首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
基于模拟Landsat-8 OLI数据的小麦秸秆覆盖度估算   总被引:1,自引:1,他引:0  
田间秸秆作为农业生产过程中的重要物质,其覆盖度的遥感估算具有十分重要的意义。Landsat-8 OLI影像作为Landsat系列影像的最新数据产品,具有更精细的光谱特征,明确其在秸秆覆盖度估算中的表现具有重要的现实意义。该研究使用ASD Field Spec 4 Hi-Res地物光谱仪,以实测田间小麦秸秆光谱反射率为数据源,模拟Landsat-8 OLI、Landsat-5TM、Aster、Hyperion影像波段反射率,构建光谱指数,并建立小麦秸秆覆盖度估算模型,通过对比分析,评估Landsat-8OLI数据的估算能力。结果表明,基于Landsat-8 OLI1和OLI2波段构建的NDIOLI21指数模型估算结果最优,决定系数(coefficient of determination,R2)为0.60,均方根误差(root mean square error,RMSE)为9.56%,平均相对误差(mean relative error,MRE)为9.83%,优于Landsat-5 TM构建的光谱指数,且仅次于Aster构建的木质素-纤维素吸收指数(lignin cellulose absorption,LCA)和短波红外归一化差异秸秆指数(shortwave infrared normalized difference residue index,SINDRI)以及Hyperion构建的纤维素吸收指数(cellulose absorption index,CAI)。因此,波段更多、波段划分更加精细的Landsat-8OLI构建的光谱指数在小麦秸秆覆盖度估算方面达到了一定精度,具有良好的应用前景。  相似文献   

2.
多光谱遥感结合随机森林算法反演耕作土壤有机质含量   总被引:4,自引:6,他引:4  
土壤有机质(Soil Organic Matter,SOM)遥感反演一般以单期影像作为输入量,为研究多时相影像遥感结合随机森林提高SOM遥感反演精度的可能性,该研究以黑龙江省农垦总局胜利农场耕地范围为研究区,以Sentinel-2A和Landsat 8影像作为数据源,获取两期裸土遥感影像,构建光谱指数,以随机森林算法筛选波段和光谱指数作为输入量,构建SOM反演模型。结果表明:1)两期影像的SOM反射光谱响应波段包括二者共有的中心波长:约560、660、850 nm,以及Sentinel-2A特有的中心波长740 nm 4个波段;2)基于单期影像最佳波段和光谱指数,Sentinel-2A影像SOM最优反演模型R2为0.913,均方根误差为0.860 g/kg,精度高于Landsat 8影像反演模型;3)单期影像最佳波段引入光谱指数,相比以最佳波段作为输入量,使SOM最优反演模型的均方根误差分别提高了28.867%和8.722%;4)引入时相信息,基于单期和两期影像波段和光谱指数,SOM最优反演模型精度由高到低为两期影像(R2为0.938,均方根误差1.329 g/kg)、Sentinel-2A影像(R2为0.935,均方根误差为1.944 g/kg)、Landsat 8影像(R2为0.922,均方根误差2.022 g/kg),两期影像SOM最优反演模型的稳定性和精度略高于单期影像。研究结果证明了Sentinel-2A影像数据以及多时相裸土影像反演SOM的优势。  相似文献   

3.
针对宁夏银北地区土壤盐碱化定量监测的需要,利用实测土壤高光谱和Landsat 8 OLI多光谱影像数据采用多项式、多元线性回归等方法进行土壤含盐量和pH值反演研究,并对影像光谱反演模型进行校正,以提高遥感定量反演精度。结果表明:(1)基于实测光谱的土壤含盐量反演精度均高于基于OLI影像反演精度;基于实测光谱敏感波段反射率反演精度高于实测盐分指数反演精度,其中实测光谱经平滑后敏感波段建立的模型效果最佳(R2=0.695)。(2)基于实测光谱平滑后敏感波段建立的pH值反演模型精度最高且最稳定(R2=0.545),基于OLI影像光谱反演精度低于实测光谱,但也通过了显著性检验和精度验证。(3)经实测光谱模型校正后的Landsat 8 OLI影像光谱的土壤含盐量反演模型R2从0.347提高到0.623。研究结果可以为准确、快速地定量监测当地土壤盐分含量、pH值的变化提供科学依据和技术手段。  相似文献   

4.
土壤有机质含量是耕地质量定级的依据,是耕地质量评价的核心内容之一,因此,精准高效地获取土壤有机质含量非常重要。高分辨率遥感技术和谷歌地球引擎(Google Earth Engine,GEE)云计算平台的出现,为土壤有机质的高效反演提供了新的途径和方法。该研究以藁城区的Sentinel-2A MSI数据和Landsat8 OLI 数据为主要的数据源,结合Sentinel-1 SAR数据、ECMWF/ERA5气象数据和USGS/SRTMGL1_003高程数据,分别采用随机森林(Random Forest,RF)、梯度升级树(Gradient Boosting Decision Tree,GBDT)和支持向量机(Support Vector Machine,SVM)算法,在GEE平台对藁城耕地土壤有机质含量进行反演。结果表明:1)基于Sentinel-2A建立的模型(模型A*)在预测SOM含量方面优于基于Landsat8建立的模型(模型B*),GDBT算法下的Sentinel-2A的全变量模型取得了最佳结果(R2=0.759,RMSE= 2.852 g/kg);2)模型A-1对比模型A-0增加了红边波段,模型A-1比模型A-0提高了9.752%;3)从不同的预测算法来看,GDBT算法能较好地适用于研究区的土壤有机质预测,GDBT算法、Sentinel-2A与GEE的结合是SOM预测制图的一种有效方法。  相似文献   

5.
OLI与HSI影像融合的土壤盐分反演模型   总被引:3,自引:2,他引:3  
土壤盐渍化问题是黄河三角洲地区主要的土地退化问题,借助遥感技术快速、准确地掌握土壤盐渍化信息,对农业可持续发展具有重要意义。该文以黄河三角洲垦利县为研究区,利用超球体色彩空间变换算法,将环境一号卫星HSI高光谱影像与Landsat 8 OLI多光谱影像进行融合,选择土壤盐分的特征波段,结合土壤盐分的实测数据,建立统计分析模型(多元线性回归、偏最小二乘回归)和机器学习模型(BP神经网络、支持向量机和随机森林),对土壤盐分进行遥感反演。结果表明:OLI影像的统计分析模型和机器学习模型精度均较低,精度最高的随机森林模型相关系数仅为0.570;HSI影像的反演模型精度高于OLI,BP神经网络模型相关系数为0.607;融合影像反演模型精度明显高于HSI影像和OLI影像,土壤盐分含量的实测值与机器学习模型预测值具有良好的相关性,BP神经网络模型、支持向量机模型和随机森林模型的决定系数R~2分别达到0.966、0.821和0.926,模型反演精度较高。研究表明,多光谱和高光谱影像融合能显著提高土壤盐分遥感反演精度,机器学习模型的反演效果明显优于统计分析模型。研究结果对黄河三角洲典型地区的土壤盐分反演具有积极的理论和实践意义。  相似文献   

6.
[目的]分析基于不同空间分辨率遥感影像估算的地上生物量(above ground biomass, AGB)差异,为遥感估算荒漠生态系统AGB的研究中不同空间分辨率影像的选择提供依据。[方法]在地面AGB调查的基础上,结合Landsat 8与Sentinel-2影像建立AGB-MSAVI统计模型,对砒砂岩区AGB进行了遥感估算,并分析不同植被覆盖区(高、中、低)AGB估算的差异性。[结果] Landsat 8与Sentinel-2影像均能较好地实现AGB估算,AGB估算结果在空间分布上具有相似性。基于Landsat 8和Sentinel-2数据估算AGB模型平均相对误差分别为13.41%和11.42%,基于Sentinel-2数据的AGB估算精度较高。[结论]不同植被覆盖区Sentinel-2与Landsat 8数据估算的AGB存在一定的差异,低植被覆盖和高植被覆盖区,两种遥感数据估算的AGB差异相对较小;中植被覆盖区,遥感数据受到空间分辨率的制约,空间异质性影响相对显著,两种遥感数据估算的AGB差异较大。高空间分辨率遥感影像对AGB估算精度的提高具有一定效果。  相似文献   

7.
东北农牧交错带耕地土壤有机质遥感反演研究   总被引:2,自引:0,他引:2       下载免费PDF全文
农牧交错带是农耕区与草原牧区的过渡带,土壤有机质(SOM)的精确估算与变化监测对碳库估算与农业生产具有重要研究意义。以东北典型农牧交错带为研究区,Landsat 8 OLI影像和ALOS 12.5m DEM为数据源,基于波段反射率、反射率对数、亮度指数与相关地形因子,分别利用多元线性逐步回归(MLSR)模型、随机森林(RF)模型和BP神经网络(BPNN)模型,构建农牧交错带SOM多光谱反演模型。结果表明:(1)根据重要性排序,选择Landsat8OLI第4波段的对数、第5波段、第6波段和亮度指数作为输入量,RF和BPNN模型的精度优于MLSR模型。(2)引入高程(E)与坡向变率(SOA)后,3种模型的预测精度提高,BPNN模型精度提高最多,R2提高了0.22,RMSE降低了0.40 g/kg。3种模型最优反演精度由高到低为:BPNN模型(R2=0.82,RMSE=1.4 g/kg)>RF模型(R2=0.71,RMSE=1.9 g/kg)>MLSR模型(R2=0.66,RMSE=8.8 g/kg)。研究结果可为农牧交错带SOM时空变化研究提供方法支撑。  相似文献   

8.
基于卫星光谱尺度反射率的冬小麦生物量估算   总被引:1,自引:1,他引:0  
为探索基于光学卫星遥感数据的冬小麦地上生物量估算方法,本研究通过3年田间试验,获取冬小麦4个关键生育期(拔节期、抽穗期、开花期和灌浆期)和3种施氮水平下的地上生物量以及对应的近地冠层高光谱反射率数据。通过将高光谱数据重采样为具有红边波段的RapidEye、Sentinel-2和WorldView-2卫星波段反射率数据,构建任意两波段归一化植被指数。同时,将卫星波段反射率数据与6种机器学习和深度学习算法相结合,构建冬小麦生物量估算模型。研究结果表明:任意两波段构建的最佳植被指数在冬小麦开花期对生物量的敏感性最强(决定系数R2为0.50~0.56)。在不同施氮水平条件下,高施氮水平增强了植被指数对生物量的敏感性。Sentinel-2波段数据所构建的植被指数优于其他两颗卫星波段数据。对6种机器学习和深度学习算法,总的来说,基于深度神经网络(Deep Neural Networks,DNN)算法所构建的模型要优于其他算法。在单一生育期中,在拔节期(R2为0.69~0.78,归一化均方根误差为26%~31%)和开花期(R2为0.69~0.70,归一化均方根误差为24%~25%)的估算精度最高。Sentinel-2波段数据与DNN算法结合的估算精度最高,在全生育期中预测精度R2为0.70。施氮水平的提高同样增强了DNN模型的估算精度,3颗卫星波段数据在300 kg/hm2施氮条件下的预测精度R2都在0.71以上,均方根误差小于219 g/m2。研究结果揭示了光学卫星遥感数据在不同生育期和施氮条件下估算冬小麦生物量的潜力。  相似文献   

9.
针对红树林叶面积指数(Leaf Area Index,LAI)实地测量难度大、无法快速大范围LAI估算的问题。该研究以广西北部湾红树林为研究对象,以无人机(Unmanned Aerial Vehicle,UAV)和哨兵二号(Sentinel-2A,S2)多光谱影像为数据源,整合原始光谱波段、植被指数和组合植被指数构建高维数据集,并进行数据降维和特征优选。定量评估6种机器学习算法(XGBoost、前馈反向传播神经网络(Back Propagation,BP)、支持向量机(SVM)、岭回归(Ridge)、Lasso和弹性网络(ElasticNet))对不同红树林树种LAI的估算能力;探究UAV和Sentinel-2A影像对红树林树种LAI估算的精度差异。研究结果表明:1)基于XGBoost算法构建的模型实现了红树林LAI高精度估算,R2均高于0.70,RMSE均低于0.349;2)在UAV和Sentinel-2A影像下,XGBoost模型对不同红树林树种LAI的估算精度(R2)比其他5种模型分别提高了0.105~0.365和0.283~0.540,RMSE降低了0.100~0.392和0.102~0.518;3)UAV影像数据与XGBoost算法构建的模型对海榄雌LAI的估算精度优于其他组合(R2=0.821、RMSE=0.288),Sentinel-2A影像数据与XGBoost算法构建的模型对秋茄和桐花树LAI的估算精度优于其他组合(R2=0.940~0.979、RMSE=0.142~0.104),不同红树林树种LAI的估算精度依次为桐花树>秋茄>海榄雌;4)SNAP-SL2P算法整体性低估红树林LAI值,UAV影像红树林树种LAI的平均估算精度(R2=0.677~0.713)均优于Sentinel-2A影像,实现了不同红树林树种LAI的高精度估算。  相似文献   

10.
典型黑土区耕作土壤质地遥感时间窗口及影响因素分析   总被引:1,自引:1,他引:0  
了解黑土区耕作土壤质地的空间分布对于黑土区农业精准管理以及耕地保护至关重要。遥感技术是快速获取土壤质地空间分布的有效方法。该研究以黑龙江省友谊农场耕地为研究对象,评估研究区土壤质地遥感反演的最佳时间窗口并分析其影响因素。筛选覆盖研究区的2019-2021年25幅Sentinel-2影像,将每幅影像的波段和构建的光谱指数输入随机森林模型,建立土壤质地遥感反演模型,比较不同时期影像反演土壤质地的模型精度,确定土壤质地遥感反演的最适宜影像,并分析造成反演土壤质地精度变化的原因,获取友谊农场土壤质地空间分布。结果表明:1)友谊农场反演土壤质地的最佳时间窗口为4月下旬至5月中旬;2)在25幅Sentinel-2影像中,2020年5月7日反演粉粒和砂粒的模型精度最高(粉粒的R2为0.785,均方根误差为6.697%;砂粒的R2为0.776,均方根误差为8.296%);2019年5月3日反演黏粒的模型精度最高(R2为0.776,均方根误差为1.6%);3)不同时期的Sentinel-2影像对土壤质地反演的准确性有很大的影响,而土壤含水量和秸秆覆盖是造成不同时期土壤质地预测精度差异的重要原因。研究为确定土壤质地遥感反演的最佳时间窗口、实现区域尺度土壤质地制图提供关键技术。  相似文献   

11.
基于改进植被指数的黄河口区盐渍土盐分遥感反演   总被引:10,自引:7,他引:10  
快速获取土壤盐分的含量、特征及空间分布信息是盐渍土治理、利用的客观需求。该文针对黄河三角洲盐渍土,以垦利县为例,基于Landsat 8 OLI多光谱影像,在传统植被指数的基础上引入短波红外波段进行扩展,提出了改进植被指数;然后基于改进前后对应的植被指数,分别采用多元逐步回归(multivariable linear regression,MLR)、反向传播神经网络(back propagation neural networks,BPNN)和支持向量机(support vector machine,SVM)方法构建土壤盐分含量的遥感反演模型,并进行模型验证、对比和优选;最后基于最佳模型进行研究区土壤盐分含量的空间分布反演和分析。结果显示:相对传统植被指数,扩展后植被指数可增强与土壤盐分的相关性,大幅降低指数间的多重共线性;采用上述3种方法建模,改进后模型的精度比改进前都有提高,验证集决定系数R2提高0.04~0.10,均方根误差RMSE降低0.13~0.73,相对分析误差RPD提高0.25~0.34,改进后模型RPD均大于2.0,普遍达到性能良好;对比3种建模方法,SVM建模精度最高,BPNN模型次之,MLR分析精度最低,最佳模型为基于改进植被指数的土壤盐分含量支持向量机反演模型,建模集R2和RMSE为0.75、3.48,验证集R2、RMSE和RPD为0.78、3.02和2.56,模型较为准确、可靠;基于该模型反演的研究区土壤盐分含量整体较高,盐渍化程度空间分布表现为自西南部农业生产区至东北沿海区域逐渐加重,与实地调查一致。研究表明基于Landsat 8 OLI多光谱影像,引入第7波段对植被指数进行改进,从而构建土壤盐分含量的支持向量机模型,可获得较好的土壤盐分空间分布反演结果。  相似文献   

12.
利用无人机多光谱估算小麦叶面积指数和叶绿素含量   总被引:2,自引:4,他引:2  
利用无人机遥感的方式进行农作物长势监测是目前精准农业、智慧农业发展的重要方向,为了探究无人机多光谱反演小麦叶面积指数(Leaf Area Index,LAI)和叶绿素含量的模型估算潜力,该研究在3个飞行高度(30、60、120 m)采集多光谱影像,通过使用全波段差值光谱指数(Difference Spectral Index,DSI)、比值光谱指数(Ratio Spectral Index,RSI)、归一化光谱指数(Normalized Spectral Index,NDSI)和经验植被指数与地面实测数据进行相关性分析,获得不同高度下的光谱指数与LAI和叶绿素含量的关系模型及其决定系数,以决定系数为依据分别构建多元逐步回归、偏最小二乘回归和人工神经网络模型,分析不同飞行高度无人机多光谱反演小麦冠层LAI和叶绿素含量SPAD(Soil and Plant Analyzer Development)值的精度。结果表明:1)30 m高度下,绿-红比值光谱指数与小麦LAI的相关性最高,相关系数为0.84;60 m高度下,红-蓝比值光谱指数与小麦叶绿素含量的相关性最高,相关系数为0.68;2)在60 m高度下,经验植被指数与小麦LAI和叶绿素含量的相关性较好,最大相关系数分别为0.77和0.50;3)利用偏最小二乘回归反演小麦LAI的精度最高,决定系数为0.732,均方根误差为0.055;利用人工神经网络模型反演小麦叶绿素含量的精度最高,决定系数为0.804,均方根误差0.135。该研究成果可为基于无人机平台的高通量作物监测提供理论依据,并为筛选无人机多光谱波段实现作物长势参数快速估测提供应用参考。  相似文献   

13.
无人机飞行高度对植被覆盖度和植被指数估算结果的影响   总被引:1,自引:1,他引:0  
将无人机与多种成像传感设备相结合可实现田间作物表型信息的全面获取。针对田间复杂环境下无人机搭载多种成像传感设备在不同飞行高度处提取的作物信息具有差异性的问题,本研究着重探究了无人机搭载两种成像传感设备获取图像时,不同飞行高度对估算植被覆盖度以及植被指数结果的影响。首先为防止外界环境变化对获取图像质量造成干扰,通过最近邻插值算法将无人机飞行高度为25 m处获取的两个多光谱和可见光图像数据集分别退化为十个不同地面分辨率的模糊图像数据集,以模拟无人机在不同飞行高度中获取的作物图像。然后获取50m高度处的无人机图像数据集通过皮尔逊相关性分析验证模拟数据集的有效性。最后采用随机森林模型估算不同数据集中的植被覆盖度,分类精度大于91%。结果发现,当植被覆盖度小于二分之一时,随着地面分辨率的降低该指标不断被低估,反之则被高估。飞行高度50 m的真实图像与模拟图像估算植被覆盖度结果的相关系数r为0.992 8,两者具有强相关性,模拟图像估算得到的植被覆盖度变化具备参考意义。植被指数估算结果中,首先对无人机图像数据集进行辐射校正、阈值分割等图像预处理,然后根据公式计算得到植被指数,最后通过假设性检验对十个图像数据集计算得出的植被指数进行分析。结果发现,可见光植被指数在飞行高度61 m时具备显著性差异,多光谱植被指数在十个高度下均没有显著性差异,因此为保证无人机获取数据的准确性与完整性,建议当无人机搭载本文的两种相机获取作物信息时建议飞行高度不高于61 m。本研究为研究者利用无人机搭载多传感设备获取作物信息设定合适的飞行高度、减小作业成本提供参考。  相似文献   

14.
基于最大熵模型的玉米冠层LAI升尺度方法   总被引:1,自引:1,他引:0  
叶面积指数(leaf area index,LAI)是表达农作物冠层结构的关键参数之一,准确获取LAI对于农作物长势监测、估产等研究具有非常重要的意义。由于地物空间复杂性、数据源的不同以及遥感反演模型的非线性,LAI的反演结果会存在尺度效应,因此需要进行尺度转换研究。理想的升尺度转换应该只是数据空间分辨率的降低,而数据内在信息应保存到低分辨率中。最大熵(maximum entropy,Max Ent)模型是基于多种环境因子的广义学习模型,对分析因子的空间分布具有较高的估算精度,因此,该研究利用最大熵模型进行玉米冠层LAI升尺度方法研究,从而将野外实测的LAI点数据扩展到空间分辨率为30 m的面数据,所使用的数据源是Landsat8 OLI遥感影像、气象数据和野外样点上测量的LAI数据。研究结果表明:利用最大熵模型升尺度转换结果与实测LAI相比,R2为0.601、RMSE为0.898,说明两者的相关性较高;由于玉米冠层叶片之间的相互遮挡,导致整体结果偏低,但偏低误差在可接受范围内。因此,Max Ent模型可用于农作物LAI点数据到面数据的升尺度转换。  相似文献   

15.
干旱区典型绿洲土壤有机质的反演及影响因素研究   总被引:5,自引:0,他引:5  
为了大面积、高精度地反演土壤有机质含量,为农业可持续发展提供数据支撑。以新疆渭干河-库车河三角洲绿洲为研究区,采用波段平均法将实测高光谱窄波段拟合为Landsat 8 OLI遥感影像的宽波段,建立土壤有机质含量的估算模型,并将最优估算模型应用到经过波段校正的Landsat 8OLI遥感影像中。结果表明:(1)反射率进行倒数、对数、平方、一阶微分等数学变换后与有机质含量的相关性显著提高;(2)土壤有机质的高光谱估算模型拟合度较高,最优估算模型的决定系数R2为0.852,采用比值法对多光谱波段反射率进行校正,校正后的遥感影像反演结果得到了较大提高,检验样本的决定系数R2从0.711提升至0.849。从反演结果来看,将高光谱估算模型应用到经过订正的多光谱影像,土壤有机质反演模型的精度得到了大幅度提高,运用此方法可以实现高精度的土壤有机质区域化反演。(3)有机质的分布受土地利用类型、土壤颗粒组成、土壤质地的影响,其中土壤质地对有机质的空间分布影响最为显著。  相似文献   

16.
覆膜对无人机多光谱遥感反演土壤含盐量精度的影响   总被引:2,自引:2,他引:0  
快速、准确地获取农田土壤盐分含量对指导合理灌溉及盐渍土的治理有重要意义。该文以内蒙古河套灌区沙壕渠灌域内的覆膜耕地为研究对象,利用无人机多光谱相机获取研究区内5月和6月的多光谱遥感数据,并同步采集区域内表层土壤含盐量数据,研究覆膜对无人机多光谱遥感图像反演农田土壤盐分含量精度的影响。利用支持向量机(support vector machine,SVM)、反向传播神经网络(back propagation neural network,BPNN)和极限学习机(extreme learning machine,ELM)3种机器学习方法,分别构建去膜前后基于原始光谱反射率和优选光谱指数的土壤含盐量估算模型。结果表明,去膜前后的各模型均可有效估测土壤盐分含量,但基于去膜处理后的数据构建的盐分含量估算模型精度较不去膜处理的有所提升,同时,基于光谱指数构建的盐分含量估算模型精度比基于光谱反射率构建的模型精度高;利用ELM构建的盐分含量估算模型在6月份预测效果最佳,其中基于光谱反射率和光谱指数的建模R2和RMSE分别为0.695、0.663和0.182、0.191,验证R2和RMSE分别为0.717、0.716和0.171、0.169。研究结果可为无人机多光谱遥感估算覆膜状态下的农田土壤盐分含量提供参考。  相似文献   

17.
红外光谱指数反演大田冬小麦覆盖度及敏感性分析   总被引:5,自引:2,他引:5  
植被的覆盖度能反映植被对光的截获、指示植物的生物产量等。常用的红光/近红外构成的植被指数能指示作物覆盖度,但它们易受到不确定因素的影响,估测结果往往偏差较大。该文以冬小麦为例,研究了利用近红外和短波红外光谱指数估测覆盖度的可行性,并评价了这些指数对品种、肥水处理和叶色的敏感性。试验中对冬小麦用数码相机垂直成像获取照片,利用分类算法自动提取覆盖度。根据同步获取的冬小麦光谱特征,构造了56个红外比值和28个红外归一化光谱指数,并选取了8个基于红光近红外的植被指数,利用通用线性模型(GLM)评价它们对覆盖度的预测能力及敏感性分析。结果表明,短波红外光谱指数R1690/R1450,R1450/R1690及(R1450-R1690)/(R1450+R1690)等不易受品种,肥水管理及叶色的影响,能很好地预测大田冬小麦覆盖度。  相似文献   

18.
黑土区田块尺度土壤有机质含量遥感反演模型   总被引:5,自引:4,他引:5  
为了对田块尺度土壤有机质进行空间反演并提高模型精度和稳定性,该文以黑龙江省黑土带41.3 hm~2田块为例,获取2016年5月中下旬两期(受限于拍摄周期和天气原因而选择不同卫星影像,2016年5月17日Landsat 8影像和5月25日Sentinel-2A影像)裸土时期遥感影像和4 m分辨率DEM数据;分析单期影像与土壤有机质(soil organic matter,SOM)的关系,两期影像所包含的土壤含水量变化信息与地形因素对SOM预测模型精度的影响,建立基于BP神经网络的SOM遥感反演模型。结果表明:该田块内SOM含量差异较大;利用单期影像预测SOM时,基于红波段和785~899 nm波段建立的预测模型精度(建模均方根误差RMSE 1.033,检验RMSE 1.079)和稳定性(建模决定系数R2 0.677,检验R20.644)较高;两期影像时,基于红波段和1 570~1 650 nm波段建立的预测模型精度(建模RMSE 0.855,检验RMSE 0.898)和稳定性(建模R2 0.792,检验R2 0.797)显著提高;在两期影像模型基础上,加入地形因子作为输入量,模型精度(建模RMSE 0.492,检验RMSE 0.499)和稳定性(建模R2 0.917,检验R2 0.928)进一步提高。研究成果可为土壤碳库估算和农田精准施肥提供理论与技术支持。  相似文献   

19.
作物产量准确估算在农业生产中具有重要意义。该文利用无人机获取冬小麦挑旗期、开花期和灌浆期数码影像和高光谱数据,并实测产量。首先利用无人机数码影像和高光谱数据分别提取数码影像指数和光谱参数,然后将数码影像指数和光谱参数与冬小麦产量作相关性分析,挑选出相关性较好的9个指数和参数,最后以选取的数码影像指数和光谱参数为建模因子,通过MLR(multiple linear regression,MLR)和RF(random forest,RF)对产量进行估算。结果表明:数码影像指数和光谱参数与实测产量均有很强的相关性。利用数码影像指数和光谱参数通过MLR和RF构建的产量估算模型均在灌浆期表现精度最高,在灌浆期,数码影像指数和光谱参数构建的MLR模型R~2和NRMSE分别为0.71、12.79%,0.77、10.32%。对模型对比分析可知,以光谱参数为因子的MLR模型精度较高,更适合用于估算冬小麦产量。利用无人机遥感数据,通过光谱参数建立的MLR模型能够快速、方便地对作物进行产量预测,并可以根据不同生育期的产量估算模型有效地对作物进行监测。  相似文献   

20.
青海诺木洪地区多源遥感及多特征组合地物分类   总被引:1,自引:1,他引:0       下载免费PDF全文
遥感技术是研究土地覆盖类型的重要手段,但大部分研究仅采用单一数据源、少特征,该研究基于GEE环境对多源遥感数据、多特征协同进行地物类型分类研究。采用哨兵一号(Sentinel-1)合成孔径雷达数据、哨兵二号(Sentinel-2)多光谱数据和国产高分二号(GF-2)多光谱数据,构建了青海省诺木洪地区地表8类地物的波段特征、植被指数特征、纹理特征和极化特征空间,利用特征优化算法和RF算法实现了研究区域地物的有监督分类,以此评估构建的多特征空间性能及多源数据协同分类的能力。结果表明,基于Sentinel-1与Sentinel-2数据源,使用多特征空间协同分类时的总体精度和Kappa系数可达到97.62%和0.971 6,精度均高于使用单一数据或部分特征的分类精度(总体精度为95.91%,Kappa系数为0.951 1)。而基于Sentinel-1、Sentinel-2与GF-2数据提取的波段、植被指数、纹理特征和极化特征进行的协同地物分类结果总体精度达到了96.67%,Kappa系数达到了0.960 2。总体上,基于多数据源、多特征协同分类结果精度要优于单一数据源或少特征分类结果,而不同空间分辨率图像提取的纹理特征对分类结果有着不同影响,在适宜的分辨率下提取纹理特征参与分类才能达到更好的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号