首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bluetongue virus serotype 8 (BTV-8) emerged in Central Western Europe in 2006 causing a large scale epidemic in 2007 that involved several European Union (EU) countries including Belgium. As in several other EU member states, vaccination against BTV-8 with inactivated vaccines was initiated in Belgium in spring 2008 and appeared to be successful. Since 2009, no clinical cases of Bluetongue (BT) have been reported in Belgium and BTV-8 circulation seemed to have completely disappeared by spring 2010. Therefore, a series of repeated cross-sectional surveys, the BT sentinel surveillance program, based on virus detection in blood samples by means of real-time RT-PCR (RT-qPCR) were carried out in dairy cattle from the end of 2010 onwards with the aim to demonstrate the absence of BTV circulation in Belgium. This paper describes the results of the first two sampling rounds of this BT sentinel surveillance program carried out in October-November 2010 and January-February 2011. In addition, the level of BTV-specific maternal antibodies in young non-vaccinated animals was monitored and the level of herd immunity against BTV-8 after 3 consecutive years of compulsory BTV-8 vaccination was measured by ELISA. During the 1st sampling round of the BT sentinel surveillance program, 15 animals tested positive and 2 animals tested doubtful for BTV RNA by RT-qPCR. During the 2nd round, 17 animals tested positive and 5 animals tested doubtful. The positive/doubtful animals in both rounds were re-sampled 2-4 weeks after the original sampling and then all tested negative by RT-qPCR. These results demonstrate the absence of BTV circulation in Belgium in 2010 at a minimum expected prevalence of 2% and 95% confidence level. The study of the maternal antibodies in non-vaccinated animals showed that by the age of 7 months maternal antibodies against BTV had disappeared in most animals. The BTV seroprevalence at herd level after 3 years of compulsory BTV-8 vaccination was very high (97.4% [95% CI: 96.2-98.2]). The overall true within-herd BTV seroprevalence in 6-24 month old Belgian cattle in early 2011 was estimated at 73.4% (95% CI: 71.3-75.4).  相似文献   

2.
Bluetongue (BT) virus, an orbivirus of the Reoviridae family encompassing 24 known serotypes, is transmitted to ruminants via certain species of biting midges (Culicoides spp.) and causes thrombo-hemorrhagic fevers mainly in sheep. During the 20th century, BTV was endemic in sub-tropical regions but in the last ten years, new strains of BTV (serotypes 1, 2, 4, 8, 9, 16) have appeared in Europe leading to a devastating disease in naive sheep and bovine herds (serotype 8). BTV enters into insect cells via the viral inner core VP7 protein and in mammalian cells via the external capsid VP2 haemagglutinin, which is the major determinant of BTV serotype and neutralization. BTV replicates in mononuclear phagocytes and endothelial cells where it induces expression of inflammatory cytokines as well as apoptosis. BTV can remain as nonreplicating entities concealed in erythrocytes for up to five months. Homologous protection against one BTV serotype involves neutralizing antibodies and T cell responses directed to the external VP2 and VP5 proteins, whereas heterologous protection is supported by T cells directed to the NS1 non structural protein and inner core proteins. Classical inactivated vaccines directed to a specific serotype generate protective immunity and may help control current epidemic situations. New recombinant vaccine strategies that allow differentiating infected from vaccinated animals and that generate cross protective immunity are urgently needed to efficiently combat this worldwide threatening disease.  相似文献   

3.
Background: Bluetongue virus serotype 8 (BTV‐8) has caused disease in domestic ruminants in several countries of northern Europe since 2006. In 2008 a mass‐vaccination program was launched in most affected countries using whole virus inactivated vaccines. Objective: To evaluate 2 inactivated vaccines (Bovilis BTV 8; BTVPUR AlSap8) for immunogenicity and safety against BTV‐8 in South American camelids (SAC) in a field trial. Animals: Forty‐two SAC (25 Alpacas, 17 Llamas) aged between 1 and 16 years. Methods: The animals were vaccinated twice at intervals of 21 days. They were observed clinically for adverse local, systemic, or both reactions throughout the trial. Blood samples collected on days 0, 14, 21, 43, and 156 after vaccination were tested for the presence of BTV‐8 virus by real time‐polymerase chain reaction and of specific antibodies by competitive ELISA and a serum neutralization test. Results: All vaccinated animals developed antibodies to BTV‐8 after the 2nd administration of the vaccine. No adverse effects were observed except for moderate local swellings at the injection site, which disappeared within 21 days. Slightly increased body temperatures were only observed in the first 2 days after vaccination. The BTV was not detected in any of the samples analyzed. Conclusions and Clinical Importance: The administration of the 2 inactivated commercial vaccines was safe and induced seroconversion against BTV‐8 in all vaccinated animals. The results of this study suggest that 2 doses injected 3 weeks apart is a suitable vaccination regimen for SAC.  相似文献   

4.
Background: Outbreak of bluetongue virus serotype‐8 (BTV‐8) infection in domestic ruminants in Northern Europe. Objective: To investigate the South American camelids' (SAC) susceptibility to BTV‐8 infection, their role in the epidemiology of the disease, and the use of currently available serological screening tests in SAC in an endemic region. Animals: Three hundred and fifty‐four unvaccinated and 27 vaccinated SAC (170 llamas, 201 alpacas), ranging in age from 1 month to 17 years between June and August 2008. The SAC originated from 44 herds throughout the country, representing 10% of the Swiss SAC population. Methods: Prospective, observational study of a convenience sample of SAC. Serum samples were analyzed with 2 serological screening tests. When results diverged, a 3rd ELISA was carried out for confirmation (ID Screen Bluetongue Competition ELISA kit). Results: All sera from the 354 unvaccinated animals were negative in the endemic region. Reliable seroconversion was observed after administration of 2 doses of vaccine. Conclusions and Clinical Importance: This study suggests a low susceptibility of SAC to BTV‐8 despite the presence of the virus in the cattle and small ruminant population, indicating that SAC do not play a major role in the epidemiology of BTV‐8. Furthermore, these results indicate that commercially available serological tests for BTV‐8 can be used in SAC.  相似文献   

5.
Bluetongue virus (BTV) is an arthropod-borne pathogen that causes an often fatal, hemorrhagic disease in ruminants. Different BTV serotypes occur throughout many temperate and tropical regions of the world. In 2006, BTV serotype 8 (BTV-8) emerged in Central and Northern Europe for the first time. Although this outbreak was eventually controlled using inactivated virus vaccines, the epidemic caused significant economic losses not only from the disease in livestock but also from trade restrictions. To date, BTV vaccines that allow simple serological discrimination of infected and vaccinated animals (DIVA) have not been approved for use in livestock. In this study, we generated recombinant RNA replicon particles based on single-cycle vesicular stomatitis virus (VSV) vectors. Immunization of sheep with infectious VSV replicon particles expressing the outer capsid VP2 protein of BTV-8 resulted in induction of BTV-8 serotype-specific neutralizing antibodies. After challenge with a virulent BTV-8 strain, the vaccinated animals neither developed signs of disease nor showed viremia. In contrast, immunization of sheep with recombinant VP5 - the second outer capsid protein of BTV - did not confer protection. Discrimination of infected from vaccinated animals was readily achieved using an ELISA for detection of antibodies against the VP7 antigen. These data indicate that VSV replicon particles potentially represent a safe and efficacious vaccine platform with which to control future outbreaks by BTV-8 or other serotypes, especially in previously non-endemic regions where discrimination between vaccinated and infected animals is crucial.  相似文献   

6.
Bluetongue (BT) is an infectious, non-contagious disease of wild and domestic ruminants. It is caused by bluetongue virus (BTV) and transmitted by Culicoides biting midges. Since 1998, BT has been emerging throughout Europe, threatening not only the na?ve ruminant population. Historically, South American camelids (SAC) were considered to be resistant to BT disease. However, recent fatalities related to BTV in captive SAC have raised questions about their role in BTV epidemiology. Data on the susceptibility of SAC to experimental infection with BTV serotype 8 (BTV-8) were collected in an animal experiment. Three alpacas (Vicugna pacos) and three llamas (Lama glama) were experimentally infected with BTV-8. They displayed very mild clinical signs. Seroconversion was first measured 6-8 days after infection (dpi) by ELISA, and neutralising antibodies appeared 10-13 dpi. BTV-8 RNA levels in blood were very low, and quickly cleared after seroconversion. However, spleens collected post-mortem were still positive for BTV RNA, over 71 days after the last detection in blood samples. Virus isolation was only possible from blood samples of two alpacas by inoculation of highly sensitive interferon alpha/beta receptor-deficient (IFNAR(-/-)) mice. An in vitro experiment demonstrated that significantly lower amounts of BTV-8 adsorb to SAC blood cells than to bovine blood cells. Although this experiment showed that SAC are generally susceptible to a BTV-8 infection, it indicates that these species play a negligible role in BTV epidemiology.  相似文献   

7.
Bluetongue virus (BTV) is an arthropod-borne virus infecting domestic and wild ruminants. Infection in cattle is commonly asymptomatic and characterised by a long viraemia. Associated with the emergence and the recrudescence of BTV serotype 8 (BTV-8) in Northern and Central Europe, remarkable differences have been noticed in the transmission and in the clinical expression of the disease, with cattle showing clinical illness and reproductive disorders such as abortion, stillbirth and fetal abnormalities. Several investigations have already indicated the putative ability of the European BTV-8 strain to cross the bovine placenta and to cause congenital infections. The current epidemiological and pathological findings present an unusual picture of the disease in affected bovines.  相似文献   

8.
Bluetongue virus serotype 20 (BTV20) was inoculated intradermally and subcutaneously in 4 bulls and by the intrauterine route in 8 nulliparous cows after insemination at oestrus. Viraemia was detected intermittently between 8 and 21 days after inoculation. Virus was isolated from tissue samples of 2 cows and a bull after slaughter at 14 days and from one bull at 28 days. Group reactive and type specific antibodies to BTV20 were demonstrated from 17 to 27 days after infection. No antibodies were detected in the animals slaughtered at 14 days. No clinical signs of disease were seen during the experiment and no gross or histopathological changes referable to BTV20 infection were observed post-mortem. Because of the viraemia and the production of detectable serum antibodies, gametes from these cattle would be excluded from export.  相似文献   

9.
The compulsory vaccination campaign against Bluetongue virus serotype eight (BTV-8) in Germany was exercised in the state of Bavaria using three commercial monovalent inactivated vaccines given provisional marketing authorisation for emergency use. In eleven Bavarian farms representing a cross sectional area of the state the immune reactions of sheep and cattle were followed over a two year period (2008-2009) using cELISA, a serum neutralisation test (SNT) and interferon gamma (IFN-γ) ELISPOT. For molecular diagnostics of BTV genome presence two recommended real time quantitative RT-PCR protocols were applied. The recommended vaccination scheme led to low or even undetectable antibody titers (ELISA) in serum samples of both cattle and sheep. A fourfold increase of the vaccine dose in cattle, however, induced higher ELISA titers and virus neutralising antibodies. Accordingly, repeated vaccination in sheep caused an increase in ELISA-antibody titers. BTV-8 neutralising antibodies occurred in most animals only after multiple vaccinations in the second year of the campaign. The secretion of interferon gamma (IFN-γ) in ELISPOT after in vitro re-stimulation of PBMC of BTV-8 vaccinated animals with BTV was evaluated in the field for the first time. Sera of BTV-8 infected or vaccinated animals neutralising BTV-8 could also neutralise an Italian BTV serotype 1 cell culture adapted strain and PBMC of such animals secreted IFN-γ when stimulated with BTV-1.  相似文献   

10.
In August 2006, bluetongue (BT) was notified in The Netherlands on several animal holdings. This was the onset of a rapidly spreading BT-epidemic in north-western Europe (latitude >51 degrees N) that affected cattle and sheep holdings in The Netherlands, Belgium, Germany, France and Luxembourg. The outbreaks were caused by bluetongue virus (BTV) serotype 8, which had not been identified in the European Union before. Bluetongue virus can be introduced into a free area by movement of infected ruminants, infected midges or by infected semen and embryos. In this study, information on animal movements or transfer of ruminant germ plasms (semen and embryos) into the Area of First Infection (AFI), which occurred before and during the onset of the epidemic, were investigated in order to establish the conditions for the introduction of this virus. All inbound transfers of domestic or wild ruminants, non-susceptible mammal species and ruminant germ plasms into the AFI during the high-risk period (HRP), registered by the Trade Control and Expert System (TRACES) of the EC, were obtained. Imports originating from countries with a known or suspected history of BTV-incidence of any serotype were identified. The list of countries with a reported history of BTV incidence was obtained from the OIE Handistatus II for the period from 1996 until 2004. No ruminants were imported from a Member State (MS) with a known history of BTV-8 or from any other country with a known or suspected history of BTV incidence of any serotype. Of all non-susceptible mammal species only 233 horses were transported directly into the AFI during the HRP. No importations of semen or embryos into the AFI were registered in TRACES during the period of interest. An obvious source for the introduction of BTV-8, such as import of infected ruminants, could not be identified and the exact origin and route of the introduction of BTV-8 thus far remains unknown. However, the absence of legal import of ruminants from outside the EU into the AFI and the absence of BTV-8 in southern Europe suggest that, the introduction of the BTV-8 infection into the north-western part of Europe took place via another route. Specifically, in relation to this, the potential for Culicoides to be imported along with or independently of the import of animals, plants or other 'materials', and the effectiveness of measures to reduce such a possibility, merit further study.  相似文献   

11.
Bluetongue virus-induced interferon in cattle   总被引:1,自引:0,他引:1  
Calves were inoculated IV with bluetongue virus (BTV), serotype 10. Titers of interferon (IFN) in serum and BTV in peripheral blood were determined. All inoculated calves produced circulating IFN that persisted for 2 to 4 days. Highest titers of BTV in peripheral blood were present after serum IFN was no longer detected. The persistence of BTV in peripheral blood, as compared with the transient IFN response, indicated that IFN was most important in the initial antiviral response of cattle to BTV infection. Bluetongue virus is probably not a suitable model inducer of circulating IFN in cattle because the profound neutropenia that accompanied BTV infection may predispose cattle to infections with other agents.  相似文献   

12.
Bluetongue is an arthropod-transmitted viral disease of ruminants and certain other animals that was recognized and described more than 100 years ago in southern Africa. Bluetongue virus (BTV) infection of ruminants and vector Culicoides insects is enzootic throughout tropical and temperate regions of the world; however, there have been drastic recent regional alterations in the global distribution of BTV infection, particularly in Europe since 1998. Multiple novel BTV serotypes also have been detected since 1998 in the south-eastern United States, apparently encroaching from the adjacent Caribbean ecosystem, and novel serotypes of BTV have been identified recently in other historically enzootic regions of the world, including the Middle East and Australia. It has been proposed, but certainly not proven, that global climate change is responsible for these events. BTV infection of ruminants is often subclinical, but outbreaks of severe disease occur with regular frequency especially at the upper and lower limits of the virus' global range where infection is highly seasonal - occurring in the late summer and autumn. Bluetongue disease results from vascular injury, likely through a process analogous to that of human hemorrhagic viral fevers in which production of vasoactive mediators from virus-infected macrophages and dendritic cells results in enhanced endothelial paracellular permeability with subsequent vascular leakage and hypovolemic shock.  相似文献   

13.
Bluetongue virus serotype 26 (BTV-26) has recently been isolated from sheep in Kuwait. The aim of this study was to assess the pathogenicity and infection kinetics of BTV-26 in Dorset Poll sheep. Six sheep were experimentally infected with BTV-26 and samples taken throughout the study were used to determine the kinetics of infection using a pan specific BTV real time RT-PCR assay and two group specific ELISAs. Five of the six sheep showed mild clinical signs characteristic of bluetongue including conjunctivitis, reddening of the mouth mucosal membranes, slight oedema of the face and nasal discharge. Viral RNA was detected in 5 of the 6 sheep by real time RT-PCR, however the levels of viral RNA detected in the samples were lower and of shorter duration than seen with other field strains of BTV. Virus was isolated from the blood of infected animals at the peak of viraemia at around 9 dpi. Antibodies against BTV were first detected by 7 dpi using the early detection BTV ELISA and a little later (7-14 dpi) using a BTV specific competitive ELISA. Four of the five remaining sheep developed neutralising antibodies to BTV-26, measured by a serum neutralisation test (SNT), with titres (log(10)) ranging from 1.40 to 2.08.  相似文献   

14.
为制备针对蓝舌病病毒(BTV)的单克隆抗体(MAb),本研究利用血清型1型BTV(BTV1)免疫BALB/c鼠,将其脾淋巴细胞与SP2/0进行融合,并用BTV1包被ELISA板,通过间接ELISA方法筛选出3株稳定分泌抗BTV1的MAb的杂交瘤细胞株(2B10、3D4和4H8)。利用表达BTV1主要蛋白的真核表达重组质粒转染BHK-21后,对所制备的杂交瘤细胞株上清进行间接免疫荧光(IFA)以及western blot鉴定,结果显示:2B10和4H8与VP7蛋白反应,而3D4与VP6蛋白反应。同时,IFA鉴定结果进一步表明,3株MAb与24个血清型的BTV均可以发生反应。本研究制备的MAb为建立BTV免疫学检测方法和相关病毒蛋白的功能研究奠定了基础。  相似文献   

15.
16.
The efficacy of a bivalent inactivated vaccine against bluetongue virus (BTV) serotypes 2 (BTV-2) and 4 (BTV-4) was evaluated in cattle by general and local examination, serological follow-up, and challenge. Thirty-two 4-month-old calves were randomly allocated into 2 groups of 16 animals each. One group was vaccinated subcutaneously (s/c) with two injections of bivalent inactivated vaccine at a 28-day interval, and the second group was left unvaccinated and used as control. Sixty-five days after first vaccination, 8 vaccinated and 8 unvaccinated calves were s/c challenged with 1 mL of 6.2 Log10 TCID50/mL of an Italian field isolate of BTV serotype 2, while the remaining 8 vaccinated and 8 unvaccinated animals were challenged by 1 mL of 6.2 Log10 TCID50/mL of an Italian field isolate of BTV serotype 4. Three additional calves were included in the study and used as sentinels to confirm that no BTV was circulating locally. At the time of the challenge, only one vaccinated animal did not have neutralizing antibodies against BTV-4, while the remaining 15 showed titres of at least 1:10 for either BTV-2 or BTV-4. However, the BTV-2 component of the inactivated vaccine elicited a stronger immune response in terms of both the number of virus neutralization (VN) positive animals and antibody titres. After challenge, no animal showed signs of disease. Similarly, none of the vaccinated animals developed detectable viraemia while bluetongue virus serotype 2 and 4 titres were detected in the circulating blood of all unvaccinated animals, commencing on day 3 post-challenge and lasting 16 days. It is concluded that administration of the bivalent BTV-2 and BTV-4 inactivated vaccine resulted in a complete prevention of detectable viraemia in all calves when challenged with high doses of BTV-2 or BTV-4.  相似文献   

17.
Bluetongue (BT) virus serotype 2 (BTV 2) was first confirmed in Tunisia in February 2000 and has since spread northward and westward, infecting several other countries and islands, including Corsica, where clinical disease was reported in October 2000. BT was again reported on the Island in July 2001, some six months after a vaccination campaign against BTV 2. The molecular relationship between isolates of the BTV 2 Corsican wild-type viruses from 2000 and 2001, and the attenuated BTV 2 vaccine were determined by comparing corresponding sequences of genome segments 2, 7 and 10 with each other and with already published sequences available in the genome database. Complete genetic stability was observed between the isolates of the Corsican BTV 2. There was some divergence between the nucleotide sequences of segment 10 obtained from the wild-type and vaccine virus strains. Based on these differences, primers were selected that could be used in RT-PCR to differentiate between the wild-type and the vaccine viruses.  相似文献   

18.
This study reports on an outbreak of disease that occurred in central Algeria during July 2006. Sheep in the affected area presented clinical signs typical of bluetongue (BT) disease. A total of 5245 sheep in the affected region were considered to be susceptible, with 263 cases and thirty-six deaths. Bluetongue virus (BTV) serotype 1 was isolated and identified as the causative agent. Segments 2, 7 and 10 of this virus were sequenced and compared with other isolates from Morocco, Italy, Portugal and France showing that they all belong to a ‘western’ BTV group/topotype and collectively represent a western Mediterranean lineage of BTV-1.  相似文献   

19.
After 44 years of epidemiological silence, bluetongue virus (BTV) was reintroduced in Portugal in the autumn of 2004. The first clinical cases of bluetongue disease (BT) were notified in sheep farms located in the South of Portugal, close to the Spanish border. A total of six BTV, five of serotype 4 and one of serotype 2 were isolated from sheep and cattle during the 2004-2006 epizootics. The nucleotide sequence of gene segments L2, S7 and S10 of BTV-4 prototype strain (BTV4/22045/PT04) obtained from the initial outbreak and of BTV-2 (BTV2/26629/PT05) was fully determined and compared with those from other parts of the world. The phylogenetic analysis revealed that BTV4/22045/PT04 is related to other BTV-4 strains that circulate in the Mediterranean basin since 1998, showing the highest identity (99%) with BTV-4 isolates of 2003 from Sardinia and Corsica, whereas BTV2/26629/PT05 is almost indistinguishable from the Onderstepoort BTV-2 live-attenuated vaccine strain and its related field strain isolated in Italy. Since live-attenuated BTV-2 vaccine was never used in Portugal, the isolation of this strain may represent a natural circulation of the vaccine virus used in other countries in Mediterranean Europe.  相似文献   

20.

Bluetongue virus (BTV), a member of Orbivirus genus (family Reoviridae), is a non-contagious infection of domestic and wild ruminants. The current study was designed to detect various serotypes of BTV in small ruminants of Khyber Pakhtunkhwa (KPK) province of Pakistan, along with their effects on hemato-biochemical parameters. A total of 408 serum samples in four districts (Mansehra, Abbottabad, Swabi, and Kohat) of KPK from small ruminants were screened based on competitive ELISA (cELISA). A total of 204 (50%) samples were found positive for BTV group–specific antibodies. The seropositive samples were processed for the detection of BTV serotypes through real-time polymerase chain reaction (qPCR). Out of 204 cELISA-positive samples, 60 (29.41%) were found positive through qPCR. Three serotypes [6, 8, 9] were detected from Mansehra District and two from Kohat [2, 8] and Abbottabad [6, 8], while only one from Swabi [8]. The serotype “8” was found consistently in all the four study districts. A significant (p?<?0.05) increase in the level of blood urea nitrogen (BUN) and alkaline phosphatase (ALP) was recorded in goats, whereas aspartate aminotransferase (AST) in sheep infected with BTV, compared to healthy animals. The hematological parameters showed significantly (p?<?0.05) raised total leucocyte count (TLC) in both sheep and goats, whereas only hematocrit (HCT) value was increased significantly (p?<?0.05) in infected sheep. This is the first report on serotyping of BTV among small ruminants in Pakistan.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号