首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 98 毫秒
1.
After 37 years of different soil‐tillage treatments in a long‐term field experiment in Germany, a number of biological soil characteristics was measured. The field trial comprised six major treatments with different implements and various depths. In this paper, results from a comparison of long‐term use of a plow (to 25 cm depth), a chisel plow (to 15 cm depth), and no‐tillage are presented. The biological soil characteristics measured include the soil‐organic‐carbon (SOC) content, microbial biomass, enzyme activities, and the abundance and biomass of earthworms. Long‐term use of a chisel plow and no‐tillage increased the organic‐C content in the uppermost soil layer (0–10 cm) compared with the plow treatment. The microbial biomass and the enzyme activities arginine‐ammonification, β‐glucosidase, and catalase decreased with depth in all treatments. Arginine‐ammonification and catalase were higher in the plow treatment in soil layers 10 to 30 cm. Additionally, the chisel plow caused an increase in number and biomass of earthworms compared to both other tillage treatments. Differences in earthworm numbers and biomass between plowing and no‐tillage were not statistically significant.  相似文献   

2.
Quantifying seasonal dynamics of active soil C and N pools is important for understanding how production systems can be better managed to sustain long-term soil productivity especially in warm subhumid climates. Our objectives were to determine seasonal dynamics of inorganic soil N, potential C and N mineralization, soil microbial biomass C (SMBC), and the metabolic quotient of microbial biomass in continuous corn (Zea mays L.) under conventional (CT), moldboard (MB), chisel (CH), minimum tillage (MT), and no-tillage (NT) with low (45kgNha–1) and high (90kgNha–1) N fertilization. An Orelia sandy clay loam (fine-loamy, mixed, hyperthermic Typic Ochraqualf) in south Texas, United States, was sampled before corn planting in February, during pollination in May, and following harvest in July. Soil inorganic N, SMBC, and potential C and N mineralization were usually highest in soils under NT, whereas these characteristics were consistently lower throughout the growing season in soils receiving MB tillage. Nitrogen fertilization had little effect on soil inorganic N, SMBC, and potential C and N mineralization. The metabolic quotient of microbial biomass exhibited seasonal patterns inverse to that of SMBC. Seasonal changes in SMBC, inorganic N, and mineralizable C and N indicated the dependence of seasonal C and N dynamics on long-term substrate availability from crop residues. Long-term reduced tillage increased soil organic matter (SOM), SMBC, inorganic N, and labile C and N pools as compared with plowed systems and may be more sustainable over the long term. Seasonal changes in active soil C and N pools were affected more by tillage than by N fertilization in this subhumid climate. Received: 20 September 1996  相似文献   

3.
Recent interest in soil tillage and residue management has focused on low-input sustainable agriculture. This study was conducted to investigate the effect of three tillage systems (no-till, chisel plow, and moldboard plow) and four residue placements (bare, normal, mulch, and double mulch) on a most recently detected enzyme in soils, arylamidase activity. This enzyme catalyzes the hydrolysis of an N-terminal amino acid from peptides, amides, or arylamides. Results showed that arylamidase activity is greatly affected by tillage and crop residue placement. The greatest activity was found with chisel/mulch, moldboard plow/mulch, and no-till/double mulch, and the lowest with moldboard plow/normal and no-till/bare. Arylamidase activity was significantly correlated with organic C (r=0.59**) and soil pH CaCl2 (r=0.55**), and decreased with soil depth. Results of this work suggest that the activity of this enzyme is affected by soil management, and indicate its potential ecological significance because of its role in the N cycle.  相似文献   

4.
Abstract

Long‐term tillage and crop management studies may be useful for determining crop production practices that are conducive to securing a sustainable agriculture. Objectives of this field study were to evaluate the combined effects of crop rotation and tillage practices on yield and changes in soil chemical properties after 12 years of research on the Clyde‐Kenyon‐Floyd soil association in northeastern Iowa. Continuous corn (Zea mays L.) and a corn‐soybean [Glycine max L. (Herr.)] rotation were grown using moldboard plowing, chisel plowing, ridge‐tillage, or no‐tillage methods. Tillage and crop rotation effects on soil pH, Bray P1, 1M NH4OAc exchangeable K, Ca, and Mg, total C, and total N in the top 200 mm were evaluated. Profile NO3‐N concentrations were also measured in spring and autumn of 1988. Crop yields and N use efficiencies were used to assess sustainability. Bray P1 levels increased, but exchangeable K decreased for all cropping and tillage methods. Nutrient stratification was evident for no‐tillage and ridge‐tillage methods, while the moldboard plowing treatment had the most uniform soil test levels within the 200 mm management zone. Chisel plowing incorporated fertilizer to a depth of 100 mm. Soil pH was lower with continuous corn than with crop rotation because of greater and more frequent N applications. Profile NO3‐N concentrations were significantly different for sampling depth and among tillage methods in spring 1988. In autumn the concentrations were significantly different for sampling depth and for a rotation by tillage interaction. Estimated N use efficiencies were 40 and 50 kg grain per kg N for continuous corn, and 48 and 69 kg grain per kg N for rotated corn in 1988 and 1989, respectively. The results suggest that P fertilizer rates can be reduced, but K rates should probably be increased to maintain soil‐test levels for this soil association. Crop rotation and reduced tillage methods such as ridge‐tillage or chisel plowing appear to meet the criteria for sustainable agriculture on these soils.  相似文献   

5.
There has been a trend toward increased cropping intensity and decreased tillage intensity in the semiarid region of the Canadian prairies. The impact of these changes on sequestration of atmospheric CO2 in soil organic carbon (C) is uncertain. Our objective was to quantify the changes in total, mineralizable and light fraction organic C and nitrogen (N) due to the adoption of continuous cropping and conservation tillage practices. We sampled three individual long-term experiments at Lethbridge, Alberta, in September 1992: a spring wheat (Triticum aestivum L.)-fallow tillage study, a continuous spring wheat tillage study and a winter wheat rotation-tillage study. Treatments had been in place for 3–16 years. In the spring wheat-fallow study, different intensities (one-way disc > heavy-duty cultivator > blade cultivator) of conventional tillage (CT) were compared with minimum tillage (MT) and zero tillage (ZT). After 16 years, total organic C was 2.2 Mg ha−1 lower in more intensively worked CT treatments (one-way disc, heavy-duty cultivator) than in the least-intensive CT treatment (blade cultivator). The CT with the blade cultivator and ZT treatments had similar levels of organic C. The CT treatments with the one-way disc and heavy-duty cultivator had light fraction C and N and mineralizable N amounts that were about 13–18% lower than the CT with the blade cultivator, MT or ZT treatments. In the continuous spring wheat study, 8 years of ZT increased total organic C by 2 Mg ha−1, and increased mineralizable and light fraction C and N by 15–27%, compared with CT with a heavy-duty cultivator prior to planting. In the winter wheat rotation-tillage study, total organic C was 2 Mg ha−1 higher in a continuous winter wheat (WW) rotation compared with that in a winter wheat-fallow rotation. The lack of an organic C response to ZT on the WW rotation may have been due to moldboard plowing of the ZT treatment in 1989 (6 years after establishment and 3 years before soil sampling), in an effort to control a severe infestation of downy brome (Bromus tectorum L.). Our results suggest that although relative increases in soil organic matter were small, increases due to adoption of ZT were greater and occurred much faster in continuously cropped than in fallow-based rotations. Hence intensification of cropping practices, by elimination of fallow and moving toward continuous cropping, is the first step toward increased C sequestration. Reducing tillage intensity, by the adoption of ZT, enhances the cropping intensity effect.  相似文献   

6.
长期施用化肥和秸秆对水稻土碳氮矿化的影响   总被引:5,自引:0,他引:5  
闫德智  王德建 《土壤》2011,43(4):529-533
以长期定位试验的土壤为供试材料,通过室内培养试验,研究了长期施用化肥和秸秆对水稻土?C、N矿化和微生物生物量的影响。结果表明长期施用化肥和秸秆增加了土壤?C?矿化量,但降低了可矿化?C?在土壤有机?C?中的比例。长期施用化肥能够增加土壤?N?矿化量,而且增加了可矿化?N?在土壤全?N?中的比例,但配施秸秆不能继续增加?N?矿化量。长期施用化肥和秸秆能够显著增加土壤微生物生物量?C、N?含量,但微生物量在土壤中的比例变化不大。  相似文献   

7.
Quantifying how tillage systems affect soil microbial biomass and nutrient cycling by manipulating crop residue placement is important for understanding how production systems can be managed to sustain long-term soil productivity. Our objective was to characterize soil microbial biomass, potential N mineralization and nutrient distribution in soils (Vertisols, Andisols, and Alfisols) under rain-fed corn (Zea mays L.) production from four mid-term (6 years) tillage experiments located in central-western, Mexico. Treatments were three tillage systems: conventional tillage (CT), minimum tillage (MT) and no tillage (NT). Soil was collected at four locations (Casas Blancas, Morelia, Apatzingán and Tepatitlán) before corn planting, at depths of 0–50, 50–100 and 100–150 mm. Conservation tillage treatments (MT and NT) significantly increased crop residue accumulation on the soil surface. Soil organic C, microbial biomass C and N, potential N mineralization, total N, and extractable P were highest in the surface layer of NT and decreased with depth. Soil organic C, microbial biomass C and N, total N and extractable P of plowed soil were generally more evenly distributed throughout the 0–150 mm depth. Potential N mineralization was closely associated with organic C and microbial biomass. Higher levels of soil organic C, microbial biomass C and N, potential N mineralization, total N, and extractable P were directly related to surface accumulation of crop residues promoted by conservation tillage management. Quality and productivity of soils could be maintained or improved with the use of conservation tillage.  相似文献   

8.
Numerous investigators of tillage system impacts on soil organic carbon (OC) or total nitrogen (N) have limited their soil sampling to depths either at or just below the deepest tillage treatment in their experiments. This has resulted in an over-emphasis on OC and N changes in the near-surface zones and limited knowledge of crop and tillage system impacts below the maximum depth of soil disturbance by tillage implements. The objective of this study was to assess impacts of long-term (28 years) tillage and crop rotation on OC and N content and depth distribution together with bulk density and pH on a dark-colored Chalmers silty clay loam in Indiana. Soil samples were taken to 1 m depth in six depth increments from moldboard plow and no-till treatments in continuous corn and soybean–corn rotation. Rotation systems had little impact on the measured soil properties; OC content under continuous corn was not superior to the soybean–corn rotation in either no-till or moldboard plow systems. The increase in OC (on a mass per unit area basis) with no-till relative to moldboard plow averaged 23 t ha−1 to a constant 30 cm sampling depth, but only 10 t ha−1 to a constant 1.0 m sampling depth. Similarly, the increase in N with no-till was 1.9 t ha−1 to a constant 30 cm sampling depth, but only 1.4 t ha−1 to a constant 1.0 m sampling depth. Tillage treatments also had significant effects on soil bulk density and pH. Distribution of OC and N with soil depth differed dramatically under the different tillage systems. While no-till clearly resulted in more OC and N accumulation in the surface 15 cm than moldboard plow, the relative no-till advantage declined sharply with depth. Indeed, moldboard plowing resulted in substantially more OC and N, relative to no-till, in the 30–50 cm depth interval despite moldboard plowing consistently to less than a 25 cm depth. Our results suggest that conclusions about OC or N gains under long-term no-till are highly dependent on sampling depth and, therefore, tillage comparisons should be based on samples taken well beyond the deepest tillage depth.  相似文献   

9.
Conventional tillage creates soil physical conditions that may restrict earthworm movement and accelerate crop residue decomposition, thus reducing the food supply for earthworms. These negative impacts may be alleviated by retaining crop residues in agroecosystems. The objective of this study was to determine the effects of various tillage and crop residue management practices on earthworm populations in the field and earthworm growth under controlled conditions. Population assessments were conducted at two long-term (15+ years) experimental sites in Québec, Canada with three tillage systems: moldboard plow/disk harrow (CT), chisel plow or disk harrow (RT) and no tillage (NT), as well as two levels of crop residue inputs (high and low). Earthworm growth was assessed in intact soil cores from both sites. In the field, earthworm populations and biomass were greater with long-term NT than CT and RT practices, but not affected by crop residue management. Laboratory growth rates of Aporrectodea turgida (Eisen) in intact soil cores were affected by tillage and residue inputs, and were positively correlated with the soil organic C pool, suggesting that tillage and residue management practices that increase the soil organic C pool provide more organic substrates for earthworm growth. The highest earthworm growth rates were in soils from RT plots with high residue input, which differed from the response of earthworm populations to tillage and residue management treatments in the field. Our results suggest that tillage-induced disturbance probably has a greater impact than food availability on earthworm populations in cool, humid agroecosystems.  相似文献   

10.
There is an increasing interest in assessing the effects of tillage systems and residue management on biochemical processes, especially enzyme activities, of soils. This study was carried out to investigate the effects of three tillage systems (no-till, chisel plow and moldboard plow) and four residue placements (bare, normal, mulch and double mulch) on the activity of N-acetyl-β-glucosaminidase (NAGase, EC 3.2.1.30) involved in C and N cycling in soils. The activity values were significantly affected by tillage and residue management practices, being greatest in soils with no-till/double mulch and least with no-till/bare and moldboard/normal. Also, they were the highest under no-till/ double mulch-treated soils. Linear regression analyses showed that the activity of NAGase was significantly correlated with organic C in the surface soils (r=0.89***) and with organic C content at different depths (r=0.97***). The NAGase activity values were significantly correlated with the arylamidase activity values of the soils (r=0.63**), suggesting that tillage and residue management practices have similar impacts on the activities of these enzymes. The activity of this enzyme decreased markedly with increasing depth of the surface soil (0-15 cm) of the no-till/ double mulch-treated plots.  相似文献   

11.
This study was carried out to investigate the effect of tillage and residue management on activities of phosphatases (acid phosphatase, alkaline phosphatase, phosphodiesterase, and inorganic pyrophosphatase) and arylsulfatase. The land treatments included three tillage systems (no-till, chisel plow, and moldboard plow) in combination with corn residue placements in four replications. The activities of these enzymes in no-till/double mulch were significantly greater than those in the other treatments studied, including no-till/bare, no-till/normal, chisel/normal, chisel/mulch, moldboard/normal, and moldboard/mulch. The effect of mulching on activities of phosphatases was not as significant as on activities of arylsulfatase. The lowest enzyme activities were found in soil samples form no-till/bare and moldboard/normal treatments, with the exception of inorganic pyrophosphatase, which showed the lowest activity in no-till/bare only. Among the same residue placements, no-till and chisel plow showed comparable arylsulfatase activity, whereas the use of moldboard plow resulted in much lower arylsulfatase activity. The activities of phosphatases and arylsulfatase were significantly correlated with organic C in the 40 soil samples studies, with r values ranging from 0.71*** to 0.92***. The activities of alkaline phosphatase, phosphodiesterase, and arylsulfatase were significantly correlated with soil pH, with r values of 0.85***, 0.78***, and 0.77***, respectively, in the 28 surface soil samples studied, but acid phosphatase and inorganic pyrophosphatase activities were not significantly correlated with soil pH. The activities of phosphatases and arylsulfatase decreased markedly with increasing soil depth and this decrease was associated with a decrease in organic C content. The activities of these enzymes were also significantly intercorrelated, with r values ranging from 0.50*** to 0.92***. Received: 4 October 1995  相似文献   

12.
Studies assessing the effects of different tillage and N fertilizer management practices on distributions and amounts of various C and N pools in soil can provide information about the influence of such management on the quality of organic matter in agricultural soils. To assess the influence of management on soil quality, we characterized the organic matter by measurements of total N, organic C, microbial biomass N and active N in the 0–20cm profiles of soil from long-term field experiments containing plots under treatments of plow or no tillage and 0, 135, or 270kgNha–1 fertilizer. Previous work had established that on the basis of the crop growth requirement of maize, these application rates of fertilizer N provide amounts of N that are deficient, sufficient, and excessive, respectively. The studies reported provide evidence that the sufficient amount of fertilizer N stimulated formation of the biologically active pools of N (biomass N and active N) in soils under no tillage treatments, but the excessive amount of fertilizer N tended to suppress these pools. The results demonstrated that these influences of excessive N fertilization were not reflected in distributions of total N or total organic C in soil profiles but became evident with the measurements of biologically active N. This suggests that such measurements can provide information related to the influence of different management practices on soil quality. Received: 30 November 1995  相似文献   

13.
Abstract

The use of conservation tillage methods, including ridge tillage, has increased dramatically in recent years. At the present time, there is great concern that farmers are applying more nitrogen (N) fertilizer than is environmentally or economically sound. In order to determine if N requirement for optimum yield differs with tillage system, tests were initiated to study tillage and N effects on N content, soil moisture content, and yield of corn (Zea mays L.). The study was established in 1987 on two soil types, an Estelline soil (Pachic Haploboroll) and an Egan soil (Udic Haplustoll), located in eastern South Dakota. Five rates of N (0, 65, 130, 195, and 260 kg ha?1) were applied to plots managed with 3 tillage systems: chisel plow, moldboard plow, and ridge. On the Estelline soil, in both 1988 and 1989, ridge‐tilled plots contained a greater amount of water in the soil profile at emergence and at mid silk than did plots in the other two tillage systems. Soil moisture content at mid silk was significantly correlated with earleaf N, total N uptake, and grain yield in 1988 and earleaf N and grain yield in 1989. However, the correlation coefficients were higher in 1988 than in 1989. On the Egan soil, there were no significant differences in soil moisture content among tillage systems. On the Estelline soil, corn grain yield was affected by a tillage x N‐rate interaction in 1988. Maximum yield within the ridge system was achieved with the 130 kg ha?1 rate. In 1989 on the Estelline soil, yield was affected by tillage and N rate, but there was no interaction between factors. When averaged over N rates, yields were 7.1, 6.6, and 6.5 Mg ha?1 in the ridge, moldboard, and chisel systems, respectively. In 1988 plant total N uptake was greater in the ridge system than the moldboard or chisel systems; in 1989 uptake was affected by N rate alone. On the Egan soil, tillage did not affect soil moisture, total N uptake or grain yield in either year. Corn grain yield increased with increasing N rate up to the 195 kg ha?1 rate. This study indicates that, on some soil types, ridge tillage can improve soil water holding capacity, N utilization and yield of corn.  相似文献   

14.
Long-term tillage negatively affects soil aggregation, but little is known about the short-term effects of tillage. We investigated the effects of intensive tillage (moldboard plowing) and conservation tillage (chisel plowing) on aggregate breakage during tillage in a long-term study located in the semiarid Ebro river valley (NE Spain). The type of tillage resulted in different soil aggregate distributions. In the 0–5-cm and 5–10-cm soil layers, chisel plowing decreased dry mean weight diameter (DMWD) 29% and 35%, respectively, while moldboard plowing decreased DMWD by only 2% and 16%, respectively. The decrease in DMWD was mainly due to breaking of large aggregates ranging (2–8 mm) into small aggregates (<0.5 mm). Tillage method had no effect on water stability of 1–2 mm aggregates. The differences in DMWD demonstrate that the choice of the tillage implement can be a key factor in improving soil management and productivity. The surprising result that aggregate breakdown was greater with chisel than moldboard plowing needs further research to determine the mechanisms controlling aggregate breaking during tillage.  相似文献   

15.
Abstract

Recent interest in soil tillage, cropping systems, and residue management has focused on low‐input sustainable agriculture. This study was carried out to evaluate the effects of various management systems on aspartase activity in soils. This enzyme [L‐aspartate ammonia‐lyase, EC 4.3.1.1] catalyzes the hydrolysis of L‐aspartate to fumarate and NH3. It may play a significant role in the mineralization of organic N in soils. The management systems consisted of three cropping systems [continuous corn (Zea mays L.) (CCCC); corn‐soybean [Glycine max (L.) Merr.]‐corn‐soybean (CSCS); and corn‐oat (Avena sativa L.)‐meadow‐meadow (COMM) {meadow was a mixture of alfalfa (Medicago sativa L.) and red clover (Trifolium pratense L.)] at three long‐term field experiments initiated in 1954, 1957, and 1978 in Iowa and sampled in June 1987. The plots received 0 or 180 (or 200) kg ha?1 before corn and an annual application of 20 kg P and 56 kg K ha?1. The tillage systems (no‐tillage, chisel plow, and moldboard plow) were initiated in 1981 in Wisconsin and sampled in May 1991. The crop residue treatments were: bare, normal, mulch, and double (2×) mulch. The residue in the study was corn stalks. Results showed that, in general, crop rotation in combination with N fertilizer treatments affected aspartase activity in the following order: COMM>CSCS>CCCC. Because of nitrification of the NH4 + or NH4 +‐forming fertilizers, which resulted in decreasing the pH values, N fertilizer application, in general, decreased the aspartase activity in soils in the order: CCCC>CSCS>COMM. The effect of tillage and residue management practices on aspartase activity in soils showed a very wide variation. The trend was as follows: no‐till/2× mulch>chisel plow/mulch>moldboard plow/mulch>no‐till normal>chisel plow/normal>no‐till bare>moldboard plow/normal. Aspartase activity decreased with increasing depth in the plow layer (0–15 cm) of the no‐till/2× mulch. The decreased activity was accompanied by decreasing organic C and pH with depth. Statistical analyses using pooled data (28 samples) showed that aspartase activity was significantly, linearly correlated with organic C (r=0.78***) and exponentially with soil pH (r=0.53**). The variation in the patterns and magnitudes of activity distribution among the profiles of the four replicated plots was probably due to the spatial variability in soils.  相似文献   

16.
Long-term tillage effects on soil quality   总被引:6,自引:0,他引:6  
Public interest in soil quality is increasing, but assessment is difficult because soil quality evaluations are often purpose- and site-specific. Our objective was to use a systems engineering methodology to evaluate soil quality with data collected following a long-term tillage study on continuous corn (Zea mays L.). Aggregate characteristics, penetration resistance, bulk density, volumetric water content, earthworm populations, respiration, microbial biomass, ergosterol concentrations, and several soil-test parameters (pH, P, K, Ca, Mg, Total-N, Total-C, NH4-N, and NO3-N) were measured on Orthic Luvisol soil samples collected from Rozetta and Palsgrove silt loam (fine-silty, mixed, mesic Typic Hapludalfs) soils. Plots managed using no-till practices for 12 years before samples were collected for this study had surface soil aggregates that were more stable in water and had higher total carbon, microbial activity, ergosterol concentrations, and earthworm populations than either the chisel or plow treatments. Selected parameters were combined in the proposed soil quality index and gave ratings of 0.48, 0.49, or 0.68 for plow, chisel, or no-till treatments, respectively. This indicated that long-term no-till management had improved soil quality. The prediction was supported by using a sprinkler infiltration study to measure the amount of soil loss from plots that had been managed using no-till or mold-board plow tillage. We conclude that no-till practices on these soils can improve soil quality and that the systems engineering methodology may be useful for developing a more comprehensive soil quality index that includes factors such as pesticide and leaching potentials.  相似文献   

17.
To assess the effect of long-term fertilization on labile organic matter fractions, we analyzed the C and N mineralization and C and N content in soil, particulate organic matter (POM), light fraction organic matter (LFOM), and microbial biomass. Results showed that fertilizer N decreased or did not affect the C and N amounts in soil fractions, except N mineralization and soil total N. The C and N amounts in soil and its fractions increased with the application of fertilizer PK and rice straw. Generally, there was no significant difference between fertilizer PK and rice straw. Furthermore, application of manure was most effective in maintaining soil organic matter and labile organic matter fractions. Soils treated with manure alone had the highest microbial biomass C and C and N mineralization. A significant correlation was observed between the C content and N content in soil, POM, LFOM, microbial biomass, or the readily mineralized organic matter. The amounts of POM–N, LFOM–N, POM–C, and LFOM–C closely correlated with soil organic C or total N content. Microbial biomass N was closely related to the amounts of POM–N, LFOM–N, POM–C, and LFOM–C, while microbial biomass C was closely related to the amounts of POM–N, POM–C, and soil total N. These results suggested that microbial biomass C and N closely correlated with POM rather than SOM. Carbon mineralization was closely related to the amounts of POM–N, POM–C, microbial biomass C, and soil organic C, but no significant correlation was detected between N mineralization with C or N amounts in soil and its fractions.  相似文献   

18.
Summary Microbial biomass C and N respond rapidly to changes in tillage and soil management. The ratio of biomass C to total organic C and the ratio of mineral N flush to total N were determined in the surface layer (0–5 cm) of low-clay (8–10%), fine sandy loam, Podzolic soils subjected to a range of reduced tillage (direct drilling, chisel ploughing, shallow tillage) experiments of 3–5 years' duration. Organic matter dynamics in the tillage experiments were compared to long-term conditions in several grassland sites established on the same soil type for 10–40 years. Microbial biomass C levels in the grassland soils, reduced tillage, and mouldboard ploughing treatments were 561, 250, and 155 g g-1 soil, respectively. In all the systems, microbial biomass C was related to organic C (r=0.86), while the mineral N flush was related to total N (r=0.84). The average proportion of organic C in the biomass of the reduced tillage soils (1.2) was higher than in the ploughed soils (0.8) but similar to that in the grassland soils (1.3). Reduced tillage increased the average ratio of mineral N flush to total soil N to 1.9, compared to 1.3 in the ploughed soils. The same ratio was 1.8 in the grassland soils. Regression analysis of microbial biomass C and percent organic C in the microbial biomass showed a steeper slope for the tillage soils than the grassland sites, indicating that reduced tillage increased the microbial biomass level per unit soil organic C. The proportion of organic matter in the microbial biomass suggests a shift in organic matter equilibrium in the reduced tillage soils towards a rapid, tillage-induced, accumulation of organic matter in the surface layer.  相似文献   

19.
Reduced tillage may affect N supply of plants by influencing soil microbial biomass and thereby N release. The aim of this study was to evaluate changes in microbial biomass due to tillage in relation to N mineralization and to assess the contribution to the N supply of sugar beet. For this purpose, in a field trial near Göttingen in 1995 microbial biomass and net N mineralization were determined in an in situ incubation of ploughed and reduced tilled soil in plots which were not given application of mineral N fertilizer. In reduced tilled soil the increase in mineral N concentration in the upper 10 cm of soil was mainly attributed to an increase in microbial biomass. The organic matter was more easily decomposable, indicated by the increase in Cmic/Corg and Nmic/Nt ratios; this was further supported by the enhanced turnover of microbial biomass in reduced tillage plots. A regression function was used to relate seasonal fluctuations of microbial biomass, soil moisture and soil temperature to N mineralization rate. There was a good agreement between measured and calculated N mineralization rate. Reduced tillage affected N mineralization by affecting the quantity and quality of microbial biomass. In 0–30 cm soil depth 169 kg N/ha were mineralized, 30 kg more N than in ploughed soil. However, despite improved N availability, the N uptake of sugar beet was decreased in reduced tilled soil. Because the N concentration in plants did not differ, it was concluded that sugar beet growth in reduced tilled soil was impaired due to other factors than N supply.  相似文献   

20.
Soil organic matter contents, soil microbial biomass, potentially mineralizable nitrogen (N) and soil pH values were investigated in the Ap horizons of 14 field plots at 3 sites which had been under organic farming over various periods. The objective was to test how these soil properties change with the duration of organic farming. Site effects were significant for pH values, microbial biomass C and N, and for potentially mineralizable N at 0—10 cm depth. The contents of total organic C, total soil N, and potentially mineralizable N tended to be higher in soils after 41 versus 3 years of organic farming, but the differences were not significant. Microbial biomass C and N contents were higher after 41 years than after 3 years of organic farming at 0—10 cm depth, and the pH values were increased at 10—27 cm depth. Nine years of organic farming were insufficient to affect soil microbial biomass significantly. Increased biomass N contents help improve N storage by soil micro‐organisms in soils under long‐term organic farming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号