首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 203 毫秒
1.
农用轮式机器人四轮独立转向驱动控制系统设计与试验   总被引:1,自引:8,他引:1  
针对一般农用轮式机器人转向方式单一、难以适应田间复杂作业环境以及推广应用成本较高等问题,该文设计了一种农用轮式机器人四轮独立转向驱动控制系统,采用模块化设计方法构建了该控制系统的底层硬件部分,结合控制器局域网络(controller area network,CAN)总线、串口通讯和传感器技术实现了该机器人移动轮转角、转速等数据的采集功能且应用了有效的硬件电路隔离保护方案;基于低速阿克曼四轮转向模型与比例积分微分(proportion,integration,differentiation,PID)控制算法分析并验证了该机器人四轮独立转向驱动控制策略的有效性。试验结果表明:该机器人能够通过上位机或遥控器实现其四轮独立转向与转速控制功能,移动轮在0~360°转向过程中,控制效果鲁棒性强、稳定且转角控制的最大平均绝对误差为0.10°,通过上位机设定转速后经0.5~1 s左右,移动轮转速达到稳态,并具有较高转速控制精度。该研究为农用轮式机器人的四轮独立转向驱动控制方法提供了参考。  相似文献   

2.
针对四轮独立电驱动高地隙喷雾机因轮毂电机控制器遇到较大扰动无法及时响应而导致的转向不稳定问题,该研究提出了一种液压辅助转向方法。通过对四轮独立电驱动高地隙喷雾机的自转向底盘结构原理的分析,设计了液压辅助转向系统,在此基础上建立了简化二自由度车辆转向模型,用于对辅助转向系统转角控制进行分析,并通过仿真分析和试验验证自转向和辅助转向协调控制性能。四轮电驱动喷雾机分别在自转向系统单独作业以及自转向系统和辅助转向系统协同作业的工况下,以1 m/s的速度分别进行了坡度为15°的下坡转向对比试验和水田转向对比试验。试验结果表明:在下坡试验中,单独自转向系统作业的最大跟踪偏差为6.1°,自转向和辅助转向协同作业的最大跟踪偏差为0.9°;水田试验中,单独自转向系统作业的最大跟踪偏差为10.3°,自转向和辅助转向协同作业的最大跟踪偏差为1.5°。研究结果表明该文所设计的液压辅助转向系统具有可行性和较好的稳定性,能够满足实际作业需求。  相似文献   

3.
针对当前中国自走式蓝莓采收机作业通过性差等问题,建立轮壤接触力学模型,分析车轮驱动力矩、负载、沉陷量及挂钩牵引力等力学行为,得到车轮通过性影响因素为土壤属性、车轮结构参数和行走速度。采用离散元法建立蓝莓采收机轮壤接触模型,以车轮结构参数(宽度195、205、215 mm,直径615、627、639 mm)、行走速度0~11 km/h为试验因素,车轮结构参数或行走速度增加时,车轮阻力矩和土壤波动速度随之增加。依据车轮阻力矩设计行走驱动系统,采用闭式静液压四轮行走驱动系统,通过工况适应性仿真验证各车轮输出特性一致,稳定行走;系统可以克服车轮沉陷,平稳越障。通过样机田间试验得到行走驱动系统满足行驶速度范围0~11 km/h要求,运行平稳;车轮沉陷越障时无非目的性转向偏移,越障时间为3.3 s,与仿真结果一致;行走驱动系统与采收系统匹配性良好,采收效率为7.01 kg/min,果树采净率为92%,果树损伤率为11.5%。研究表明建立的轮壤接触模型可靠,行走驱动系统作业通过性效果好,可为蓝莓采收机研发提供参考。  相似文献   

4.
四橡胶履带轮式车辆转向力学性能分析与试验   总被引:5,自引:4,他引:1  
橡胶履带轮是一种能够与轮胎整体快速互换,降低接地比压、提升越野机动能力的特殊行走装置。该文以某型四橡胶履带轮式车辆转向系统为研究对象,首先通过建立断开式转向梯形机构数学模型,得到内轮、外轮转角与油缸位移关系,以及转角特性曲线;通过转向油压测试,得到两轮和四轮转向时转向油缸输出最大转向驱动力及其随左前轮转向角变化曲线。然后对履带轮在混凝土地面上转向受力分析,建立最大平均转向阻力矩数学模型,得到单轮最大平均转向阻力矩。最后提出了基于转向杆件应力应变测试分析转向阻力矩的方法,得到履带轮在混凝土地面2轮和4轮原地转向时转向阻力矩随转角变化的规律,对比分析最大总转向驱动力矩与总转向阻力矩,验证了数学模型和该分析方法的正确性。该文的研究也可对四履带轮式车辆转向系统的结构参数设计和履带轮的接地尺寸、接地比压、轮系布置研究提供参考。  相似文献   

5.
基于PWM信号的农用柔性底盘驱动与转向协同控制特性试验   总被引:2,自引:2,他引:0  
针对四轮独立驱动独立转向的农用柔性底盘驱动转向时需要同时打开和锁紧电磁摩擦锁的矛盾,该文提出一种基于脉冲宽度调制信号(pulse width modulation,PWM)的电磁摩擦锁控制方法来实现偏置转向轴机构的分时步进驱动和转向,并利用自制偏置转向轴试验台,采用双因素试验测试了PWM波频率和占空比对偏置转向轴电磁摩擦锁脉冲锁紧力矩的影响,采用三元二次正交旋转组合试验测试了分时步进驱动和转向时频率、占空比和轮毂电机转速对转向特性的影响。双因素试验结果表明:频率、占空比及其交互作用对脉冲锁紧力矩均有极显著影响(P0.01);在频率4~24 Hz、占空比20%~80%时,锁紧力矩变化范围为6.822~40.046 N·m;旋转组合试验结果表明:频率、占空比、两者交互作用及轮毂电机初始转速对分时步进转向时转向平均角速度均有显著影响(P0.05),转向平均角速度随占空比和轮毂电机初始转速增大而减小,随频率增大而缓慢增大,在频率4~24 Hz、占空比20%~80%、初始转速30~120 r/min时,转向平均角速度变化范围为0~0.514 rad/s。该结论可为农用柔性底盘驱动与转向协同控制提供参考。  相似文献   

6.
高地面仿形性动力底盘的设计与试验   总被引:4,自引:4,他引:0  
针对一般农业机械动力底盘在丘陵山区行驶、田间作业时,由于地形适应性差以及附着力不足导致车轮打滑,影响整机作业效果等现象,采用地面仿形原理,设计一种全时8轮驱动、5自由度仿形的山地农业机械动力底盘,并对底盘主要结构参数进行了分析计算。试验证明:底盘样机具有良好的地形适应性和通过性,且转向灵活,能够保持良好的附着力,满足在崎岖不平的道路行驶及田间作业要求。  相似文献   

7.
高地隙折腰式水田多功能动力底盘设计与试验   总被引:5,自引:3,他引:2  
针对目前水田农用底盘通用性差、转弯半径大、离地间隙低、田间行驶及爬坡越埂稳定性差等问题,结合东北地区水稻种植模式和农艺要求,该文设计了一种高地隙折腰式水田多功能动力底盘,阐述分析了底盘整体结构、传动系统与工作原理.在静态弯曲和扭转工况下进行了有限元分析,得到了满载量化状态下车架载荷分布和薄弱部位,有限元分析表明:在满载弯曲工况下,车架所受最大应力发生在平衡装置摇摆轴处为130.70 MPa,最大位移发生在后车架发动机安装梁处为1.56 mm;在满载扭转工况下,车架所受最大应力发生在右后悬架与纵梁连接处为255.44MPa,最大位移发生在车架左纵梁与后横梁连接处为9.44 mm,为后续开展车架薄弱区域的改进与轻量化设计提供重要依据.在此基础上,对动力底盘的转向性能、行驶性能和越埂性能进行了理论分析,并以行驶速度、最小转弯半径、最大爬坡角和最大越埂高度为试验指标,进行了田间性能试验.试验结果表明:多功能动力底盘田间道路行驶速度范围为1~14 km/h,水田行驶速度范围为1~6 km/h,水田行驶最小转弯半径为3 200mm,最大爬坡角为56°,最大越埂高度为533mm,整机工作性能满足田间管理作业要求,提高了水田综合作业的高效性和适用性,实现动力底盘的一机多用.该研究可为水田田间管理作业的有效实施提供综合应用平台和技术支撑.  相似文献   

8.
电动轮式移动小车控制系统设计与试验   总被引:8,自引:6,他引:2  
为了实现电动轮式移动小车能在实际不同的负载和路况下可以稳定的运行工作,该文研制了小车的四轮独立驱动的电机驱动和四轮转向控制系统,该系统由主控制芯片STM32F103RCT6对移动小车进行解算得出4个驱动轮的速度,然后对每个驱动电机进行转矩分配,控制4台用于驱动的无刷直流轮毂电机、2台转向直流电机以及2台制动用直流电机,使得小车实现直线行驶、转向和原地转向;通过单片机ATMEGA48PA控制4台无刷直流轮毂电机换相;采用驱动芯片IR2113驱动场效应管FQA140N10,并利用电机内部霍尔传感器输出的脉冲信号检测无刷直流电机的速度,采用放大器LM358搭建过载保护电路。试验结果表明,所开发的小车驱动控制系统实现了四轮电子差速与转矩分配,移动小车能在水泥路面、干泥土路面、斜坡和草地上稳定可靠运行,小车限速20 km/h,爬坡度为8°。在空载情况下能匀速运行8~10 h,带额定负载250 kg情况下能匀速运行4~5 h,有较好的负载性能,满足农业运输及农田作业的需求,减轻人的体力劳动,提高生产效率。该研究可为应用于田间作业的电动移动小车的机械设计及电气控制系统设计提供参考。  相似文献   

9.
高通过性四轮自走式烟草田间作业机的设计   总被引:4,自引:3,他引:1  
针对烟草中后期田间管理迫切需要高通过性动力机械的现状,通过采用拱桥式车架,偏置布置在拱桥式车架一侧的发动机及传动系统,架高转向横拉杆及过桥传动轴等结构措施,设计出高通过性的四轮自走式烟草田间作业机,其最大通过高度1700?mm,变速范围1.0~18?km/h,解决了烟草田间作业动力机械高通过性的技术难题。该机自身可实现植保作业,若悬挂不同的机具可实现耕地、起垄、移栽、铺膜、中耕培土、打顶、采摘烟叶、拔烟秆等多种作业。小批量生产试验表明,该机驾驶劳动强度小,通过性好,对烟叶损伤小,作业效率高。  相似文献   

10.
农用柔性底盘偏置轴转向机构联动耦合控制策略及试验   总被引:1,自引:1,他引:0  
针对农用柔性底盘前轮转向时两偏置轴转向机构难以保持联动关系而影响顺利转弯的问题,基于阿克曼转向几何与交叉耦合控制原理,设计了偏置轴转向机构联动耦合控制策略,采用模糊PID控制算法对两转向轮转角联动轮廓误差进行补偿,并依据方向盘信号大小和变化率对电磁摩擦锁PWM控制信号占空比进行调节,以匹配偏置电动轮转向的角速度,使两转向机构形成耦合而保持期望联动关系;基于MATLAB/Simulink对控制策略进行了仿真,且在硬化路面上实施了阶跃转向、蛇行转向及随机转向3种运动方式的试验验证,并对比分析了转角分配控制下的前轮转向效果。试验结果表明:耦合控制方法下柔性底盘前轮阶跃转向响应均在0.8 s内,左、右侧转角最大超调为1.3°;电磁摩擦锁的开闭可较好匹配电动轮的转向;左、右前轮对于各自目标角具有良好的跟踪性能;3种转向方式下最大与平均跟随误差值均小于分配控制方法;两轮联动的最大与平均转角轮廓误差分别为:阶跃转向1.2°与0.6°、蛇行转向1.1°与0.6°、随机转向1.0°与0.5°;耦合控制下仿真与试验转角的轮廓误差变化趋势一致,最大误差为2.2°,证明仿真模型合理有效。耦合控制下偏置轴转向机构联动控制效果优于转角分配控制,转向效果良好,该文提出的柔性底盘偏置轴转向机构联动耦合控制策略有效且可行。  相似文献   

11.
为研究农用柔性底盘偏置转向轴驱动轮的运动与动力特性,设计了基于偏置转向结构的实验台。该实验台是一种水平转盘式的电动驱动轮性能测试试验台,且转盘的回转轴与偏置转向轴同轴,通过对电动轮及其车叉的试验分析来获取驱动轮的动力与运动参数。利用MATLAB/SIMULINK建立试验台模型并模拟了试验过程;试制了试验台并应用Visual Basic开发了试验台记录软件。在额定转速下进行了不同加载量的性能试验并与模拟结果进行了比较。试验结果表明:加载不同载荷时,电动轮达到稳定转速平均时间稳定为0.667 s;承载载荷500 N时的转向力为77.24 N,且偏置轴转向力与载荷呈线性关系,验证了实验台的可行性及模型的有效性。该研究可为偏置转向轴驱动轮的转向及参数优化提供参考。  相似文献   

12.
小麦播种自走式农用移动平台设计与试验   总被引:2,自引:2,他引:0  
针对农业生产劳动力短缺、人工成本增加和作业效率不高等问题,该研究设计了一种自走式农用移动平台,可更换搭载不同农具进行田间无人驾驶作业,以"机器换人"完成精度高、强度大、重复性强的农业工作。以小麦播种为例,基于全球导航卫星系统(Global Navigation Satellite System, GNSS)定位测速技术、播深控制技术实现自动化播种;采用CAN总线技术、多电机同步驱动技术、差速-电动推杆结合的转向控制方法实现移动平台行走和转向。田间试验结果表明:基于GNSS的电控排种系统稳定可靠,排量稳定性变异系数≤1.8%,播深稳定性系数≥89%.驱动控制系统响应速度快,启动伺服电机2.6 s后实际转速逐渐接近目标转速,同步速度误差变化也趋于相对稳定,平台在负载作业状态下具有较强的抗干扰能力和速度一致性;转向控制系统通过电动推杆驱动车轮转向,转角平均绝对误差0.7°。研究可为促进农业播种智能装备的发展提供参考。  相似文献   

13.
针对设施园艺特殊作业场景对电驱移动平台灵活作业与高操纵稳定性需求,该研究设计了一种四轮轮毂电机独立驱动的分布式设施园艺电驱移动平台,并提出了一种可提高转向灵活性与稳定性的自适应防滑控制策略。在该控制策略中,首先构建电驱移动平台动力学模型与Ackermann差速转向模型,结合速度瞬心原理及轮胎侧偏角确定各车轮转向目标转速;其次,为提高电驱移动平台对时变附着系数的适应能力,采用改进的强跟踪自适应无迹卡尔曼滤波算法设计复杂路面识别器,实现对路面附着系数准确估计;最后,设计基于自适应滑模算法的防滑控制器,根据路面附着系数估计值确定车轮相对最佳滑转率并实时控制滑转率。为验证所提控制策略的有效性,开展了Carsim-MATLAB/Simulink联合仿真与分布式设施园艺电驱移动平台实车试验。试验结果表明,所提控制策略可准确估计复杂道路下路面附着系数,降低车轮滑转率误差;在不变路面、对接路面与对开路面3种工况下,左侧车轮滑转率误差分别为0.031、0.015和0.038,右侧车轮滑转率误差分别为0.026、0.005和0.028;在不变路边随机路面实测路况下,电驱移动平台路面附着系分别数约为0.44和0.47,最大滑转率分别约为0.69和0.68,有效抑制了轮胎转向时的过度滑转,提高了电驱移动平台的行驶稳定性。研究可为设施园艺车辆驱动防滑控制提供具体理论依据和实施方案。  相似文献   

14.
为了解决小型水田底盘因路径偏差导致的稻苗碾压损伤问题,该研究提出一种基于触感引导的自动对行方法。采用自制的感测器获取稻株定位历程触感数据,通过数据的分割阈值设定、区域谷值提取、横向距离标定获得感测器与稻株的横向距离。根据水稻机械化移栽行距规整性,利用行距与定位数据几何关系校验稻株定位数据,解算获得稻列方向相邻稻株中点位置,实现对行目标点坐标提取。基于时变坐标系跟踪方法,控制转向电机实时校正路径偏差,实现小型水田底盘自动对行。田间性能试验表明:当行进速度为0.5m/s时,自动对行绝对误差平均值为3.11cm、绝对误差标准差为1.10 cm、绝对误差最大值为4.75 cm,研究成果为水田环境作业底盘自动导航提供了新思路和借鉴。  相似文献   

15.
拖拉机线控液压转向系统设计及样车性能试验   总被引:3,自引:2,他引:1  
拖拉机的转向系统是保证行驶安全、高效作业的关键机构,针对传统的全液压转向系统在转向过程中易发生转向沉重,甚至失灵等状况,该文提出一种拖拉机线控液压转向系统。论文首先对拖拉机线控液压转向系统进行总体设计,基于MATLAB软件的Simulink/Simhydraulic模块对线控液压转向系统进行动态建模和仿真分析,根据分析数据完成试验样车改装,利用改装样车分别进行转向系统的静态随机转动试验、蛇形试验、双纽线试验、稳态回转试验以及转向瞬态响应试验。通过试验分析得到线控液压转向系统在5个试验中理论与实际转向轮转角平均误差分别为1.58?,0.79?,1.09?,0.69?,0.47?。试验结果表明线控液压转向系统的理论与实际转角曲线吻合度更高,误差均低于全液压系统,转向误差精度有大幅度提高,性能更理想。拖拉机线控转向系统综合了液压和线控技术优点,在保证大动力输出的同时,又具有转向灵活,方便安装等特点,可为拖拉机线控转向系统推广应用提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号