首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cultivars of European winter oilseed rape cultivated in the second half of the 1970s and in the mid-1990s were screened for their winter hardiness, frost resistance and vernalization requirement. A strong correlation between winter hardiness and frost resistance in both groups of rape has been noticed. Among oilseed rapes cultivated in the late 1970s, low erucic acid and particularly double zero cultivars were less winter hard than high erucic acid cultivars. Double zero cultivars were characterized by lower frost resistance and lower vernalization requirement. A significant correlation between vernalization requirement and both frost resistance and field survival has also been shown. Frost resistance of the 1990s (double zero) cultivars was higher than that of double low cultivars from the late 1970s. Their vernalization requirement was still small and did not correlate with either frost resistance or winter hardiness. It was concluded that reduction in the content of glucosinolates in the 1970s involved decrease in winter hardiness and vernalization requirement of cultivars. During the following 20 years winter hardiness of double low cultivars has been improved, but vernalization requirements have not changed. As a result no correlation between winter hardiness and vernalization requirement in contemporary canola cultivars has been observed.  相似文献   

2.
Summary For breeding early heading wheat cultivars with resistance to frost damage which are well adapted to dry areas of West Asia and North Africa, the relationships between winter hardiness, ear primordia development and heading traits, i.e. veernalization requirement, photoperiodic response and narrow-sense earliness, were assessed using a total of 30 genotypes of wheat (Triticum aestivum L.) grown in an experiment in Syria. The results of artificial freezing tests indicated that cultivars with good winter hardiness were to be found only in the winter wheat cultivars which required 50 or more days of vernalization treatment. These winter wheat cultivars did not initiate internode elongation without vernalization even at 95 days after planting. Thus their ear primordia were still underground and were protected from frost injury at this stage. Photoperiodic response and narrow-sense earliness were not associated with winter hardiness and earliness of internode elongation, but were related to the number of days to heading after planting. This indicated the possibility for breeding early heading cultivars with winter hardiness and tiller frost avoidance by combining high vernalization requirement, short narrow-sense earliness and neutral response to photoperiod.  相似文献   

3.
Changing climatic conditions in north-western Europe are accompanied by occasional extreme weather conditions. This requires breeding of winter oilseed rape cultivars which are resilient to diverse abiotic stress factors, e.g. frost, drought and heat. The degree of vernalization requirement of winter oilseed rape has been found to be related to frost tolerance and winter hardiness. Shoot elongation before winter in particular has been identified as one decisive factor for frost tolerance in winter oilseed rape. However, the relationship between vernalization requirement and shoot elongation before winter is not known. In the present study the genetic variation for shoot elongation before winter and vernalization requirement of 19 genetic diverse breeding lines and cultivars were analyzed. Autumn and spring sown field experiments in multiple environments were performed to determine shoot elongation before winter and vernalization requirement, respectively. In spring sown field experiments, genotypes with a low vernalization requirement were characterized by the occurrence of long bolting plants with flower buds. Large and significant genotypic variation was found for shoot length in the autumn sown and spring sown environment. Broad sense heritability was quite high for shoot length in the spring sown environment (h2?=?97%), whereas it was only of medium size for shoot length before winter (h2?=?62%). Although the correlation between shoot length before winter and shoot length in the spring sown environment was positive (Spearman’s rank rS?=?0.48*), a number of genotypes with reduced shoot elongation before winter and low vernalization requirement were identified. Results indicate that genotypes with a reduced shoot elongation before winter independent of their vernalization requirement can be selected in breeding programs.  相似文献   

4.
Summary The addition of 5 to 100 ppm kinetin during vernalization is a substitute for a part of the cold treatment in the winter wheat cultivar Sava.A cold treatment that is not long enough in itself makes vernalization possible even if only 5 ppm kinetin is added. The effect can be gradually improved by increasing the dose from 20 to 100 ppm, but 200 ppm kinetin is harmful. The smallest quantity of kinetin added to the otherwise optimal 40-day cold treatment results in total oververnalization.A heading percentage comparable to that of the 40-day vernalization period without kinetin can be obtained in 20-day with 100 ppm kinetin. This method can reduce the vernalization time by half and accelerate winter wheat generations.  相似文献   

5.
Vernalization requirements and cold resistance of 13 lines of winter rape derived from doubled haploids obtained by androgenesis were investigated. The degree of vernalization requirements was examined in two parallel experiments. In the first experiment seedlings aged 2 weeks were vernalized during 63 and 35 days under controlled conditions, at 5 °C. In the second experiment the natural conditions of vernalization were differentiated by sowing the plants at four different dates in spring: March 15th, April 15th, May 15th, and at the latest date excluding vernalization, June 5th. The lines examined revealed differentiation of vernalization requirements that were similar in both experiments; all the lines required a period of exposure to cold before flowering. Cold resistance of lines was estimated in two successive series at −15 °C and −17 °C. Before testing the plants were kept in natural field conditions from the beginning of September until the middle of November. Testing of cold resistance was preceded by hardening under controlled conditions. Considerable differences in cold resistance was found in the forms investigated.
The results obtained do not show any relation between frost resistance and the degree of vernalization requirements, as the line characterized by the strongest winter habit of growth showed low cold resistance, whereas the lines which were closer to spring growth habit showed the highest level of cold resistance; the lines with the least vernalization requirements revealed the highest level of cold resistance. This conclusion can be confirmed by the significance of the correlation coefficients between the various indices defining the frost resistance and the indices of vernalization requirements.  相似文献   

6.
M. O. Humphreys 《Euphytica》1989,41(1-2):99-106
Summary When breeding for good winter hardiness a broad range of adaptations must be considered. Such a multitrait approach requires some understanding of physiological and genetical relationships between relevant traits.Fourteen winter related characters were measured on field grown plants from 86 perennial ryegrass accessions originating from a wide range of climates. Genetic components of variance and covariance were extracted from the data and a principal components analysis carried out. The first three independent components accounted for 80% of the variance represented by the genetic correlations and were broadly identified as winter growth, winter hardiness and early spring activity factors. None of the accessions exhibited a combination of extreme winter growth and winter hardiness although several with excellent winter hardiness showed better than average winter growth. Amounts of water soluble carbohydrate maintained through the winter appeared important for good survival.It was concluded that a selection index approach may prove useful in future breeding programmes as further information concerning physiological relationships becomes available.  相似文献   

7.
The cultivation of autumn sown sugar beet (winter beet) is supposed to result in a marked yield increase compared with spring sown sugar beet. Although the importance of the growth stage reached before winter for the survival of autumn sown sugar beet has already been shown, it is not clear to which extent osmotic and potentially frost protecting compounds may contribute to winter hardiness. The study thus aimed to analyse the acclimatization process of sugar beet to low temperatures and to identify compounds which are important for survival of frost. Field trials with autumn sown sugar beet were conducted at eleven environments in Germany from 2009/10 to 2012/13, which were accompanied by greenhouse experiments with controlled temperature regimes. In the field trials, the survival rates after winter varied from 0 % to 99 %, but only in four environments differences between the five genotypes occurred. During acclimatization, betaine, glutamine, proline and raffinose were markedly accumulated and osmolality was enhanced. In particular betaine, amino acids and osmolality showed a positive correlation to the survival rate and were thus identified as potentially frost protecting substances for sugar beet. In contrast, raffinose and proline seem to act rather as stress indicators as they were negatively related to survival. Possible frost protecting substances were identified which can be used in breeding to improve the winter hardiness of sugar beet.  相似文献   

8.
L. Reddy    R. E. Allan    K. A. Garland  Campbell 《Plant Breeding》2006,125(5):448-456
In wheat, variation at the orthologus Vrn‐1 loci, located on each of the three genomes, A, B and D, is responsible for vernalization response. A dominant Vrn‐1a allele on any of the three wheat genomes results in spring habit and the presence of recessive Vrn‐1b alleles on all three genomes results in winter habit. Two sets of near‐isogenic lines (NILs) were evaluated for DNA polymorphisms at their Vrn‐A1, B1 and D1 loci and for cold hardiness. Two winter wheat cultivars, ‘Daws’ and ‘Wanser’ were used as recurrent parents and ‘Triple Dirk’ NILs were used as donor parents for orthologous Vrn‐1 alleles. The NILs were analysed using molecular markers specific for each allele. Only 26 of 32 ‘Daws’ NILs and 23 of 32 ‘Wanser’ NILs had a plant growth habit that corresponded to the marker genotype for the markers used. Freezing tests were conducted in growth chambers programmed to cool to ?21.5°C. Relative area under the death progress curve (AUDPC), with a maximum value of 100 was used as a measure of death due to freezing. The average relative AUDPC of the spring habit ‘Daws’Vrn‐A1a NILs was 86.15; significantly greater than the corresponding winter habit ‘Daws’Vrn‐A1b NILs (42.98). In contrast, all the ‘Daws’Vrn‐A1bVrn‐B1aVrn‐D1b and Vrn‐A1bVrn‐B1bVrn‐D1a NILs (spring habit) had relative AUDPC values equal to those of their ‘Daws’ sister genotypes with Vrn‐A1bVrn‐B1bVrn‐D1b NILs (winter habit). The average AUDPC of spring and winter habit ‘Wanser’ NILs differed at all three Vrn‐A1, Vrn‐B1 and Vrn‐D1 locus comparisons. We conclude that ‘Daws’ and ‘Wanser’ have different background genetic interactions with the Vrn‐1 loci influencing cold hardiness. The marker for Vrn‐A1 is diagnostic for growth habit and cold hardiness but there is no relationship between the Vrn‐B1 and Vrn‐D1 markers and the cold tolerance of the NILs used in this study.  相似文献   

9.
Faba bean is a partially allogamous grain legume, mostly sown as spring crop in Central Europe, and in few mild coastal areas of UK and France as a winter crop. A population with a genetically wide base, conceived and selected for superior winter hardiness showing promise as winter crop in Germany was evaluated. The reproductive behaviour of this population was evaluated for its degree of cross-fertilization at five German environments (1999–2001), and inbred lines bred from it, plus one F1 bulk and further checks, were assessed for variation in cross-fertilization at three German environments (2001). Seed hilum colour, a dominant-recessive, biallelic locus, was used as a morphological marker. Cross-fertilization (population mean value of 60%) was shown to be higher than in spring faba beans and was environmentally influenced. Genetic variation was demonstrated, heritability was high (h2= 0.75), and heterosis was negative. Inbred lines with a cross-fertilization of 70% can be easily bred. Breeding synthetic cultivars is recommended, their optimum number of components is expected to be higher than the optimum recommended for spring faba beans. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Increasing climatic variability is projected to affect large‐scale atmospheric circulation, triggers and exacerbates more extreme weather events, including winter warming and more frequent extreme low temperatures in spring. Historical data from 1961–2000 indicate these temperature fluctuations may seriously affect grain yield of winter wheat crops. In this study, a field air temperature control system (FATC) was used to simulate the winter warming, spring cold and freezing events in the field experiment in 2010–2011 to explore their impacts on growth and yield of winter wheat. Eight elite wheat varieties released during 1961–2000 were included and four temperature scenarios were applied, including late spring freeze alone, winter warming + late spring freeze, early spring cold + late spring freeze and the normal temperature condition as control. Winter warming combined with late spring freeze significantly decreased tiller survival rate, leaf photosynthetic rate and leaf growth in wheat plants, and reduced the spike number and kernel number per spike, and the final grain yield. In contrast, the wheat plants experienced early spring cold had higher tiller survival rate, leaf photosynthetic capacity and sugar accumulation and improved tolerance to the late spring freeze, resulting in less yield loss, as compared with those without experiencing early spring cold. Both the meta‐analyses and the field experimental data demonstrated that the effects of later spring freeze stress on wheat yield were exacerbated by winter warming but were extenuated by early spring cold events. Therefore, it is important to consider the characteristics of temperature fluctuations during winter to spring for precise evaluation of climate change effects on wheat production.  相似文献   

11.
Summary This study sought to identify factors that influence wheat development in the transitional wheat growing zone of northern Syria. Three development factors were studied, intrinsic earliness, and responses to vernalization and to photoperiod. Two sets of wheat were studied, each composed of lines with differing combinations of development factors. Set 1 comprised 20 parental and breeding lines utilized by the CIMMYT/ICARDA facultative and winter wheat breeding program based at Tel Hadya. Set 2 comprised 19 parental and breeding lines utilized by an Australian winter wheat breeding program based at Temora. Field development was recorded in greatest detail at one site. Tel Hadya, using the state of differentiation of the apex of the main tiller of sampled plants. To extend findings, development was also recorded as the time from sowing to ear emergence for later sowings of wheat at Tel Hadya, and in sowings at four other regional sites.The significance of each development factor was tested in multiple regressions that predicted either stage of apical development at Tel Hadya, or time to ear emergence in all trials. It was found that intrinsic earliness was the major factor associated with development, in both sets of wheat. Response to photoperiod had a much smaller and less consistent effect. Response to vernalization had least effect on development, possibly because low temperature in winter delayed development for a longer period than was required to fully vernalize winter wheats. Our results suggested it may not be directly relevant whether spring or winter wheats are grown in the transitional zone of northern Syria. The desired phenotype for the region, of slow development prior to double ridge, then fast development to ear emergence, cannot be simply achieved from combinations of the three development factors. Selection for improved adaptation to the region must continue to rely on direct field observations.  相似文献   

12.
Summary Development in wheat is strongly controlled by sensitivity to vernalization and photoperiod, and to a lesser degree by non-vernalizing temperature and intrinsic earliness. A method to measure effect of vernalization in wheats with winter habit is described. Twenty seven wheats with winter habit and eight with spring/facultative habit were studied, comprising breeding lines and cultivars with maturities suited to south-central New South Wales. Effect of vernalization on the development of these wheats was quantified by integrating responses to vernalizing treatments of differing duration. Intrinsic earliness was measured as time for vernalized seedlings to grow to ear emergece in an 18h photoperiod with day/night temperature of 21/16°C, and response to photoperiod as the difference in time to ear emergence between 9 and 18h daylengths. Integrated response to vernalization is sensitive to both cumulative and thresh-hold responses and is applicable to wheats of all habit type. Integrated response to vernalization and intrinsic earliness were positively associated within wheats with winter habit. Wheats were largely of restricted origin, so that there were few allelic differences at Vrn loci to disrupt this association, which suggests intrinsic earliness may modify response to vernalization. Though integrated response to vernalization was measured with artificial treatments, it was strongly associated with ear emergence for wheats with winter habit when grown at a site in New South Wales.  相似文献   

13.
Jiro Abe 《Euphytica》1980,29(3):531-538
Summary Over a six-year period, Turkish populations of cocksfoot were investigated in the field at Sapporo, Japan, as to winter hardiness. After the first winter, only populations from the mild Marmara, Aegean and Mediterranean regions were badly damaged. As the differential plant survival among geographical groups widened with the elapsing of years, we were able to rank the groups in descending order of relative hardiness from Eastern Anatolia, through the Black Sea, Central Plateau, Marmara and Aegean regions, to the Mediterranean region. This order was maintained throughout the experimental period.Winter temperatures prevailing in the locality of origin was the most important determinant of winter survival of the populations. The growth pattern in autumn and whether plants continued to grow through the winter or were enforced to winter dormancy, were related to differential survival between maritime and mountainous populations. On the other hand, this simple relationship is complicated by introgression. The subspecies distribution in the coastal region is related to a higher level of survival in the populations from the Black Sea region, where the continental type of cocksfoot occurs, than in the populations from the other maritime regions, where introgression has occurred from Daetylis glomerata subsp. hispanica with poor winter hardiness.Present address: Tropical Agriculture Research Center, Okinawa Branch, Ishigaki 907-01, Japan.  相似文献   

14.
Summary The effect of direct vernalization of immature embryos on flowering was studied in six winter wheat genotypes. Fourteen-, 17-, and 20-day-old embryos were excised and vernalized for 0–6 weeks on synthetic medium during a conditioning period. Percent germination of embryos was high (overall 96.1%), and free from genotypic effects. Genotypes differed for flowering in response to cold treatment of excised embryos. Embryo vernalization was as effective as or more than conventional vernalization (control, seedling vernalization for 6 weeks). Seventeen-day-old embryos were the most responsive to vernalization. With a 5-week vernalization of 17-day-old embryos, the percentage of plants anthesed was higher than those from 14-and 20-day-old embryos. For 17-day-old embryos vernalized for 5 weeks, the mean number of days from culture to anthesis was less than that of 6 week vernalization, less than that of 14- and 20-day-old embryos, and less than controls.Purdue Univ., Agronomy Dept., W. Lafayette, IN 47907, USA.  相似文献   

15.
Ear emergence time and response to vernalization were investigated in 12 alien substitution lines in which a pair of chromosomes 5A of recipient spring wheat cultivars was replaced by a pair of chromosomes 5R of Siberian spring rye ‘Onokhoiskaya’. The recipients were 12 spring cultivars of common wheat, each carrying different Vrn genes. Spring rye ‘Onokhoiskaya’ had the Sp1 (now called Vrn-R1) gene for spring growth habit located on chromosome 5R, but its expression was weaker. The Vrn-R1 gene had no effect on growth habit, ear emergence time and response to vernalization in wheat-rye substitution lines. Ears emerged significantly later in the 5R(5A) alien substitution lines than in the recipient wheat cultivars with the Vrn-A1/Vrn-B1/vrn-D1 or Vrn-A1/vrn-B1/Vrn-D1 genotypes. No difference in ear emergence time was found between most of the 5R(5A) alien substitution lines and the cultivars carrying the recessive vrn-A1 gene. The presence of the Vrn2a and Vrn2b alleles at the Vrn2 (now called Vrn-B1) locus located on wheat chromosome 5B was confirmed.The replacement of chromosome 5A by chromosome 5R in wheat cultivars ‘Rang’ and ‘Mironovskaya Krupnozernaya’, which carries the single dominant gene Vrn-A1, converted them to winter growth habit. In field studies near Novosibirsk the winter hardiness of 5R(5A) wheat–rye substitution lines of ‘Rang’ and ‘Mironovskaya Krupnozernaya’ was increased by 20–47% and 27–34%, respectively, over the recurrent parents.  相似文献   

16.
H. Kato    S. Taketa    T. Ban    N. Iriki  K. Murai 《Plant Breeding》2001,120(2):115-120
The adaptability of wheat cultivars to environmental conditions is known to be associated with a vernalization requirement, that is, spring/winter habit. To clarify the genetic effect of the spring habit gene, Vrn‐D1, on heading time in the field, recombinant inbred lines (RILs) with or without the Vrn‐D1 gene were produced from F2 plants of the cross between ‘Nanbukomugi’ and ‘Nishikazekomugi’, non‐carrier and carrier cultivars of this gene, respectively. Using growth chambers with a controlled temperature and photoperiod, three components of heading time, i.e. vernalization requirement, photoperiodic sensitivity and narrow‐sense earliness (earliness per se), were evaluated in each RIL. RILs with the Vrn‐D1 gene (E lines) showed greatly reduced vernalization requirements and slightly shorter narrow‐sense earliness than RILs without Vrn‐D1 (L lines), although no difference in photoperiodic sensitivity was observed between the two groups. RILs were planted at four different sites in Japan and examined for their heading time in the field. E lines headed significantly earlier than L lines at all locations, indicating that the earliness of E lines is stable in various environmental conditions. These results indicated that spring habit caused by Vrn‐D1 gene, as well as narrow‐sense earliness, was responsible for heading time in the field.  相似文献   

17.
Embryogenic calli derived from anther cultures of the two-rowed winter barley cultivar Igri were plated on solid L3 medium containing the proline analogue hydroxyproline (Hyp), 10–20 mmol l–1. Exposure to Hyp caused severe degeneration of most of the calli. Hyp resistant calli, distinguishable by their lighter colour and higher growth rate, and control calli not exposed to Hyp were plated on L3 regeneration medium. From 22,500 anthers exposed to Hyp 46 Hyp resistant regenerates were obtained, which were transferred to soil. After cultivation for 5–10 weeks at normal growth conditions they were cold hardened at 2 C under short day conditions together with control regenerates. Frost tolerance assays with segments of fully grown leaves of unhardened and cold hardened plants revealed that Hyp resistant regenerants were significantly more frost tolerant than the control regenerants. Improved frost tolerance was found also in the progenies R1 to R9, and genotypic segregation in the R1 generation in a 1:2:1 ratio was indicated. Increased proline content was observed in the R2 generation and in subsequent generations and was significantly (P 0.001) correlated with increased frost tolerance in the Hyp lines. Comparative studies of R9 progenies from homozygous R2 plants with the wild type Igri under field conditions in winter at three locations in Europe as well as crossing experiments confirmed the heritable improvement of frost tolerance and winter survival, respectively, in the Hyp lines. The results support the hypothesis that proline accumulation in cold acclimated winter barley plants is causally related to the acquisition of frost tolerance. Moreover, the described biotechnological procedure may be applicable in breeding programs for improved winter hardiness and possibly also for other stress tolerances.  相似文献   

18.
寒地冬小麦变温下品种间细胞超微结构的比较分析   总被引:1,自引:1,他引:0  
为比较抗寒性不同的冬小麦在返青期降温下的细胞超微结构差异,本试验以返青率不同的3个冬小麦品种(系)为材料,实验室内模拟返青期气温变化,设置低温处理、恢复温度和再次低温处理。结果得出,不抗寒的品种在-3℃下即表现出主茎生长点细胞受到严重伤害;中等抗寒性的品种在-6℃下才出现受冻害特征;而抗寒性强的品种则在-9℃下才表现出细胞明显受伤害。  相似文献   

19.
Sharma  H. C.  Gill  B. S. 《Euphytica》1982,31(3):629-634
Summary Embryo age and composition of nutrient medium affected plant growth and response to vernalization in winter wheat (Triticum aestivum L.). Root and shoot development was more in older than in younger excised embryos, and more in a medium without kinetin than in one with kinetin. Kinetin (2 mg/l) in the medium did not accelerate vernalization, probably because it tended to inhibit seedling and plant growth.Embryo age and media did not completely replace vernalization. Twenty- and 16-day-old embryos responded by flowering after 4 weeks of vernalization. Among plants raised on a standard medium from 20-day-old embryos and vernalized for 4 weeks, 84.2% flowered by or before 50 days after transplanting. Time from embryo culture to heading for 20-day-old embryos with-4-week vernalization averaged 84.6 days. Immature embryos (16–20 days old) needed only 4 weeks of vernalization compared to 6 weeks for mature embryos. Excised embryos could be vernalized as efficiently as seedlings raised by embryo culture. Embryo culture at 16–20 days after anthesis coupled with 4-week cold treatment shortens generation time of winter wheat by about 40 days.Contribution No. 82-131-j, Department of Plant Pathology, Kansas Agricultural Experiment Station, Manhattan, KS 66506, USA.  相似文献   

20.
Seed yield in chickpea (Cicer arietinum L.) is substantially increased by advancing sowing date from the traditional spring to early winter at low to medium elevation areas around the Mediterranean Sea. This shift, however, increases the probability of the exposure to subzero temperatures as low as -10 °C for up to 60 days in a year. These low temperatures often reduce seed yield of cold-susceptible cultivars. Yield losses from cold were estimated in two experiments conducted at Tel Hadya, Syria. In experiment 1, of 96 genotypes sown on nine dates ranging from autumn to spring during the 1981–82 season, those lacking tolerance to cold were killed and produced no yield in autumn sowing, whereas lines with cold tolerance produced nearly 4 t/ha which corresponds to a four-fold increase over spring sowing. Moderately cold-tolerant genotypes sown during early winter produced substantially more seed yield than the normal spring-sown crop. Seedlings were more cold tolerant than the plants in early or late vegetative stages. In experiment 2, in which yield loss due to cold in the field was estimated in 12 yield trials comprising 288 newly bred lines in the 1989–90 season, the regression of cold susceptibility on seed yield in each of the trials was highly significant and negative. On average, winter-sown trials produced 67 % more seed yield than spring-sown trials, but 125 out of 288 genotypes produced yield more than double in winter sowing. Early maturing lines suffered severe cold damage and many lines produced no seed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号