首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Increasing oxidative stress is intimately involved in the pathogenesis of lung failure. Nuclear factor-erythroid 2 related factor 2 (Nrf2) is a key element in redox homeostasis. Nrf2 regulates antioxidant-associated genes that are often the target of phytochemicals in chemoprevention. This study evaluated the effect of diallyl sulfide (DAS), which is present in garlic, on the expression of antioxidant enzymes in the rat lung and the Nrf2 modulation in MRC-5 lung cells. DAS increased the activities of glutathione S-transferase, glutathione reductase, and catalase as well as the GSH/GSSG ratio compared with the lung of untreated control rats (p < 0.05). The pulmonic superoxide dismutase, glutathione peroxidase, NAD(P)H:quinone oxidoreductase 1, and catalase mRNA levels were also significantly increased (p < 0.05) after DAS treatment. Following DAS treatment, DAS level was measured in the plasma after 7 days of oral administration, and the C(max) value was 15 ± 4.2 μM. The total amount of pulmonic Nrf2 and the nuclear translocation of Nrf2 were elevated in DAS-treated rats, clarifying the effect of DAS on the modulation of antioxidant enzymes. Furthermore, DAS could induce nuclear translocation of Nrf2 via ERK/p38 signaling pathway in lung MRC-5 cells. This study demonstrates that DAS administration can significantly induce the activity of antioxidant enzymes in rat lungs and suggests a possible use for DAS as a dietary preventive agent against oxidative stress-induced lung injury.  相似文献   

2.
Chalcones have been described to represent cancer chemopreventive food components that are rich in fruits and vegetables. In this study, we examined the anti-oral cancer effect of flavokawain B (FKB), a naturally occurring chalcone isolated from Alpinia pricei (shell gingers), and revealed its molecular mechanism of action. Treatment of human oral carcinoma (HSC-3) cells with FKB (1.25-10 μg/mL; 4.4-35.2 μM) inhibited cell viability and caused G(2)/M arrest through reductions in cyclin A/B1, Cdc2, and Cdc25C levels. Moreover, FKB treatment resulted in the induction of apoptosis, which was associated with DNA fragmentation, mitochondria dysfunction, cytochrome c and AIF release, caspase-3 and caspase-9 activation, and Bcl-2/Bax dysregulation. Furthermore, increased Fas activity and procaspase-8, procaspase-4, and procaspase-12 cleavages were accompanied by death receptor and ER-stress, indicating the involvement of mitochondria, death-receptor, and ER-stress signaling pathways. FKB induces apoptosis through ROS generation as evidenced by the upregulation of oxidative-stress markers HO-1/Nrf2. This mechanism was further confirmed by the finding that the antioxidant N-acetylcysteine (NAC) significantly blocked ROS generation and consequently inhibited FKB-induced apoptosis. Moreover, FKB downregulated the phosphorylation of Akt and p38 MAPK, while their inhibitors LY294002 and SB203580, respectively, induced G(2)/M arrest and apoptosis. The profound reduction in cell number was observed in combination treatment with FKB and Akt/p38 MAPK inhibitors, indicating that the disruption of Akt and p38 MAPK cascades plays a functional role in FKB-induced G(2)/M arrest and apoptosis in HSC-3 cells.  相似文献   

3.
4.
The cruciferous vegetables such as Chinese cabbages and broccoli are known to have anticancer phytochemicals, and the consumption of cruciferous vegetables has been proposed to protect against various cancers. The anticarcinogenic properties of some Chinese cabbage extracts and sulforaphane glucosinolate (SFN) were assessed by examining their ability to prevent the inhibition of gap junctional intercellular communication (GJIC) induced by hydrogen peroxide (H2O2) in WB-F344 normal rat liver epithelial cells. The cells were preincubated with Chinese cabbage extracts and SFN for 24 h followed by cotreatment with cells and H2O2 (750 microM) for 1 h. Chinese cabbage extracts and SFN prevented the inhibition of GJIC and phosphorylation of gap junction protein connexin43 (Cx43) by H2O2 treatment. Chinese cabbage extracts and SFN were able to prevent the inhibition of GJIC through the blocking of Cx43 phosphorylaton and inactivation of ERK 1/2 and p38 MAP kinase. The results suggest that cruciferous vegetables and their components, SFN, may exert the anticancer effect by targeting the GJIC as a functional dietary chemopreventive agent.  相似文献   

5.
Hydroxytyrosol (HT), a phenolic compound in olive oil and leaves, has been reported to prevent various human pathologies including cardiovascular diseases. This study investigated the effects of HT on proliferation and protection against oxidative stress-induced damage in vascular endothelial cells (VECs) and the molecular mechanism(s) involved. Treatment of VECs with HT increased cell proliferation, promoted wound repair, and protected cells against H(2)O(2) cytotoxicity through the activation of Akt and ERK1/2, but not p38 MAPK. HT increased the expression and nuclear translocation of nuclear factor-E2-related factor-2 (Nrf2). Nrf2 expression was attenuated by LY294002 and U0126, inhibitors of phosphatidylinositol-3-kinase and MEK1/2, respectively. Nrf2 siRNA decreased both proliferative and cytoprotective effects of HT and abrogated HO-1 induction. Moreover, HO-1 inhibition with HO-1 siRNA or zinc protoporphyrin IX significantly prevented HT-induced cell proliferation, cytoprotection, and reduction in intracellular reactive oxygen species (ROS), suggesting that HO-1 is involved in these HT functions. The findings demonstrate that HT positively regulates the antioxidant defense system in VECs through the activation of Nrf2 followed by cell proliferation and resistance to vascular injury. The present study provides a molecular basis for the contribution of HT in the Mediterranean diet to the prevention of cardiovascular diseases.  相似文献   

6.
To determine whether fucoxanthin, a major carotenoid in brown sea algae, may activate cellular antioxidant enzymes via up-regulation of the Nrf2/antioxidant-response element (ARE) pathway, we incubated mouse hepatic BNL CL.2 cells with fucoxanthin (0.5-20 μM) for 0-24 h. We found that fucoxanthin (≥5 μM) significantly increased cellular reactive oxygen species (ROS) at 6 h of incubation, whereas preincubation with α-d-tocopherol (30 μM) significantly attenuated the increase of ROS, indicating the pro-oxidant nature of fucoxanthin. Fucoxanthin significantly increased the phosphorylation of ERK and p38 and markedly increased nuclear Nrf2 protein accumulation after incubation for 12 h. Moreover, fucoxanthin significantly enhanced binding activities of nuclear Nrf2 with ARE and increased mRNA and protein expression of HO-1 and NQO1 after incubation for 12 h. siRNA inhibition of Nrf2 led to markedly decreased HO-1 and NQO1 protein expression. Thus, fucoxanthin may exert its antioxidant activity, at least partly, through its pro-oxidant actions.  相似文献   

7.
8.
9.
The objective of this study was to investigate the antiproliferative effect and the mechanism of the methanol extracts of mycelia (MEM) form Antrodia camphorata in submerged culture toward HepG2 cells. The results showed that MEM-induced cell apoptosis involved up-regulation of Fas and down-regulation of Bcl-2, DR3, DR4, TNFRI, and TNFRII in HepG2 cells, while no changes on the levels of Bax, Bid, Bad, and Bak protein were observed. On the basis of these results, the involvement of the Fas/Fas ligand (FasL) death-receptor pathway, in MEM-induced apoptosis in HepG2 cells, was investigated. The apoptosis inducing activity was significantly enhanced by a Fas activator and inhibited by a Fas antagonist. To know about the effect of MEM on the activation of the apoptotic pathway, the adenovirus transfected with Bcl-2 was infected on HepG2 cells. The data showed that the percentage of apoptotic cells induced by MEM in Bcl-2-infected HepG2 (Bcl-2 overexpression) was not significantly different from that of uninfected HepG2. These results demonstrate that MEM induces HepG2 apoptosis through inhibition of cell growth and up-regulation of Fas/FasL to activate the pathway of caspase-3 and -8 cascades.  相似文献   

10.
Selenocystine (SeC) is a nutritionally available selenoamino acid with selective anticancer effects on a number of human cancer cell lines. The present study shows that SeC inhibited the proliferation of human breast adenocarcinoma MCF-7 cells in a time- and dose-dependent manner, through the induction of cell cycle arrest and apoptotic cell death. SeC-induced S-phase arrest was associated with a marked decrease in the protein expression of cyclins A, D1, and D3 and cyclin-dependent kinases (CDKs) 4 and 6, with concomitant induction of p21waf1/Cip1, p27Kip1, and p53. Exposure of MCF-7 cells to SeC resulted in apoptosis as evidenced by caspase activation, PARP cleavage, and DNA fragmentation. SeC treatment also triggered the activation of JNK, p38 MAPK, ERK, and Akt. Inhibitors of ERK (U0126) and Akt (LY294002), but not JNK (SP600125) and p38 MAPK (SB203580), suppressed SeC-induced S-phase arrest and apoptosis in MCF-7 cells. The findings establish a mechanistic link between the PI3K/Akt pathway, MAPK pathway, and SeC-induced cell cycle arrest and apoptosis in MCF-7 cells.  相似文献   

11.
We have previously demonstrated that sulforaphane is a potent inducer for thioredoxin reductase in HepG2 and MCF-7 cells (Zhang et al. Carcinogenesis 2003, 24, 497-503; Wang et al. J. Agric. Food Chem. 2005, 53, 1417-1421). In this study, we have shown that sulforaphane is not only an inducer for thioredoxin reductase but also an inducer for its substrate, thioredoxin in HepG2, and undifferentiated Caco-2 cells. Sulforaphane acts at two levels in the regulation of thioredoxin reductase/thioredoxin system by the upregulation of the expression of both the enzyme and the substrate. In human hepatoma HepG2 cells, sulforaphane induced thioredoxin reductase mRNA and protein by 4- and 2-fold, respectively, whereas thioredoxin mRNA was induced 2.9-fold and thioredoxin protein was unchanged in whole cell extracts, but an increase in nuclear accumulation (1.8-fold) was observed. Moreover, the induction of thioredoxin reductase was found faster than that of thioredoxin. The effects of PI3K and MAPK kinase inhibitors, LY294002, PD98059, SP600125, and SB202190, have been investigated on the sulforaphane-induced expression of thioredoxin reductase and thioredoxin. PD98059 abrogates the sulforaphane-induced thioredoxin reductase at both mRNA and protein levels in HepG2 cells, although other inhibitors were found less effective. However, both PD98059 and LY294002 significantly decrease thioredoxin mRNA expression in HepG2 cells. None of the inhibitors tested were able to modulate the level of expression of either thioredoxin reductase mRNA or protein in Caco-2 cells suggesting that there are cell-specific responses to sulforaphane. In summary, the dietary isothiocyanate, sulforaphane, is important in the regulation of thioredoxin reductase/thioredoxin redox system in cells.  相似文献   

12.
Hispolon is an active phenolic compound of Phellinus igniarius , a mushroom that has recently been shown to have antioxidant, anti-inflammatory, and anticancer activities. This study investigated the antiproliferative effect of hispolon on human hepatocellular carcinoma Hep3B cells by using the MTT assay, DNA fragmentation, DAPI (4,6-diamidino-2-phenylindole dihydrochloride) staining, and flow cytometric analyses. Hispolon inhibited cellular growth of Hep3B cells in a time-dependent and dose-dependent manner, through the induction of cell cycle arrest at S phase measured using flow cytometric analysis and apoptotic cell death, as demonstrated by DNA laddering. Hispolon-induced S-phase arrest was associated with a marked decrease in the protein expression of cyclins A and E and cyclin-dependent kinase (CDK) 2, with concomitant induction of p21waf1/Cip1 and p27Kip1. Exposure of Hep3B cells to hispolon resulted in apoptosis as evidenced by caspase activation, PARP cleavage, and DNA fragmentation. Hispolon treatment also activated JNK, p38 MAPK, and ERK expression. Inhibitors of ERK (PB98095), but not those of JNK (SP600125) and p38 MAPK (SB203580), suppressed hispolon-induced S-phase arrest and apoptosis in Hep3B cells. These findings establish a mechanistic link between the MAPK pathway and hispolon-induced cell cycle arrest and apoptosis in Hep3B cells.  相似文献   

13.
Monascus pigments have been reported to possess anticancer effects in various cancer cells; however, the molecular mechanisms of their anticancer properties remain largely unknown. Monascuspiloin is an analogue of the Monascus pigment monascin, and its anticancer growth activity against human prostate cancer cells was evaluated using in vitro and in vivo models. Monascuspiloin effectively inhibits the growth of both androgen-dependent LNCaP and androgen-independent PC-3 human prostate cancer cells. Monascuspiloin preferentially induces apoptosis in LNCaP cells by attenuating the PI3K/Akt/mTOR pathway. In androgen-independent PC-3 cells, monascuspiloin induces G2/M arrest and autophagic cell death by an AMPK-dependent pathway. Induction of autophagy in PC-3 cells further sensitizes cells to apoptosis induced by monascuspiloin. Monascuspiloin inhibits tumor growth in nude mice bearing PC-3 xenografts through induction of apoptosis and autophagy. This study is the first to demonstrate that monascuspiloin has therapeutic potential for the treatment of both androgen-dependent and -independent human prostate cancers.  相似文献   

14.
Cocoa powder is rich in polyphenols, such as catechins and procyanidins, and has been shown to inhibit low-density lipoprotein (LDL) oxidation and atherogenesis in a variety of models. Human studies have also shown daily intake of cocoa increases plasma high-density lipoprotein (HDL) and decreases LDL levels. However, the mechanisms responsible for these effects of cocoa on cholesterol metabolism have yet to be fully elucidated. The present study investigated the effects of cacao polyphenols on the production of apolipoproteins A1 and B in human hepatoma HepG2 and intestinal Caco2 cell lines. The cultured HepG2 cells or Caco2 cells were incubated for 24 h in the presence of cacao polyphenols such as (-)-epicatechin, (+)-catechin, procyanidin B2, procyanidin C1, and cinnamtannin A2. The concentration of apolipoproteins in the cell culture media was quantified using an enzyme-linked immunoassay, and the mRNA expression was quantified by RT-PCR. Cacao polyphenols increased apolipoprotein A1 protein levels and mRNA expression, even though apolipoprotein B protein and the mRNA expression were slightly decreased in both HepG2 cells and Caco2 cells. In addition, cacao polyphenols increased sterol regulatory element binding proteins (SREBPs) and activated LDL receptors in HepG2 cells. These results suggest that cacao polyphenols may increase the production of mature form SREBPs and LDL receptor activity, thereby increasing ApoA1 and decreasing ApoB levels. These results elucidate a novel mechanism by which HDL cholesterol levels become elevated with daily cocoa intake.  相似文献   

15.
Cordycepin, a nucleoside isolated from Cordyceps sinensis, is an inhibitor of polyadenylation and has an antitumor effect. We used CGTH W-2, a follicular thyroid carcinoma cell line, to study the mechanism of the anticancer effect of cordycepin. Cordycepin decreased cell viability and resulted in apoptosis but not necrosis. Cordycepin increased intracellular calcium levels triggering calpain activation, which led to apoptosis. BAPTA/AM and calpeptin inhibited the cordycepin-induced cleavage of caspase 7 and poly (ADP-ribose) polymerase (PARP), implying an upstream role of calcium and calpain. CGTH W-2 cells expressed four subtypes of adenosine receptors (AR), A1AR, A2AAR, A2BAR, and A3AR. Specific antagonists to AR subtypes all blocked cordycepin-induced apoptosis to different degrees. Small interfering RNA for A1AR and A3AR abrogated cordycepin-induced apoptosis. In conclusion, the cordycepin-induced apoptosis of CGTH W-2 cells is mediated by the calcium-calpain-caspase 7-PARP pathway, and ARs are involved in the apoptotic effect of cordycepin.  相似文献   

16.
Berberine (BBR) is a natural alkaloid with significant antitumor activities against many types of cancer cells. This study investigated the molecular mechanisms by which BBR suppresses the growth of HER2-overexpressing breast cancer cells. The results show that BBR induces G1-phase cell cycle arrest by interfering with the expression of cyclins D1 and E and that it induces cellular apoptosis through the induction of a mitochondria/caspase pathway. The data also indicate that BBR inhibits cellular growth and promotes apoptosis by down-regulating the HER2/PI3K/Akt signaling pathway. Furthermore, it is also shown that a combination of taxol and BBR significantly slows the growth rate of HER2-overexpressing breast cancer cells. In conclusion, this study suggests that BBR could be a useful adjuvant therapeutic agent in the treatment of HER2-overexpressing breast cancer.  相似文献   

17.
Substantial activation of the HGF/c-Met signaling pathway is involved in the progression of several types of cancers and associated with increased tumor invasion and metastatic potential. Underlying HGF-induced tumorigenesis, epithelial to mesenchymal transition (EMT) shows a positive correlation with progression in patients. We previously determined that osthole is a potent fatty acid synthase (FASN) inhibitor. FASN is implicated in cancer progression and may regulate lipid raft function. We therefore examined whether osthole could block HGF-induced tumorigenesis by disrupting lipid rafts. Here, we found that osthole could abrogate HGF-induced cell scattering, migration, and invasion in MCF-7 breast cancer cells. Osthole also effectively inhibited the HGF-induced decrease of E-cadherin and increase of vimentin via down-regulation of phosphorylated Akt and mTOR. Interestingly, osthole blocked HGF-induced c-Met phosphorylation and repressed the expression of total c-Met protein in MCF-7 cells. In addition, C75, a pharmacological inhibitor of FASN, repressed the expression of total c-Met protein in MCF-7 cells. Consistent with a role for FASN, loss of c-Met in cells treated with osthole was prevented by the exogenous addition of palmitate. Briefly, our result suggests a connection between FASN activity and c-Met protein expression and that osthole is a potential compound for breast cancer therapy by targeting the major pathway of HGF/c-Met-induced EMT.  相似文献   

18.
The 4-acetylantroquinonol B isolated from the mycelium of Antrodia cinnamomea could inhibit proliferation of hepatocellular carcinoma cells HepG2 with IC(50) 0.1 μg/mL. When the HepG2 cells were treated with 4-acetylantroquinonol B for 72 h, the proportion of cells in the G1 phase of the cell cycle increased and that in the S phase decreased significantly, and the proportion of G2/M phase cells were not obviously changed. In addition, the 4-acetylantroquinonol B treatment resulted in the decreases of CDK2 and CDK4, and an increase of p27 in a dose-dependent manner. The protein levels of p53 and p21 proteins were also increased when the cells were treated with low dosage (0.1 μg/mL) of 4-acetylantroquinonol B. Higher dosages, however, decreased the expression of p53 and p21 proteins. Assay of RT-PCR indicated that, corresponding to the increases of p53 and p21 proteins at the dosage of 0.1 μg/mL, the mRNAs of p53 and p21 showed 1.66- and 1.61-fold upregulations, respectively. Corresponding to the decreases of CDK2 and CDK4 proteins, the mRNAs of CDK2 and CDK4 showed -1.02- and -1.13-fold downregulations, respectively. However, level of p27 mRNA showed -1.2-fold downregulation in spite of the increase in p27 protein. This observation, again, confirms the fact that the p27 gene rarely undergoes homozygous inactivation in cancer cells. Our finding suggested that the 4-acetylantroquinonol B inhibits proliferation of HepG2 cells via affecting p53, p21 and p27 proteins, and can be considered as a potential cancer drug.  相似文献   

19.
To study the potential hepatic metabolism of olive oil phenols, human hepatoma HepG2 cells were incubated for 2 and 18 h with hydroxytyrosol, tyrosol, and hydroxytyrosyl acetate, three phenolic constituents of olive oil. After incubation, culture media and cell lysates were hydrolyzed with beta-glucuronidase and sulfatase and analyzed by LC-MS. In vitro methylation, glucuronidation, and sulfation of pure phenols were also performed. Methylated and glucuronidated forms of hydroxytyrosol were detected at 18 h of incubation, together with methylglucuronidated metabolites. Hydroxytyrosyl acetate was largely converted into free hydroxytyrosol and subsequently metabolized, yet small amounts of glucuronidated hydroxytyrosyl acetate were detected. Tyrosol was poorly metabolized, with <10% of the phenol glucuronidated after 18 h. Minor amounts of free or conjugated phenols were detected in cell lysates. No sulfated metabolites were found. In conclusion, olive oil phenols can be metabolized by the liver as suggested by the results obtained using HepG2 cells as a hepatic model system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号