首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cattle persistently infected (PI) with bovine viral diarrhea virus(BVDV) are a major source of infection to herds. To successfully control BVDV, it is necessary to identify and cull those cattle PI with BVDV. Immunohistochemistry (IHC) is a useful tool for sensitive and specific detection of BVDV antigens in infected cattle.Skin of cattle PI with BVDV is one of the tissues where BVDV can be consistently identified by IHC and is readily accessible for sampling. Use of IHC on skin biopsies (in the form of ear notches)as a method to identify cattle PI with BVDV has resulted in a reliable, affordable technique for mass testing of cattle at an early age without maternal antibody interference. The ability to test large numbers of cattle to identify those Pl with BVDV will enable implementation of programs for control and eventual eradication of BVDV.  相似文献   

2.
Bovine viral diarrhea virus (BVDV) infections cause substantial economic losses to the cattle industries. Persistently infected (PI) cattle are the most important reservoir for BVDV. White-tailed deer (Odocoileus virginianus) are the most abundant species of wild ruminants in the United States and contact between cattle and deer is common. If the outcome of fetal infection of white-tailed deer is similar to cattle, PI white-tailed deer may pose a threat to BVDV control programs. The objective of this study was to determine if experimental infection of pregnant white-tailed deer with BVDV would result in the birth of PI offspring. Nine female and one male white-tailed deer were captured and housed at a captive deer isolation facility. After natural mating had occurred, all does were inoculated intranasally at approximately 50 days of pregnancy with 10(6) CCID(50) each of a BVDV 1 (BJ) and BVDV 2 (PA131) strain. Although no clinical signs of BVDV infection were observed or abortions detected, only one pregnancy advanced to term. On day 167 post-inoculation, one doe delivered a live fawn and a mummified fetus. The fawn was translocated to an isolation facility to be hand-raised. The fawn was determined to be PI with BVDV 2 by serial virus isolation from serum and white blood cells, immunohistochemistry on skin biopsy, and RT-PCR. This is the first report of persistent infection of white-tailed deer with BVDV. Further research is needed to assess the impact of PI white-tailed deer on BVDV control programs in cattle.  相似文献   

3.
OBJECTIVE: To measure associations between health and productivity in cow-calf beef herds and persistent infection with bovine viral diarrhea virus (BVDV), antibodies against BVDV, or antibodies against infectious bovine rhinotracheitis (IBR) virus in calves. ANIMALS: 1,782 calves from 61 beef herds. PROCEDURES: Calf serum samples were analyzed at weaning for antibodies against type 1 and type 2 BVDV and IBR virus. Skin biopsy specimens from 5,704 weaned calves were tested immunohistochemically to identify persistently infected (PI) calves. Herd production records and individual calf treatment and weaning weight records were collected. RESULTS: There was no association between the proportion of calves with antibodies against BVDV or IBR virus and herd prevalence of abortion, stillbirth, calf death, or nonpregnancy. Calf death risk was higher in herds in which a PI calf was detected, and PI calves were more likely to be treated and typically weighed substantially less than herdmates at weaning. Calves with high antibody titers suggesting exposure to BVDV typically weighed less than calves that had no evidence of exposure. CONCLUSIONS AND CLINICAL RELEVANCE: BVDV infection, as indicated by the presence of PI calves and serologic evidence of infection in weaned calves, appeared to have the most substantial effect on productivity because of higher calf death risk and treatment risk and lower calf weaning weight.  相似文献   

4.
Four large bovine artificial insemination centers implemented a program of surveillance of resident and newly acquired bulls for persistent bovine viral diarrhea virus infection. Infection was identified in 12 of 1,538 bulls. Several clinical abnormalities, including acute and chronic mucosal disease, were evident among the persistently infected bulls. Semen produced by such bulls consistently contained bovine viral diarrhea virus, and such contamination was not always accompanied by diminished seminal quality. Infected bulls were detected by means of virus isolation tests performed on blood specimens, but not by use of serologic testing. Ten of the 12 persistently infected bulls were results of embryo transfer. Virologic surveillance of breeding herds, artificial insemination and embryo transfer centers, and the cattle trade is necessary to prevent spread of this virus by modern cattle breeding practices. Attention is also necessary to prevent contamination by this virus of the fluids used for recovery, in vitro manipulation, and transfer of bovine embryos.  相似文献   

5.
Sera and blood buffy coat samples were obtained from 3,157 cattle in 66 selected herds. Antibodies to bovine viral diarrhea (BVD) virus were detected in 89% of the serum samples by immunoprecipitation or virus-neutralization tests. Cytopathic or noncytopathic BVD viruses were isolated from blood buffy coat samples from 60 cattle in 6 herds. A second blood buffy coat sample was obtained from 54 of the 60 cattle 2 months after the initial sampling, and BVD virus was isolated again from each cow. The 54 cattle were considered persistently infected with BVD virus. The frequency of persistent infection was 1.7%.  相似文献   

6.
7.
To ascertain the virulence of bovine viral diarrhea virus (BVDV) genotype II, isolate NY-93 was inoculated intranasally into 3 calves, 2 of which were treated with a synthetic glucocorticoid prior to and after virus inoculation. Anorexia, fever (up to 42 C), dyspnea, and hemorrhagic diarrhea developed 6 days after intranasal inoculation with BVDV NY-93. The condition of all calves deteriorated further until the end of the study on day 14 postinoculation. The most significant postmortem macroscopic changes in all calves were limited to the gastrointestinal tract and consisted of moderate to severe congestion of the mucosa with multifocal hemorrhages. Microscopic lesions found in the gastrointestinal tract were similar to those observed in mucosal disease, including degeneration and necrosis of crypt epithelium and necrosis of lymphoid tissue throughout the ileum, colon, and rectum. The basal stratum of the epithelium of tongue, esophagus, and rumen had scattered individual necrotic cells. Spleen and lymph nodes had lymphocytolysis and severe lymphoid depletion. Severe acute fibrinous bronchopneumonia was present in dexamethasone-treated calves. Abundant viral antigen was detected by immunohistochemistry in the squamous epithelium of tongue, esophagus, and forestomachs. BVDV antigen was prominent in cells of the media of small arteries and endothelial cells. The presence of infectious virus in tissues correlated with an absence of circulating neutralizing antibodies. These findings highlight the potential of BVDV genotype II to cause severe disease in normal and stressed cattle.  相似文献   

8.
Five diagnostic techniques performed on skin biopsies (shoulder region) and/or serum were compared for detection of bovine viral diarrhea virus infection in 224 calves 0-3 months of age, 23 calves older than 3 months but younger than 7 months, and 11 cattle older than 7 months. The diagnostic methods used were immunohistochemistry (IHC), 2 commercial antigen ELISAs, 1 commercial antibody ELISA, and real-time RT-PCR. Results of 249 out of 258 skin and serum samples were identical and correlated within the 3 antigen detection methods and the real-time RT-PCR used. Twenty-six of these 249 samples were BVDV-positive with all antigen detection methods and the real-time RT-PCR. Nine out of 258 samples yielding discordant results were additionally examined by RT-PCR, RT-PCR Reamplification (ReA), and antigen ELISA I on serum and by immunohistochemistry on formalin fixed and paraffin-embedded skin biopsies. Virus isolation and genotyping was performed as well on these discordant samples. In 3 cases, transiently infected animals were identified. Two samples positive by real-time RT-PCR were interpreted as false positive and were ascribed to cross-contamination. The antigen ELISA II failed to detect 2 BVDV-positive calves due to the presence of maternal antibodies; the cause of 2 false-positive cases in this ELISA remained undetermined. Only persistently infected animals were identified in skin samples by IHC or antigen ELISA I. The 3 antigen detection methods and the real-time RT-PCR used in parallel had a high correlation rate (96.5%) and similar sensitivity and specificity values.  相似文献   

9.
A commercial vaccine containing modified-live bovine viral diarrhea virus (BVDV; types 1 and 2) was administered to one group of 22 peripubertal bulls 28 days before intranasal inoculation with a type 1 strain of BVDV. A second group of 23 peripubertal bulls did not receive the modified-live BVDV vaccine before intranasal inoculation. Ten of 23 unvaccinated bulls--but none of the vaccinated bulls--developed a persistent testicular infection as determined by immunohistochemistry and polymerase chain reaction. Results of this study indicate that administration of a modified-live vaccine containing BVDV can prevent persistent testicular infection if peripubertal bulls are vaccinated before viral exposure.  相似文献   

10.
OBJECTIVE: To determine the ability of a modified-live virus (MLV) bovine viral diarrhea virus (BVDV) type 1 (BVDV1) vaccine administered to heifers prior to breeding to stimulate protective immunity that would block transmission of virulent heterologous BVDV during gestation, thus preventing persistent infection of a fetus. ANIMAL: 40 crossbred Angus heifers that were 15 to 18 months old and seronegative for BVDV and 36 calves born to those heifers. PROCEDURE: Heifers were randomly assigned to control (n = 13) or vaccinated (27) groups. The control group was administered a multivalent vaccine where-in the BVDV component had been omitted. The vaccinated heifers were administered a single dose of vaccine (IM or SC) containing MLV BVDV1 (WRL strain). All vaccinated and control heifers were maintained in pastures and exposed to BVDV-negative bulls 21 days later. Thirty-five heifers were confirmed pregnant and were challenge exposed at 55 to 100 days of gestation by IV administration of virulent BVDV1 (7443 strain). RESULTS: All control heifers were viremic following challenge exposure, and calves born to control heifers were persistently infected with BVDV. Viremia was not detected in the vaccinated heifers, and 92% of calves born to vaccinated heifers were not persistently infected with BVDV. CONCLUSIONS AND CLINICAL RELEVANCE: These results document that vaccination with BVDV1 strain WRL protects fetuses from infection with heterologous virulent BVDV1.  相似文献   

11.
The relationship between bovine viral diarrhea virus (BVDV) infection and thrombocytopenia was studied in 18 veal calves experimentally infected with BVDV. All calves were free of BVDV, and 13 calves were free of serum neutralizing antibodies to BVDV before virus inoculation. Calves were inoculated at approximately 10 days of age, and platelet counts were monitored over a period of several weeks. Ten additional calves housed in close proximity were kept as uninoculated controls. A profound decrease in platelet counts by 3 to 11 days after inoculation was seen in all calves that had neutralizing antibody titers less than 1:32 before infection. Severe thrombocytopenia (less than 5,000 platelets/microliter) was seen in 12 calves, 11 of which also developed hemorrhages. Necropsy findings in 3 severely thrombocytopenic calves that died included multiple hemorrhages throughout the body. Calves that recovered had increased platelet counts, and in most instances, a corresponding increase in neutralizing antibody titers to BVDV. At 11 days after inoculation, BVDV was detected on platelets by use of immunofluorescence, but evidence of surface-bound immunoglobulin was not found. The results suggest that a nonimmunoglobulin-mediated method of platelet destruction or sequestration develops as a sequela to BVDV infection.  相似文献   

12.
Diarrhea, erosions and ulcers of the oral mucosa, with conjunctival and nasal discharges, were observed in six calves inoculated with a mixture of two laboratory cytopathic reference strains of bovine viral diarrhea virus (BVDV)-Oregon C24 V and NADL. The clinical picture was accompanied by biphasic body temperature elevation, transient leukopenia and a decrease in the number of lymphocytes. High dose of viruses and multiple routes of inoculation promoted the development of clinical and hematological changes typical for BVDV infection although laboratory strains were used.  相似文献   

13.
14.
Reproductive efficiency is imperative for the maintenance of profitability in both dairy and cow-calf enterprises. Bovine viral diarrhea virus is an important infectious disease agent of cattle that can potentially have a negative effect on all phases of reproduction. Reduced conception rates,early embryonic deaths, abortions, congenital defects, and weak calves have all been associated BVDV infection of susceptible females. In addition, the birth of calves PI with BVDV as a result of in utero fetal exposure is extremely important in the perpetuation of the virus in an infected herd or spread to other susceptible herds. Bulls acutely or PI with BVDV may bea source of viral spread through either natural service or semen used in artificial insemination. Management practices including elimination of PI cattle, biosecurity measures and strategic use of vaccination can be implemented to reduce the risk of BVDV related reproductive losses.Development of vaccines and vaccine strategies capable of providing better protection against fetal infection would be of benefit.  相似文献   

15.
To investigate the hematologic abnormalities observed with noncytopathic type 2 bovine viral diarrhea virus (ncpBVDV-2), calves 6 to 8 mo old were inoculated with an isolate of either high virulence (HV24515) or low virulence (LV11Q); control animals received the same volume of uninfected cell-culture supernatant. Peripheral blood neutrophil, lymphocyte, and platelet counts decreased in all the virus-inoculated calves but were significantly lower and remained decreased longer in the calves given HV24515. For each isolate, a decrease in the number of mature myeloid cells in the bone marrow coincided with the development of neutropenia, but the depletion persisted significantly longer (4 to 6 d) in the calves given HV24515. In the bone marrow of calves given LV11Q, the number of proliferating myeloid cells increased in proportion to the decrease in the number of mature myeloid cells. In the calves inoculated with HV24515, BVDV antigen was observed in bone marrow cells when the peripheral blood counts were lowest. Megakaryocytes were the predominant cell type exhibiting positive BVDV staining; myeloid cells rarely stained positively. Viral antigen was not observed in the bone marrow of calves given LV11Q. These experiments demonstrated that ncpBVDV-2 isolates of both high and low virulence caused decreased leukocyte and platelet counts, but only the high-virulence HV24515 isolate caused a delay in the production of myeloid proliferating cells. The delay may contribute to the ability of certain ncpBVDV-2 isolates to induce severe disease.  相似文献   

16.
The prevalence of bovine viral diarrhea virus (BVDV) infections was determined in a group of stocker calves suffering from acute respiratory disease. The calves were assembled after purchase from Tennessee auctions and transported to western Texas. Of the 120 calves, 105 (87.5%) were treated for respiratory disease. Sixteen calves died during the study (13.3%). The calves received a modified live virus BHV-1 vaccine on day 0 of the study. During the study, approximately 5 wk in duration, sera from the cattle, collected at weekly intervals, were tested for BVDV by cell culture. Sera were also tested for neutralizing antibodies to BVDV types 1 and 2, bovine herpesvirus-1 (BHV-1), parainfluenza-3 virus (PI-3V), and bovine respiratory syncytial virus (BRSV). The lungs from the 16 calves that died during the study were collected and examined by histopathology, and lung homogenates were inoculated onto cell cultures for virus isolation. There were no calves persistently infected with BVDV detected in the study, as no animals were viremic on day 0, nor were any animals viremic at the 2 subsequent serum collections. There were, however, 4 animals with BVDV type 1 noncytopathic (NCP) strains in the sera from subsequent collections. Viruses were isolated from 9 lungs: 7 with PI-3V, 1 with NCP BVDV type 1, and 1 with both BVHV-1 and BVDV. The predominant bacterial species isolated from these lungs was Pasteurella haemolytica serotype 1. There was serologic evidence of infection with BVDV types 1 and 2, PI-3V, and BRSV, as noted by seroconversion (> or = 4-fold rise in antibody titer) in day 0 to day 34 samples collected from the 104 survivors: 40/104 (38.5%) to BVDV type 1; 29/104 (27.9%) to BVDV type 2; 71/104 (68.3%) to PI-3V; and 81/104 (77.9%) to BRSV. In several cases, the BVDV type 2 antibody titers may have been due to crossreacting BVDV type 1 antibodies; however, in 7 calves the BVDV type 2 antibodies were higher, indicating BVDV type 2 infection. At the outset of the study, the 120 calves were at risk (susceptible to viral infections) on day 0 because they were seronegative to the viruses: 98/120 (81.7%), < 1:4 to BVDV type 1; 104/120 (86.7%) < 1:4 to BVDV type 2; 86/120 (71.7%) < 1:4 to PI-3V; 87/120 (72.5%) < 1:4 to BRSV; and 111/120 (92.5%) < 1:10 to BHV-1. The results of this study indicate that BVDV types 1 and 2 are involved in acute respiratory disease of calves with pneumonic pasteurellosis. The BVDV may be detected by virus isolation from sera and/or lung tissues and by serology. The BVDV infections occurred in conjunction with infections by other viruses associated with respiratory disease, namely, PI-3V and BRSV. These other viruses may occur singly or in combination with each other. Also, the study indicates that purchased calves may be highly susceptible, after weaning, to infections by BHV-1, BVDV types 1 and 2, PI-3V, and BRSV early in the marketing channel.  相似文献   

17.
18.
19.
OBJECTIVE: To evaluate platelet aggregation responses in calves experimentally infected with a thrombocytopenia-inducing type II bovine viral diarrhea virus (BVDV) isolate (BVDV 890). ANIMALS: 9 neonatal male Holstein calves. PROCEDURE: 5 calves were inoculated with BVDV 890, and 4 were used as controls. Platelet aggregation studies and attempts to isolate BVDV from platelets were performed 2 days before, the day of, and every 2 days for 12 days after inoculation. Platelet function was assessed by means of optical aggregometry, using adenosine diphosphate and platelet-activating factor as agonists. Bovine viral diarrhea virus was isolated from purified platelet preparations by use of an immunoperoxidase monolayer assay. RESULTS: Maximum percentage aggregation and slope of the aggregation curve decreased over time in calves infected with BVDV. Bovine viral diarrhea virus was not isolated from platelets from control calves, but it was isolated from infected calves from 4 through 12 days after inoculation. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that platelet function may be depressed in calves infected with type II BVDV. Although the mechanism for altered platelet function was not determined, it likely involved an increase in the percentage of aged platelets in the circulation, a direct virus-platelet interaction, or an indirect virus-platelet interaction. Platelet dysfunction, in addition to thrombocytopenia, may contribute to the hemorrhagic syndrome associated with acute type II BVDV infection in calves.  相似文献   

20.
The objective of this study was to verify whether a mixed infection in calves with bovine viral diarrhea virus (BVDV) and other bovine viruses, such as bovid herpesvirus-4 (BHV-4), parainfluenza-3 (PI-3) and infectious bovine rhinotracheitis (IBR) virus, would influence the pathogenesis of the BVDV infection sufficiently to result in the typical form of mucosal disease being produced.

Accordingly, two experiments were undertaken. In one experiment calves were first infected with BVDV and subsequently with BHV-4 and IBR virus, respectively. The second experiment consisted in a simultaneous infection of calves with BVDV and PI-3 virus or BVDV and IBR virus.

From the first experiment it seems that BVDV infection can be reactivated in calves by BHV-4 and IBR virus. Evidence of this is that BVDV, at least the cytopathic (CP) strain, was recovered from calves following superinfection. Moreover, following such superinfection the calves showed signs which could most likely be ascribed to the pathogenetic activity of BVDV. Superinfection, especially by IBR virus, created a more severe clinical response in calves that were initially infected with CP BVDV, than in those previously given the non-cytopathic (NCP) biotype of the virus. Simultaneous infection with PI-3 virus did not seem to modify to any significant extent the pathogenesis of the experimentally induced BVDV infection whereas a severe clinical response was observed in calves when simultaneous infection was made with BVDV and IBR virus.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号