05) increased compared to those of each control group in which pigs were inoculated only with M. hyopneumoniae (MHYO-14d group: 4.7 +/- 2.9%, MHYO-28 group: 3.3 +/- 2.4%). Microscopically, bronchial epithelial lesions (epithelial disruption, degeneration, hyperplasia and formation of microabscess) were frequently observed in dark red-to-purple lung lesions of only the dual infection groups. These results demonstrate that the lung lesion of pigs inoculated with M. hyopneumoniae and SIV is more severe than that of pigs inoculated only with M. hyopneumoniae.  相似文献   

3.
OBJECTIVE: To examine clinical signs, virus infection and shedding, and transmission of swine influenza virus (SIV) subtype H1N2 among seropositive pigs. ANIMALS: Eighteen 3-week-old pigs with maternal antibodies against SIV subtypes H1N1, H3N2, and H1N2. PROCEDURE: Ten pigs (principal) were inoculated intranasally with subtype H1N2 and 2 groups of contact pigs (n = 4) each were mixed with principal pigs on day 7 (group 1) or 28 (group 2). Two principal pigs each were necropsied on days 4, 14, 21, 28, and 42 days after inoculation. Four pigs in each contact group were necropsied 35 and 14 days after contact. Virus excretion was evaluated after inoculation or contact. Lung lesions and the presence of SIV in various tissues were examined. RESULTS: Mild coughing and increased rectal temperature were observed in principal pigs but not in contact pigs. Nasal virus shedding was detected in all principal pigs from day 2 for 3 to 5 days, in group 1 pigs from day 2 for 4 to 9 days after contact, and in group 2 pigs from day 4 for 2 to 6 days after contact. Trachea, lung, and lymph node specimens from infected pigs contained virus. Antibody titers against all 3 subtypes in all pigs gradually decreased. CONCLUSIONS AND CLINICAL RELEVANCE: Protection from viral infection and shedding was not observed in pigs with maternal antibodies, but clinical disease did not develop. Vaccination programs and good management practices should be considered for control of SIV subtype H1N2 infection on swine farms.  相似文献   

4.
Yang H  Chen Y  Shi J  Guo J  Xin X  Zhang J  Wang D  Shu Y  Qiao C  Chen H 《Veterinary microbiology》2011,152(3-4):229-234
Influenza A (H1N1) virus has caused human influenza outbreaks in a worldwide pandemic since April 2009. Pigs have been found to be susceptible to this influenza virus under experimental and natural conditions, raising concern about their potential role in the pandemic spread of the virus. In this study, we generated a high-growth reassortant virus (SC/PR8) that contains the hemagglutinin (HA) and neuraminidase (NA) genes from a novel H1N1 isolate, A/Sichuan/1/2009 (SC/09), and six internal genes from A/Puerto Rico/8/34 (PR8) virus, by genetic reassortment. The immunogenicity and protective efficacy of this reassortant virus were evaluated at different doses in a challenge model using a homologous SC/09 or heterologous A/Swine/Guangdong/1/06(H1N2) virus (GD/06). Two doses of SC/PR8 virus vaccine elicited high-titer serum hemagglutination inhibiting (HI) antibodies specific for the 2009 H1N1 virus and conferred complete protection against challenge with either SC/09 or GD/06 virus, with reduced lung lesions and viral shedding in vaccine-inoculated animals compared with non-vaccinated control animals. These results indicated for the first time that a high-growth SC/PR8 reassortant H1N1 virus exhibits properties that are desirable to be a promising vaccine candidate for use in swine in the event of a pandemic H1N1 influenza.  相似文献   

5.
Novel swine influenza virus subtype H3N1 in Italy   总被引:2,自引:0,他引:2  
To date, three subtypes of swine influenza viruses, H1N1, H1N2, and H3N2 have been isolated in Italy. In 2006, a novel swine influenza virus subtype (H3N1) was isolated from coughing pigs. RT-PCR performed on lung tissues, experimental infection in pigs with the novel isolate, and cloning the virus by plaque assay confirmed this unique H and N combination. The novel isolate was also antigenically and genetically characterized. Genetic and phylogenetic analysis showed that the complete HA gene of the H3N1 strain has the highest nucleotide identity to three Italian H3N2 strains, one isolated in 2001 and two in 2004, whereas the full length NA sequence is closely related to three H1N1 subtype viruses isolated in Italy in 2004. The remaining genes are also closely related to respective genes found in H1N1 and H3N2 SIVs currently circulating in Italy. This suggests that the novel SIV could be a reassortant between the H3N2 and H1N1 SIVs circulating in Italy.  相似文献   

6.
In the present study acute phase proteins (APPs) responses in pigs after subclinical infection with H1N1 swine influenza virus (SwH1N1) were evaluated. Fourteen 5 weeks old, seronegative piglets, both sexes were used. Ten of them were infected intranasally with SwH1N1. C-reactive protein (CRP), haptoglobin (Hp), serum amyloid A (SAA) and pig major acute phase protein (Pig-MAP) concentrations in serum were measured using commercial ELISAs. No significant clinical signs were observed in any of the infected pigs, however, all infected animals developed specific antibodies against SwH1N1 and viral shedding was observed from 2 to 5dpi. Only concentrations of Hp and SAA were significantly induced after infection, with mean maximum levels from days 1 to 2 post infection (dpi). The concentrations of CRP and Pig-MAP remained generally unchanged, however in half of infected pigs the concentration of CRP tended to increase at 1dpi (but without statistical significance). The results of our study confirmed that monitoring of APPs may be useful for detection of subclinically infected pigs. The use of SAA or Hp and Pig-MAP may be a valuable in combination [i.e. Hp (increased concentration) and Pig-MAP (unchanged concentration)] to detect subclinically SIV infected pigs, or to identify pigs actually producing a large amount of virus. Additional studies need to be done in order to confirm these findings.  相似文献   

7.
以国内欧洲禽源H1N1亚型猪流感病毒流行株A/swine/Shanghai/1/2014(H1N1)(SH1)为材料,RT-PCR扩增HA和NA基因并将其克隆至PBD载体中,构建HA和NA基因的重组质粒。将HA和NA基因重组质粒及来源于流感病毒高产株PR8的6个内部基因(PB2、PB1、PA、NP、M和NS)重组质粒共转染293T细胞,从而成功构建了重组欧洲禽源H1N1亚型猪流感病毒疫苗株SH/PR8。以相同病毒剂量接种MDCK细胞,检测不同时间点的血凝效价,绘制病毒生长曲线,结果表明,重组病毒SH/PR8相对于原始野生株SH1在MDCK细胞上具有更高的病毒滴度。重组病毒SH/PR8制备的灭活疫苗经过一免和二免小鼠后,检测血清中血凝抑制抗体、中和抗体和IgG抗体,结果显示首免后抗体效价持续升高,4周后抗体效价达到峰值。小鼠攻毒试验结果表明,免疫组体质量下降不明显且未出现死亡,而非免疫组小鼠体质量持续下降并且于攻毒后6d小鼠出现100%死亡。肺脏组织病毒含量滴定以及组织病理学观察结果显示,免疫组能够有效抑制SH1病毒在肺脏中的复制,减轻肺脏病理变化。总之,本研究表明重组SH/PR8疫苗候选株相对于原始毒株SH1在MDCK细胞上具有更高的复制能力,制备的重组灭活疫苗能够诱导机体产生高水平的抗体,能够针对欧洲禽源H1N1亚型猪流感病毒的攻击提供很好的免疫保护。  相似文献   

8.
The efficacy of a commercial swine influenza vaccine based on A/New Jersey/8/76 (H1N1) and A/Port Chalmers/1/73 (H3N2) strains was tested against challenge with an H1N2 swine influenza virus. Influenza virus-seronegative pigs were vaccinated twice with the vaccine when they were four and eight weeks old, or with the same vaccine supplemented with an H1N2 component. Control pigs were left unvaccinated. Three weeks after the second vaccination, all the pigs were challenged intratracheally with the swine influenza strain Sw/Gent/7625/99 (H1N2). The commercial vaccine induced cross-reactive antibodies to H1N2, as detected by the virus neutralisation (VN) assay, but VN antibody titres were 18 times lower than in the pigs vaccinated with the H1N2-supplemented vaccine. The challenge produced severe respiratory signs in nine of 10 unvaccinated control pigs, which developed high H1N2 virus titres in the lungs 24 and 72 hours after the challenge. Vaccination with the commercial vaccine resulted in milder respiratory signs, but H1N2 virus replication was not prevented. Mean virus titres in the pigs vaccinated with the commercial vaccine were 1-5 log10 lower than in the controls at 24 hours but no different at 72 hours. In contrast, the H1N2-supplemented vaccine prevented respiratory disease in most pigs. There was a 4-5 log10 reduction in the mean virus titre at 24 hours in the pigs vaccinated with this vaccine, and no detectable virus replication at 72 hours. These data indicate that the commercial swine influenza vaccine did not confer adequate protection against the H1N2 subtype.  相似文献   

9.
本研究从有流感症状的病猪中分离到一株H9N2亚型猪流感病毒(SIV),命名为A/swine/Jiangsu/1/2015(SW/JS/1/15)。为探究其遗传特征和生物学特性,本研究采用RT-PCR技术扩增其全部基因节段后测序并进行遗传分析,并研究了其对鸡和豚鼠的致病特性。遗传进化分析显示,分离病毒SW/JS/1/15株是由BJ/94系、DK1系、G1系和F/98系4个分支病毒重组而成,8个基因节段均属于G57基因型。分离株HA蛋白裂解位点为PSRSSR*GL,符合低致病性流感病毒的特征。HA蛋白有9个潜在糖基化位点,其中218位糖基化位点缺失,145位与313位各新增一个糖基化位点。与疫苗株SH/F/98、SD/6/96、GD/SS/94相比,分离病毒HA抗原位点发生了G^90E、S^127R、S^145N、D^153G、N^167S、A^168N、A^198T、T^200R、N^201D、和Q^235M(H9numbering)突变;NA蛋白发生6个氨基酸突变:K^367R、K/E^368N、D^369N、D^401E、K^143N和T^434P。同时NA蛋白颈部缺失aa63~aa65。分离病毒的8个基因节段与2株禽源H9N2病毒的相应基因高度同源,其6个内部基因与两株人源H7N9病毒的内部基因高度同源。致病性试验结果显示分离病毒可以感染鸡和豚鼠,但不能在豚鼠群内水平传播,且可能作为H7N9等新型流感病毒内部基因供体,同时表明猪可以感染禽流感病毒(AIV),且可能是AIV获得感染哺乳动物能力的过渡宿主。本研究为H9N2亚型SIV的致病性以及遗传特征的研究提供科学依据。  相似文献   

10.
Two US swine influenza virus (SIV) isolates, A/Swine/Iowa/15/1930 H1N1 (IA30) and A/Swine/Minnesota/00194/2003 H1N2 (MN03), were evaluated in an in vivo vaccination and challenge model. Inactivated vaccines were prepared from each isolate and used to immunize conventional pigs, followed by challenge with homologous or heterologous virus. Both inactivated vaccines provided complete protection against homologous challenge. However, the IA30 vaccine failed to protect against the heterologous MN03 challenge. Three of the nine pigs in this group had substantially greater percentages of lung lesions, suggesting the vaccine potentiated the pneumonia. In contrast, priming with live IA30 virus provided protection from nasal shedding and virus replication in the lung in MN03 challenged pigs. These data indicate that divergent viruses that did not cross-react serologically did not provide complete cross-protection when used in inactivated vaccines against heterologous challenge and may have enhanced disease. In addition, live virus infection conferred protection against heterologous challenge.  相似文献   

11.
Swine influenza monitoring programs have been in place in Italy since the 1990 s and from 2009 testing for the pandemic H1N1/2009 virus (H1N1pdm) was also performed on all the swine samples positive for type A influenza. This paper reports the isolation and genomic characterization of a novel H1N2 swine influenza reassortant strain from pigs in Italy that was derived from the H1N1pdm virus. In May 2010, mild respiratory symptoms were observed in around 10% of the pigs raised on a fattening farm in Italy. Lung homogenate taken from one pig showing respiratory distress was tested for influenza type A and H1N1pdm by two real time RT-PCR assays. Virus isolation was achieved by inoculation of lung homogenate into specific pathogen free chicken embryonated eggs (SPF CEE) and applied onto Caco-2 cells and then the complete genome sequencing and phylogenetic analysis was performed from the CEE isolate. The lung homogenate proved to be positive for both influenza type A (gene M) and H1N1pdm real time RT-PCRs. Virus isolation (A/Sw/It/116114/2010) was obtained from both SPF CEE and Caco-2 cells. Phylogenetic analysis showed that all of the genes of A/Sw/It/116114/2010, with the exception of neuraminidase (NA), belonged to the H1N1pdm cluster. The NA was closely related to two H1N2 double reassortant swine influenza viruses (SIVs), previously isolated in Sweden and Italy. NA sequences for these three strains were clustering with H3N2 SIVs. The emergence of a novel reassortant H1N2 strain derived from H1N1pdm in swine in Italy raises further concerns about whether these viruses will become established in pigs. The new reassortant not only represents a pandemic (zoonotic) threat but also has unknown livestock implications for the European swine industry.  相似文献   

12.
为调查南京地区猪流感流行情况,本研究于2011年2月~5月期间从南京某屠宰场采集健康猪的鼻拭子和肺脏组织样品共690份,常规无菌处理后进行RT-PCR检测,将检测为阳性的样品接种9日龄~11日龄SPF鸡胚分离猪流感病毒(STV).对分离株进行血凝试验、EID50测定、HA及NA基因测序分析和感染小鼠及猪体试验.结果有18份样品RT-PCR显示为SIV阳性,但只有一株可在SPF鸡胚中稳定增殖.该病毒分离株具有凝集0.5%鸡红细胞的活性,EID50为10-6.32/0.1 mL,基因测序显示其HA、NA基因片段均与09年H1N1型流感流行株A/California/04/2009 (H1N1)高度同源,将其命名为A/Swine/Nanjing/50/2011 (H1N1).小鼠人工感染试验表明该分离株可引起小鼠死亡(3/10),猪体人工感染实验显示该分离株还能够引发猪体明显的流感症状及肺部病变.该病毒的分离鉴定及HA、NA基因序列分析为进一步调查SIV的流行规律提供了基础数据.  相似文献   

13.
《畜牧与兽医》2014,(9):5-10
采用RT-PCR方法克隆猪流感病毒H3N2亚型NS2全长基因,构建NS2基因原核表达质粒pET-28a-NS2和真核表达质粒p3xFLAG-CMVNS2,在大肠杆菌和真核细胞内表达NS2基因,并制备抗NS2多克隆抗体。用所制备的抗体分析p3xFLAG-CMV-NS2转染表达NS2蛋白和病毒感染细胞内的NS2蛋白。结果表明:经终浓度为1 mmol/L的IPTG诱导后,重组蛋白NS2在大肠杆菌中得到表达。表达蛋白纯化后免疫Wistar大鼠制备抗NS2蛋白多克隆抗体,Western-blot分析表明抗NS2多克隆抗体可以识别大肠杆菌表达的NS2蛋白、转染Vero细胞表达的NS2蛋白和病毒感染细胞内的NS2蛋白。间接免疫荧光发现NS2蛋白主要定位于细胞质。本试验为进一步研究NS2蛋白在病毒复制过程中的生物学功能和猪流感病毒的复制机理奠定基础。  相似文献   

14.
本实验从河北地区疑似流感发病猪体内分离到一株病毒,经鉴定为H9N2亚型猪流感(SIV)病毒.将该分离株经滴鼻、点眼途径感染小鼠,观察临床症状和病理变化,同时对血凝素(HA)、神经氨酸酶(NA)、核蛋白(NP)和基质蛋白基因(M)进行克隆和序列测定,与GenBank中登录的相关序列进行比对并绘制系统发育进化树.致病性结果显示:感染小鼠出现精神不振,体重下降,并引起以弥漫性肺泡损伤为主的临床症状和病理变化.序列分析结果显示:该分离株与禽流感病毒(AW) A/chicken/Hebei/4/2008 (H9N2)(简称CK/HB/4/08)参考株的HA、NA、NP和M基因的核苷酸序列和推导的氨基酸序列的同源性最高.HA蛋白的裂解位点序列为PARSSR↓GLF,属于低致病性流感病毒的裂解位点.HA、NP、NA和M基因的遗传进化分析均显示该分离株与AIV的CK/HB/4/08株位于同一分支,具有较近的亲缘关系;由此推测该分离株可能是由CK/HB/4/08演化而来,并在跨物种传播的过程中发生了部分变异.  相似文献   

15.
采用纯化的H3N2亚型猪流感病毒(SIV)尿囊液作为免疫原免疫6~8周龄Balb/c小鼠,取免疫小鼠脾细胞与骨髓瘤细胞(SP2/0)融合,用间接ELISA方法筛选分泌抗SIV-H3N2的阳性细胞株,经克隆获得7株亲和力较高的杂交瘤细胞株,分别命名为1C9、2C5、2F10、3D3、4E8、5C7、5D12,用其制备的腹水ELISA效价可达1×106。通过抗体亚型测定,间接免疫荧光试验及免疫印迹试验分析鉴定,该7株单抗均为抗H3N2亚型SIV的特异性单克隆抗体,而且与其他亚型猪流感病毒、猪细小病毒、猪繁殖与呼吸综合征病毒、猪圆环病毒和猪瘟病毒等均无交叉反应,为H3N2亚型SIV的鉴别诊断奠定了基础。  相似文献   

16.
The expression of myeloperoxidase (MPO) was examined in the swine influenza virus (SIV)-infected neutrophils in the lungs of pigs experimentally infected with swine influenza virus (SIV) subtype H1N2 by immunohistochemistry. Five pigs each from the infected and non-infected group were euthanized 1, 3, 5, 7, and 10?days post-inoculation (dpi). Immunohistochemical reactivity was mainly seen in neutrophils. The score for pulmonary histopathological lesions correlated with the score for MPO immunohistochemical reactivity (r ( s )?=?0.962, P?相似文献   

17.
18.
为获得H1N1亚型猪流感病毒(SIV)血凝素(HA)蛋白的单克隆抗体(McAb),选取A/swine/NanChang/H1N1/2009毒株,病毒经增殖、超速离心后,收集病毒粒子作为免疫原,将SIV粒子包被建立了间接ELISA方法。将免疫4次的BALB/c小鼠,经间接ELISA测定小鼠血清效价,将效价高的小鼠脾细胞与骨髓瘤细胞(sp2/0)进行融合。采用间接ELISA的方法筛选效价高的阳性细胞孔,采用有限稀释法进行3轮亚克隆,得到了5株杂交瘤细胞株,分别命名为2C6、5G5、1D5、3G3、4F11。随后对5株杂交瘤细胞的亚型进行鉴定,显示2C6、1D5、4F11为IgM亚型,5G5、3G3为IgG1亚型,5株杂交瘤的L链均为k链。间接免疫荧光(IFA)和Western blot检测表明,5G5能够与HA蛋白发生特异性的结合。本研究为进一步建立H1亚型SIV的相关检测方法及对HA蛋白的功能研究奠定基础。  相似文献   

19.
为了解猪流感病毒(SIV)的变异情况,我们2009年11月从河北某养殖场采集呈流感症状的猪鼻拭子40份,接种10日龄SPF鸡胚,分离到一株猪流感病毒,通过RT-PCR和血凝抑制试验鉴定为H1N1亚型,命名为A/swine/Hebei/15/2009(H1N1),其全基因序列测定及同源性分析发现,8个基因片段均与2000年左右H1N1人流感病毒有较高的同源性。系统遗传演化显示,该病毒分离株是由2000年人源H1N1流感病毒A/Dunedin/2/2000(H1N1)进化而来。抗原性分析显示该株与甲型H1N1流感病毒和经典H1N1病毒株抗原性差异较大。对小鼠致病性试验表明该病毒株可以直接感染小鼠并导致小鼠轻微临床症状和组织病理学变化,但不致死小鼠,表现为低致病性。  相似文献   

20.
为了制备具有HI活性的HI亚型流感病毒特异性单克隆抗体(MAb),本研究以H1N1亚型猪流感病毒(SIV)株A/Swine/Guangdong/718/01(H1N1)为免疫原,免疫BALB/c小鼠,经常规细胞融合后,血凝抑制(HI)方法进行检测,融合细胞经稀释克隆纯化后,获得11株能稳定分泌抗血凝素特异性HI MAb的杂交瘤细胞株。鉴定表明,所获MAb与其他具有血凝活性的病毒以及其他14个HA亚型的流感病毒均不具有HI交叉反应,表明这11株MAb均具有良好的流感病毒亚型特异性。其中A6F、2BBF和2BB与其他H1亚型流感病毒分离株的HI试验证实我国不同地区分离株之间的抗原性存在一定差异。11株MAb对H1SIV抗原的HI试验结果显示其HI效价有明显差异。叠加实验表明这些MAb分别识别HA抗原的不同表位。间接免疫荧光试验表明,2BBF、8HB、1DH、7FC和2BB均可与2009年流行H1N1病毒A/California/04/2009HA抗原发生特异性反应。这些MAb特异性的研制为H1亚型流感病毒的疫情病原学快速诊断以及病毒抗原性变异的相关研究提供了物质基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号