首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
生物质制乙醇预处理方法的研究进展   总被引:1,自引:0,他引:1  
【目的】为应对日益严峻的能源和环境污染问题,综述了木质纤维生物质制备乙醇的原料预处理方法,为广大科研工作者提供了该研究领域的最新研究进展,展望了可再生木质纤维原料高值化利用的新思路和新技术.【方法】查阅了国内外生物质原料预处理制备生物乙醇的主要研究方法,并进行了归纳总结,提出各种预处理方法存在的优缺点.【结果和结论】利用可再生的木质纤维生物质发酵制取乙醇得到了广泛的研究,由于木质纤维原料结构复杂,直接转化效率低,木质素和半纤维素水解产物对纤维素水解和发酵具有明显的抑制作用.木质纤维原料预处理是提高乙醇得率的有效途径,通过预处理,去除植物细胞壁中木质素和半纤维素组分,降低木质素和半纤维素水解产物对后续乙醇发酵的抑制作用,同时降低纤维素结晶度,提高原料的多孔性,从而提高纤维素酶对纤维素的水解效率.  相似文献   

2.
紫花苜蓿(Medicago sativa L.)生物能源利用的研究进展   总被引:3,自引:1,他引:2  
紫花苜蓿(Medicago sativa L.)适应性强、生物质产量高,茎可用于生产酒精,叶片可用于家畜饲料,是最具开发潜力的能源植物之一。本文从紫花苜蓿生物能源利用角度出发,系统回顾了近年来紫花苜蓿作为能源植物在种质资源评价、细胞壁主要成分(纤维素、半纤维素、木质素)合成途径及其遗传调控以及栽培管理对酒精生产效率的影响等方面的研究进展,重点讨论了苜蓿细胞壁发育和木质素生物合成基因及其调控效应,并对紫花苜蓿作为能源植物的研发前景进行了展望。  相似文献   

3.
化石燃料的持续开采与使用对环境产生了严重的负面影响,使得开发可再生清洁能源代替传统能源成为必然。木质纤维素是一种丰富的可再生资源,可转化为生物乙醇、氢气等生物质燃料,被认为是代替化石燃料的理想替代品。其中木质纤维原料转化为生物乙醇需经过预处理、酶水解以及微生物发酵这3个关键步骤,而纤维素酶水解通常会受到酶、水解条件、底物等诸多因素的影响。针对木质素对纤维素酶水解的影响研究进行综述,大量研究发现,木质素是纤维素酶水解过程中的主要抑制剂。木质素既可以吸附纤维素酶,与纤维素酶发生无效吸附;又可以作为物理屏障,阻碍酶对纤维素的生产性吸附。尽管通过预处理可以去除大部分的木质素,但依旧无法从根源上缓解木质素对纤维素酶水解的影响,研究木质素的结构单元对酶解效率的影响可能是当前生物乙醇转化中木质素在纤维素酶水解中的研究方向。  相似文献   

4.
在能源问题日益紧张的时局下,寻求可再生的清洁能源成为目前亟待解决的关键问题,而乙醇燃料无疑是化石类能源的最佳替代能源。生物质转化为生物乙醇(简称B2B)工艺无论是从可行性、清洁性抑或是经济性来看都具有可大规模工业化应用的前景。基于木质纤维素物质来源广、成本低等特点,这类原料制备生物乙醇的研究取得了很大的进展。详细综述了木质纤维素类生物质转化生物乙醇中的预处理工艺进展和发展方向,并对各种预处理工艺的优缺点进行了论述,此外,对于双螺杆挤出爆破工艺也进行了详细阐释。  相似文献   

5.
木质纤维素预处理技术研究进展   总被引:3,自引:0,他引:3  
预处理木质纤维素是实现生物质转化为燃料乙醇的关键步骤,直接影响着木质纤维素水解效率和乙醇的生产成本。介绍了国内外几种木质纤维素预处理技术现状,评述了木质纤维素转化为乙醇的工艺特点和经济性,综述了几种极具经济潜力的预处理技术。  相似文献   

6.
木质纤维素是自然界含量丰富的可再生能源,可转化为生物燃料及其他化工产品,有望代替传统化石燃料,助力碳达峰。但木质纤维素拥有复杂的化学结构,在合理利用前需进行预处理。传统预处理方法存在工艺复杂、成本高等问题。而深度共熔溶剂(DES)作为一种新型的预处理生物质溶剂,在生物质分离方面具有巨大潜力,已得到众多科研工作者认可。本文综述了DES预处理木质纤维素相关研究,对DES进行了详细介绍及分类,根据化学组成将其分为Ⅰ、Ⅱ、Ⅲ、Ⅳ型4种类型的DES。阐明了DES预处理木质纤维素三大组分(木质素、半纤维素、纤维素)的作用机制。并分别对DES预处理木质纤维素三大组分的研究进展进行了总结。在去除木质素时,采用酸度较强的物质作为氢键供体(HBD)制备DES或者选用羧基、胺/酰胺基类DES对木质素的去除效果会更好。另外,相较于纯DES,加水会降低DES的黏度,有利于木质素的溶解。但过量的水会降低DES中氢键的数量,反而不利于木质素的溶解。关于DES分离半纤维素的研究目前大多数集中于预处理条件优化等方面,众多研究表明,以氯化胆碱为氢键受体(HBA)的DES去除半纤维素能力更强。通常情况下,DES在分离三大组...  相似文献   

7.
木质纤维素生物质是价廉易得、来源丰富的可再生资源和能源,被纤维素酶转化后可以生产乙醇部分替代石油,这不仅有利于环境保护和资源再利用,而且可减少温室气体的排放和缓解化石能源的危机。纤维素酶成本的降低以及纤维素转化效率的提高是纤维素酶转化木质纤维素生物质生产乙醇的关键。本文综述了纤维素酶转化木质纤维素生物质生产乙醇的研究进展,主要包括纤维素酶的分类及其作用机制、纤维素酶的生产、木质纤维素生物质的预处理、纤维素酶的转化和糖化发酵乙醇工艺。  相似文献   

8.
促进木质纤维素类生物质酶解的预处理技术综述   总被引:4,自引:0,他引:4  
木质纤维素类生物质是通过微生物作用转化为乙醇和氢能的可再生糖资源,酶解木质纤维素是它向乙醇和氢能转化的第1步,但是由于木质纤维素类生物质的高稳定性,要得到较高的酶解率就必须先进行预处理.本研究主要总结了机械粉碎预处理、辐射预处理、稀酸预处理、碱预处理、氧化预处理、高温液态水预处理、蒸汽爆破预处理和生物预处理这些对木质纤...  相似文献   

9.
全球气候变暖和自然资源的枯竭,纤维素生物酒精研究是热点之一。纤维素生物质作为生产生物酒精的原料,转化技术难度大,尚不成熟。该文主要对纤维素生物质生物酒精生产过程进行了分析,提出有待解决的问题,并讨论关键技术。得出生物质机械化收集方式能有效保证生物质原料的数量和减少原料成本;通过基因工程途径构建生产纤维素酶提高酶适应性和活性,加快水解效率和增强耐热性能;开发节能精馏装置和注重转化后废物利用。农业工程、生物化学、基因工程等多学科的综合发展将实现纤维素生物酒精工业化。  相似文献   

10.
为探讨不同品系象草的生物产量及生物乙醇生产潜力,以不同品系象草为材料,研究不同品系象草的生物产量及利用干物质组成分中纤维素、半纤维素含量计算乙醇理论产量,并进行比较,旨在为象草作为生物质能源开发利用的品种选择提供技术指导。结果表明,不同品系象草株高、分蘖数、茎叶比等指标均存在品系间显著或极显著差异,总体趋势是植株高大、分蘖数较少的品系生物产量高;结构组成中纤维素、半纤维素和木质素含量在不同品系间存在显著或极显著差异。综合不同品系的生物产量及生物乙醇产量表现,品系P118、P115和P33表现较好,具有较高的木质纤维素乙醇生产潜力,可作为生物质能源植物新品种开发利用。  相似文献   

11.
正为全面落实生物质能源科技发展"十二五"规划要求,满足社会发展对现代农业的战略需求,围绕进一步提升生物质能源利用技术水平,2012年国家863计划现代农业技术领域启动了由中国科学院广州能源研究所牵头的主题项目"纤维素类生物质高效转化利用技术",该项目已于2016年6月28日在京通过技术验收。该项目从草本能源植物的高效培育及原料预处理技术研究出发,以纤维素高效转化、生物燃料高效  相似文献   

12.
秸秆类生物质是一种廉价、可持续、丰富的可再生原料,其高值化利用是当今世界的研究热点,其预处理过程是生物质向糖类、生物燃料等附加值产品转化的关键步骤。对近年来秸秆类生物质预处理技术进行了综述,介绍了物理法、化学法以及生物法等预处理方法,为有效分离半纤维素、纤维素和木质素提供参考,并总结了各种预处理方法的优缺点,对未来预处理的研究方向进行了展望。  相似文献   

13.
生物质资源是地球上含量丰富的资源之一,生物质中蕴含着大量化学能。因此,高效地利用生物质资源能有效缓解当今世界承受的能源压力。但由于木质纤维素复杂的包裹结构很大程度上阻碍了生物质资源的能源化利用,所以学者们不断探索出更高效的处理方式来打破木质纤维素的复杂结构,便于其进一步转化利用。为提高玉米秸秆的综合利用率,降低预处理成本,采用低过氧化氢浓度的芬顿试剂对玉米秸秆进行预处理,以纤维素酶酶解后的还原糖产量和秸秆中木质素的相对含量变化来评价预处理效果;并通过傅立叶红外光谱(FTIR)、X-射线(X-Ray)等技术手段从官能团的变化、纤维素晶体的结晶度变化两方面对芬顿试剂预处理玉米秸秆的机理进行了进一步解析验证。结果表明:采用0.2mol·L-1的Fe2+、0.2%H2O2组合处理玉米秸秆24h,酶解72h后酶解液中还原糖的浓度是未处理秸秆的1.21倍,预处理后纤维素的结晶度下降7%,酸不溶木质素的相对含量下降16.27%。可见采用低浓度的芬顿试剂预处理玉米秸秆是一种有效的方法,且操作简单、反应时间短。  相似文献   

14.
木质纤维素预处理研究进展   总被引:1,自引:0,他引:1  
木质纤维素主要由纤维素、半纤维素、木质素等成分构成,将纤维素水解成葡萄糖,进而可以发酵生成乙醇等生物化工产品。纤维素、半纤维素、木质素三者以复杂的结构关系缠绕在一起。这种结构阻碍了纤维素的有效水解,这就需要进行预处理,才能使纤维素得到更充分的水解。预处理主要包括物理法,化学法,生物法,文章对这3种预处理方式进行详细介绍。  相似文献   

15.
棘孢木霉1285对麦秸的降解及厌氧发酵的影响   总被引:1,自引:0,他引:1  
为了提高秸秆厌氧发酵产气效率,本研究以1株新分离的秸秆降解菌棘孢木霉(Trichoderma asperellum1285)对麦秸木质纤维进行生物预处理,研究T.asperellum 1285对麦秸木质纤维的降解效果,并确定最佳的生物预处理时间;随后将生物预处理的秸秆原料用于中温[(37±1)℃]厌氧发酵产沼气研究。结果显示:T.asperellum1285对麦秸的木质纤维具有较好的降解能力,可有效降解木质素,保留纤维素并降低干物质损失率,降解预处理8d时,木质素损失率比对照组提高了53.09%,而干物质损失率、半纤维素损失率、纤维素损失率分别比对照组降低了55.89%、16.08%、50.91%;扫描电镜、红外光谱结果进一步证明麦秸经T.asperellum 1285预处理,木质素可被有效降解而纤维素保留并暴露在外。将经过T.asperellum1285生物预处理8 d后的麦秸用于中温厌氧消化产沼气,总产气量和总产甲烷量分别为(14 774.30±216.56)ml、(7 638.90±165.36)ml,较未经过生物预处理的对照组分别提高14.05%、16.01%。表明麦秸经T.asperellum 1285预处理可有效提高麦秸厌氧发酵产气效率。  相似文献   

16.
以甜高粱品种能饲一号为野生型构建EMS化学诱变突变体库,通过分析突变体可溶性糖含量、生物质总量和生物质酶解产糖效率,观察农艺性状,并测定秸秆细胞壁结构组成,筛选得到3份特异突变体材料:SM83、SM197、SM305。3份突变体除生物量皆显著提高以外,SM197与SM305半纤维素含量显著升高,而木质素和纤维素含量明显降低,导致生物质酶解产糖效率大大提高。此外,SM83的产糖效率与常规品种(对照)无显著差异,但其可溶性糖含量比野生型增加14.99%。故筛选到的甜高粱突变体是理想的生物能源种质材料,可用于优质能源甜高粱品种的培育。  相似文献   

17.
生物质燃料乙醇是可转化的、目前世界上使用规模最大的可再生资源,而木质纤维原料是燃料乙醇的主要来源,木质纤维原料的预处理工艺,是得到生物质生产乙醇的重要工艺,目前主要有物理法、化学法、物理——化学法和生物法等预处理工艺,其中大部分可广泛应用于农业、能源、林业、生物等领域,是前景广阔的生物质预处理技术。本文从开发新能源的大环境出发,介绍了各种预处理对底物的影响、利弊,并指出预处理技术的研究方向。  相似文献   

18.
水稻脆茎突变体是一种重要的种质资源。为研究该突变体在能源作物培育中的利用潜力,比较分析了10个突变体及其野生型品种日本晴(NPB)在物理特性、细胞壁组成、农艺性状、生物质降解效率等方面的差异。结果表明:水稻脆茎突变体生长发育正常,但茎秆抗张力和株高低于NPB;茎秆细胞壁纤维素含量降低,半纤维素含量增高,木质素含量增加不显著。细胞壁合成关键基因转录水平的变化与细胞壁组成一致。此外,水稻脆茎突变体的单株穗重与NPB差异不显著,有效穗数增加,生物质产量增加,抗倒伏性显著增强,秸秆易粉碎且在酸、碱预处理及纤维素复合酶酶解条件下的产糖量及纤维素降解效率显著高于NPB。这些特异水稻脆茎突变体的表型优势揭示出其在水稻秸秆利用中的应用潜力,它们可以用于高产、生物质高效降解水稻品种的培育。  相似文献   

19.
能源植物分类及其转化利用   总被引:5,自引:2,他引:3  
能源植物及其生产是生物质能源的发展基础,也有利于减少温室气体排放、发展低碳经济。在分析总结当前国内外能源植物主要概念的基础上,利用植物系统法、光合途径、生活周期和化学成分组成及其利用等方法对能源植物进行了分类。如以化学成分组成及其利用可将能源植物分为糖料植物、淀粉植物、油料植物、含油微藻植物和木质纤维素植物5类,各类能源植物各有其主要特点。对能源作物的转化利用技术及其产品现状和前景进行系统的分析,目前由生物质转化的液体燃料主要包括乙醇、生物柴油和生物质裂解油,由生物质转化的气体燃料包括生物质燃气、沼气和氢气,生物质经压缩成型或炭化工艺可生产生物质颗粒,生物质以热电联产技术经直燃可大规模发电和供暖。  相似文献   

20.
为探讨割手密作为能源植物的产能潜力,从纤维素、半纤维素、木质素、粗灰分和热值等方面对野外收集的割手密资源进行产能潜力评价.结果表明:30份割手密的纤维素和半纤维素总含量为41.75%~69.13%,木质素含量为2.16%~ 11.75%,粗灰分含量为4.79%~9.34%,热值为16.00~17.69 MJ/kg;与其他植物相比,割手密的纤维素和半纤维素含量较高,热值较大,木质素和粗灰分含量较低;从木质纤维素制燃料乙醇的角度出发,割手密作为能源植物进行开发具有很大的潜力;通过聚类将30份割手密种质分为高产能型、中等产能型、低产能型等3种类型.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号