共查询到20条相似文献,搜索用时 33 毫秒
1.
The decomposition of Pinus radiata (D. Don) stems, coarse woody roots and stumps was studied in Tarawera forest, Bay of Plenty region, North Island, New Zealand. The study examined the residues from two thinning events with 6 and 11 years of decay. Changes in the mass of stems, and density of roots and stumps were used to estimate the decay rate constants using a single exponential model. The decay rate of stems was not significantly related to DBH and averaged 0.1374 year −1 (22 years for 95% mass loss). The decay rate of coarse woody roots was not significantly different to stem decay and averaged 0.1571 year −1 (19 years for 95% mass loss). A large range in stump decay rates was measured and a significantly lower decay constant was observed for stumps (0.1101 year −1, 27 years for 95% mass loss), possibly due to the stumps being kept alive after felling through root grafting and a resistance to decay due to the presence of resin. The concentration of C remaining in stems and stumps increased with mass loss from 52% to 55% C after 11 years of decay. The C concentration in coarse woody roots initially increased but then declined near to the original level of 50% after 11 years of decay. Nitrogen concentrations increased substantially in all components with decay. 相似文献
2.
We assessed shrew (soricids) response to coarse woody debris (CWD) manipulations in managed upland loblolly pine ( Pinus taeda) stands in the upper Coastal Plain of South Carolina over multiple years and seasons. Using a completely randomized block design, we assigned one of the following treatments to 12, 9.3-ha plots: removal ( n = 3; all CWD ≥ 10 cm in diameter and ≥60 cm long removed), downed ( n = 3; 5-fold increase in volume of down CWD), snag ( n = 3; 12-fold increase in standing dead CWD), and control ( n = 3; unmanipulated). Therein, we sampled shrews during winter, spring, and summer seasons, 2003–2005, using drift-fence pitfall arrays. During 1680 drift-fence plot nights we captured 253 Blarina carolinensis, 154 Sorex longirostris, and 51 Cryptotis parva. Blarina carolinensis capture rate was greater in control than in snag treatments. Sorex longirostris capture rate was lower in removal than downed and control plots in 2005 whereas C. parva capture rate did not differ among treatments. Overall, the CWD input treatments failed to elicit the positive soricid response we had expected. Lack of a positive response by soricid populations to our downed treatments may be attributable to the early CWD decay stage within these plots or an indication that within fire-adapted pine-dominated systems of the Southeast, reliance on CWD is less than in other forest types. 相似文献
3.
Coarse woody debris (CWD) is an important and particular component of forest ecosystems and is extremely important to forest health. This review describes the decomposition process, decomposition model and influence factors. CWD decomposition is a complex and continuous process and characterizes many biological and physical processes, including biological respiration, leaching, and fragmentation. All these processes have closed relationships between each other and work synergistically. During decomposition, there are many controlling factors mainly including site conditions (temperature, humidity, and OJCO2concentration), woody substrate quality (diameter, species and compound) and organism in CWD. The decomposition rate is generally expresses through a constant k which indicate the percent mass, volume or density loss over time, and can be determined by long-term monitoring, chronosequence approach and the radio between input and the total mass. Now using mathematical models to simulate decomposition patterns and estimate the decomposition rate is widely applied, especially the exponential model. We brought forward that managing and utilizing for the CWD in forest was a primary objective on all forest lands. And it is should be intensified to integrate many related research subjects and to carry a comprehensive, long-term and multi-scale research which mainly focus on seven sections. 相似文献
4.
Coarse woody debris (CWD) is thought to benefit herpetofauna in a variety of ways including serving as feeding sites, providing a moist environment, and providing protection from temperature extremes. We investigated the importance of CWD to amphibian and reptile communities in managed upland pine stands in the southeastern United States Coastal Plain during years 6 and 7 of a long-term study. Using a randomized complete block design, 1 of the following treatments was assigned to 9.3-ha plots: removal ( n = 3; all downed CWD ≥10 cm in diameter and ≥60 cm long removed), downed addition ( n = 3; five-fold increase in volume of down CWD), snag ( n = 3; 10-fold increase in volume of standing dead CWD), and control ( n = 3; unmanipulated). Herpetofauna were captured seasonally using drift-fence pitfall trapping arrays within treatment plots. We compared abundance, diversity, and richness of anurans, salamanders, lizards, and snakes using analysis of covariance with topographic variables (slope, elevation, aspect, and distance to nearest stream) included as covariates. We captured 355 amphibians and 668 reptiles seasonally from January 2007 to August 2008. Abundance, species richness, and species diversity were similar among treatments for anurans, salamanders, and lizards. Snake abundance, species richness, and diversity were higher in removal than downed addition plots. Anuran abundance increased as distance to nearest stream decreased. The majority of species captured during this study are adept at burrowing into the sandy soils of the region. Lack of reliance on CWD may be the result of herpetofaunal adaptation to the longleaf pine ( Pinus palustris) ecosystem that historically dominated the upland areas of the study area. 相似文献
5.
Long-term effects of salvage logging on coarse woody debris were evaluated on four stand-replacing wildfires ages 1, 11, 17, and 35 years on the Okanogan-Wenatchee National Forest in the eastern Cascades of Washington. Total biomass averaged roughly 60 Mg ha −1 across all sites, although the proportion of logs to snags increased over the chronosequence. Units that had been salvage logged had lower log biomass than unsalvaged units, except for the most recently burned site, where salvaged stands had higher log biomass. Mesic aspects had higher log biomass than dry aspects. Post-fire regeneration increased in density over time. In a complementary experiment, soils heating and surrogate-root mortality caused by burning of logs were measured to assess the potential site damage if fire was reintroduced in these forests. Experimentally burned logs produced lethal surface temperatures (60 °C) extending up to 10 cm laterally beyond the logs. Logs burned in late season produced higher surface temperatures than those burned in early season. Thermocouples buried at depth showed mean maximum temperatures exponentially declined with soil depth. Large logs, decayed logs, and those burned in late season caused higher soil temperatures than small logs, sound logs, and those burned in early season. Small diameter (1.25 cm), live Douglas-fir branch dowels, buried in soil and used as surrogates for small roots, indicated that cambial tissue was damaged to 10 cm depth and to 10 cm distance adjacent to burned logs. When lethal soil temperature zones were projected out to 10 cm from each log, lethal cover ranged up to 24.7% on unsalvaged portions of the oldest fire, almost twice the lethal cover on salvaged portions. Where prescribed fire is introduced to post-wildfire stands aged 20–30 years, effects of root heating from smoldering coarse woody debris will be minimized by burning in spring, at least on mesic sites. There may be some long-term advantages for managers if excessive coarse woody debris loads are reduced early in the post-wildfire period. 相似文献
6.
A high incidence of Diplodia shoot blight (site means ranging 85-100%) was observed on recently planted red pine ( Pinus resinosa) seedlings where mature red pine stands previously had been clearcut. An investigation of the potential of harvest debris as a source of inoculum of Diplodia pathogens then was conducted. Cones, bark, needles, stems from shoots bearing needles, and stems from shoots not bearing needles (both suspended above the soil and in soil contact) were collected from harvest debris left at sites where clearcutting occurred. Conidia were quantified, and their germination rate was assessed, and Diplodia species were identified using PCR. Conidia of Diplodia species were found at all study sites and conidia counts increased from samples collected from 6 to 18 months after harvest. Germinable conidia were obtained from debris collected 6 months to 5 years after harvest. Fewer conidia were obtained from debris collected at intervals of up to 4-5 years after harvest and the percentage of germinable conidia was lower after longer intervals following harvest. More conidia were obtained and a greater percentage germinated from debris collected above the soil than from debris in soil contact. The host substrate also influenced the number of conidia and the percentage that germinated. Planting red pine seedlings next to debris infested with Diplodia pathogens could provide a persistent source of inoculum. Results should prompt further consideration by land managers and researchers of the potential forest health risks, in addition to benefits, that may be associated with harvest debris. 相似文献
7.
Lodgepole pine ( Pinus contorta Dougl. ex Loud.)-dominated ecosystems in north-central Colorado are undergoing rapid and drastic changes associated with overstory tree mortality from a current mountain pine beetle ( Dendroctonus ponderosae Hopkins) outbreak. To characterize stand characteristics and downed woody debris loads during the first 7 years of the outbreak, 221 plots (0.02 ha) were randomly established in infested and uninfested stands distributed across the Arapaho National Forest, Colorado. Mountain pine beetle initially attacked stands with higher lodgepole pine basal area, and lower density and basal area of Engelmann spruce ( Picea engelmannii [Parry]), and subalpine fir ( Abies lasiocarpa (Hook.) Nutt. var. lasiocarpa) compared to uninfested plots. Mountain pine beetle-affected stands had reduced total and lodgepole pine stocking and quadratic mean diameter. The density and basal area of live overstory lodgepole declined by 62% and 71% in infested plots, respectively. The mean diameter of live lodgepole pine was 53% lower than pre-outbreak in infested plots. Downed woody debris loads did not differ between uninfested plots and plots currently infested at the time of sampling to 3 or 4–7 years after initial infestation, but the projected downed coarse wood accumulations when 80% of the mountain pine beetle-killed trees fall indicated a fourfold increase. Depth of the litter layer and maximum height of grass and herbaceous vegetation were greater 4–7 years after initial infestation compared to uninfested plots, though understory plant percent cover was not different. Seedling and sapling density of all species combined was higher in uninfested plots but there was no difference between infested and uninfested plots for lodgepole pine alone. For trees ≥2.5 cm in diameter at breast height, the density of live lodgepole pine trees in mountain pine beetle-affected stands was higher than Engelmann spruce, subalpine fir, and aspen, ( Populus tremuloides Michx.), in diameter classes comprised of trees from 2.5 cm to 30 cm in diameter, suggesting that lodgepole pine will remain as a dominant overstory tree after the bark beetle outbreak. 相似文献
8.
Nitrogen (N) limits productivity in many coniferous forests of the western US, but the influence of post-fire structure on N cycling rates in early successional stands is not well understood. We asked if the heterogeneity created by downed wood and regenerating pine saplings affected N mineralization and microbial community composition in 15-yr old lodgepole pine ( Pinus contorta var. latifolia) stands established after the 1988 fires in Yellowstone National Park (Wyoming, USA). In three 0.25-ha plots, we measured annual in situ net N mineralization in mineral soil using resin cores ( n = 100 per plot) under pine saplings, downed wood (legacy logs that survived the fire, and fire-killed trees that had fallen and were contacting or elevated above the ground), and in bare mineral soil. Annual in situ net N mineralization and net nitrification rates were both greater in bare mineral soil (8.4 ± 0.6 and 3.6 ± 0.3 mg N kg soil−1 yr −1, respectively) than under pine saplings, contact logs, or elevated logs (ca. 3.9 ± 0.5 and 0.8 ± 0.1 mg N kg soil−1 yr −1, respectively). Net nitrification was positively related to net N mineralization under all treatments except for elevated logs. In laboratory incubations using 15N pool dilution, NH 4+ consumption exceeded gross production by a factor of two in all treatments, but consumption and gross production were similar among treatments. Contrary to our initial hypothesis, microbial community composition also did not vary among treatments. Thus, two- to three-fold differences in in situ net N mineralization rates occurred despite the similarity in microbial communities and laboratory measures of gross production and consumption of NH 4+ among treatments. These results suggest the importance of microclimate on in situ annual soil N transformations, and differences among sites suggest that broader scale landscape conditions may also be important. 相似文献
9.
The long-term relationships between coarse woody debris (CWD) dynamics, soil characteristics and site productivity have, so far, received little attention. The objectives of the study were to describe CWD dynamics along a post-fire chronosequence (43–86 years after fire) in jack pine ( Pinus banksiana Lamb.) stands, assess the importance of buried CWD in terms of soil available water holding capacity (AWHC), and investigate relationships between CWD, AWHC, nutrient retention and site productivity. Twelve jack pine stands on sandy, mesic sites of glaciolacustrine origin were surveyed. Buried wood volume within the forest floor varied between 1 and 57 m3 ha−1 (4–92% of total site CWD volume) and showed no relationship with time. Downed log mass accumulation followed a “U shaped” successional pattern with time since fire. Buried wood AWHC was negligible compared with that of the 0–20 cm mineral soil layer. The most productive sites were characterised by higher forest floor dry weight, effective CEC and water holding capacity in the mineral soil. Path analyses of relationships between organic matter content, CWD and forest floor CEC showed that CEC was conditioned by forest floor organic matter and buried wood content. 相似文献
10.
The decomposition rate of stem and branch coarse woody debris (CWD, >10 cm in diameter) was assessed in natural forests located in the central North Island of New Zealand. CWD samples had originated from windfalls associated with cyclone Bernie, and had been decaying for approximately 20 years on the forest floor. Species-specific decay rates were estimated from the density of CWD samples relative to the density of live tree samples from the same stands. Decay rates were determined for rimu ( Dacrydium cupressinum), matai ( Prumnopitys taxifolia), tawa ( Beilschmiedia tawa), miro ( Prumnopitys ferruginea) and kahikatea ( Dacrycarpus dacrydioides) in podocarp forest at Whirinaki, and red ( Nothofagus fusca) and silver beech ( Nothofagus menziesii) in beech forest at Kaimanawa. The average decay rate for these seven species, expressed as the time taken to lose 50% mass ( t1/2), was 30 years. Larger trees (90 cm diameter at breast height, dbh) decayed more slowly ( t1/2 = 38 years) than smaller trees (30 cm dbh; t1/2 = 21 years). After adjustment for dbh, P. taxifolia ( t1/2 = 39 years), N. fusca ( t1/2 = 38 years), N. menziesii ( t1/2 = 31 years) and B. tawa ( t1/2 = 26 years) decayed significantly more slowly than D. cupressinum ( t1/2 = 18 years). D. cupressinum decayed more slowly than P. ferruginea ( t1/2 = 16 years) and D. dacrydioides ( t1/2 = 14 years), although these differences were not statistically significant because the CWD sample size was small for the latter two species. An attempt to expand the range of species studied using data from in-ground durability tests was not successful as species decay rankings from these tests were inconsistent with natural forest CWD rankings. Stems heavily colonized by the common decay fungus Ganoderma cf. applanatum decayed more rapidly ( t1/2 = 20 years) than those which were occupied only by other decay fungi ( t1/2 = 40 years). A tree species and dbh-dependent decay constant, λ, was derived for estimating carbon loss from CWD due to fungal decay and insect activity in indigenous forests. Future research will aim to improve these decay equations by investigating the decomposition processes associated with tree species and basidiomycete populations present at other sites in New Zealand. 相似文献
11.
在印度Askot野生动物保护区Goriganga流域的3个分水岭(Charigad,Dogarhigad和upper Gosigad)内,沿着海拔高度900~2600m设置5条曲线调查样带(样带A、B、C、D和E),调查了粗木质残体的分布格局和状况.海拔高度每升高100 m设置一块1 hm2的样地.结果表明,不同演替阶段的粗木质残体百分比贡献率按降低顺序排列依次是:枯立木--相位Ⅰ>相位Ⅱ>相位Ⅳ>相位Ⅲ;而原木-相位Ⅲ>相位Ⅱ>相位Ⅳ.调查样带A内喜马拉雅长叶松(Pinus roxburghii)林内枯立木密度在1500m处较高,调查样带B通麦栎(Quercus lanata)林的枯立木密度在2300米处较高(10个/hm2).喜马拉雅长叶松林的枯立木和原木总获得量为13.9 t,其中枯立木和原木分别占41%和59%;而通麦栎林枯立木和原木总量仅为5.6 t,枯立木和原木分别占60%和40%.此外,粗木质残体的存在,有利于为当地生长的兰花营造良好的生长环境.在喜马拉雅长叶松林中等高度区域内,高密度的枯立木和原木导致该区内物种丰富度较低,地被物密度也较低.这主要是由于该区光线充足、土壤水分含量低,只有优势种才能占领这样生境. 相似文献
13.
In this paper, we present a two-stage approach for characterizing the structure of Pinus sylvestris L. stands in forests of central Spain. The first stage was to delimit forest stands using eCognition and a digital canopy height model (DCHM) derived from lidar data. The polygons were then clustered ( k-means algorithm) into forest structure types based on the DCHM data within forest stands. Hypsographs of each polygon and field data validated the separability of structure types. In the study area, 112 polygons of Pinus sylvestris were segmented and classified into five forest structure types, ranging from high dense forest canopy (850 trees ha −1 and Loreýs height of 17.4 m) to scarce tree coverage (60 tree ha −1 and Loreýs height of 9.7 m). Our results indicate that the best variables for the definition and characterization of forest structure in these forests are the median and standard deviation (S.D.), both derived from lidar data. In these forest types, lidar median height and standard deviation (S.D.) varied from 15.8 m (S.D. of 5.6 m) to 2.6 m (S.D. of 4.5 m). The present approach could have an operational application in the inventory procedure and forest management plans. 相似文献
14.
The regeneration of Japanese black pine ( Pinus thunbergii) seedlings is inhibited in a black locust ( Robinia pseudoacacia)-dominated area. We examined the presence of pathogenic fungi in Japanese black pine seedlings in the area in order to determine
the effect of pathogenic fungi on the inhibition of regeneration. When Japanese black pine seedlings were planted in the soil
obtained from a black locust-dominated area, all of the seedlings died under low-intensity light conditions, whereas 84% of
the seedlings survived in the soil obtained from a Japanese black pine-dominated area under the same light conditions. One
fungus was isolated from 48.7% of the dead pine seedlings and was identified as Cylindrocladium pacificum Kang, Crous & Schoch, based on the morphological characteristics, growth, and DNA analysis. This fungus was also isolated
from 50% of the dead pine seedlings in 2005 and 66.7% of the seedlings in 2006—both were planted in a black locust-dominated
area. The virulence of this fungus increased under high-nitrogen and/or low-intensity light conditions. These results reveal
the possibility that the soil eutrophication and shading by the black locust are conducive to a severe damping-off disease
and threaten the survival and regeneration of Japanese black pine seedlings. 相似文献
15.
The aim of this study is to determine the competing regeneration and expansion patterns of two co-occurring pine species ( Pinus brutia, Pinus nigra ssp. pallasiana), in a transitional montane Mediterranean zone. We measured the regeneration density of all woody species in 102 randomly located stands along an altitudinal gradient on the island of Lesbos, Greece. Individuals of pines were assigned to different size classes. Topographic factors (altitude, aspect, and soil depth) and light availability (through hemispherical photographs) were measured for each stand. Statistical analyses were applied to explore the effect of each factor on recruitment density of the competing pine species, and to elucidate patterns of interaction. Canopy openness was the most important parameter controlling the recruitment of P. brutia, while the regeneration density of P. nigra was mainly related to canopy openness and heat load. An idiosyncratic response of the recruitment vigour of the two species was identified along gradients of shade and drought stress. The decline in P. nigra recruitment density with drought conditions underlines threats to its population maintenance even in the absence of fire. On the other hand P. brutia seems to be a stronger invader in transitional zones. The studied species could be considered typical representatives of the two most widely distributed pine functional types across the Mediterranean basin, and our results agree with the theoretical ability of such species to maintain and expand their populations. 相似文献
16.
Diversity, density and species composition of naturally regenerated woody plants under Eucalyptus grandis plantation and the adjacent natural forest were investigated and compared. Twenty plots, with an area of 20 m × 20 m for
each, were established in both of E. grandis plantation and adjacent natural forest, independently. In each plot, species name, abundance, diameter and height were recorded.
Numbers of seedling were collected in five sub-plots (4 m 2) within each major plot. A total of 46 species in the plantation, and 52 species in the natural forest, which belongs to
36 families were recorded. The diversity of species ( H′) is 2.19 in the plantation and 2.74 in the natural forest. The density of understory woody plant was 3842 stems/ha in the
plantation and 4122 stems/ha in the natural forest. The densities of seedlings in the natural forest and the plantation were
8101 stems/ha and 4151 stems/ha, respectively. High similarity of woody species composition was found between the natural
forest and the plantation. The E. grandis plantation was found favoring the regeneration and growth of Millitia ferruginia and Coffea arabica in a much better way than other underneath woody species. 相似文献
17.
Eucalyptus globulus is the predominant exotic hardwood plantation species in Western Australian (WA), and is often planted adjacent to native eucalypt forests. The increase in number of Mycosphaerella species associated with Mycosphaerella leaf disease (MLD) in E. globulus plantations in WA in the past decade has raised concern about the possible movement of pathogens between the native forests and plantations. In order to determine whether the introduction of new E. globulus genetics into WA may have further exacerbated this situation, juvenile and adult foliage were taken from a genetics trial near Albany, WA consisting of 60 full-sib families and Mycosphaerella species identified using morphological and molecular tools. Eleven species of Mycosphaerella were identified from one plantation: Mycosphaerella fori ( Pseudocercospora fori) and Mycosphaerella ellipsoidea are new records for Australia; Mycosphaerella tasmaniensis ( Passalora tasmaniensis) and Mycosphaerella suttoniae ( Kirramyces epicoccoides) are new records for WA; and Mycosphaerella nubilosa, Mycosphaerella cryptica, Mycosphaerella marksii, Mycosphaerella molleriana, Mycosphaerella lateralis, Mycosphaerella aurantia and Mycosphaerella parva, previously recorded for WA. The most frequently isolated species from juvenile foliage was M. marksii (77%) followed by M. nubilosa (33%). M. nubilosa was most frequently isolated from adult leaves (88%) followed by M. parva (7.5%). Three species, M. molleriana, M. lateralis and M. cryptica, were only isolated from adult leaves while M. ellipsoidea was only isolated from juvenile leaves. These records increase the number of known Mycosphaerella species from eucalypts in WA from 10 to 13. The increase in the number, distribution and impact of Mycosphaerella species contributing to MLD in WA is of concern both to the potential productivity of the plantations and the biosecurity of native WA Eucalyptus species. Continued monitoring of the plantation estate is required to understand the dynamics of the host–pathogen interactions. 相似文献
18.
The aim of the present study was to evaluate the initial effects of the application of mixed wood-bark ash (MWBA) on growth and nutritional status of a Pinus radiata plantation, and on the dynamics of some of the nutrients. A field experiment, which included four treatments and four replicates in a completely random design, was established on an acidic, mineral soil rich in organic matter. The treatments were two different doses of ash (5 and 10 t ha −1), a soluble NPK fertilizer 8:24:16 (N:P 2O 5:K 2O, 200 g per plant) and an unfertilized control. The MWBA was incorporated into the soil after cutting and chopping the existing shrub vegetation and before planting. Application of the ash produced an increase in soil pH, and in the availability of P, Ca, Mg and K. The effects on soil pH and available Ca and Mg persisted for five growing seasons. The prolonged response in this study may be attributable to the effect of ash incorporation, which may have enhanced the solubility of wood ash compounds, despite the partly combusted material present in the ash. The ash improved the nutritional status, mainly in terms of Ca and Mg, and the vector analysis indicated that these elements were limiting forest production. The soluble NPK fertilizer did not produce any improvement in growth relative to the control. The concentrations of heavy metals in both soil and plant tissue were always low and did not increase significantly after application of the wood-bark ash. The positive effect of ash application on height and diameter growth was significant after 5 years, with similar results for both doses of ash. The improvement was attributed to the increases in Ca and Mg in soil.The differences between the treatments with ash and the control were much greater when the values of biomass per unit area were considered, due to the accumulative effect of a lower mortality and the enhanced growth in basal diameter and height. 相似文献
19.
Data from a nationwide set of Pinus radiata D. Don plots established at a range of conventional stand densities were analysed at age 6 to (i) determine how environment and competition from weeds influence dynamic modulus of elasticity ( E) of the lower stem base, (ii) develop a predictive multiple regression model of E for basal stemwood and (iii) identify significant direct and indirect environmental influences (through stem slenderness) on E using path analysis.Site had a highly significant ( P < 0.001) influence on E, which exhibited a 3-fold range from 1.6 to 5.3 GPa, across 30 sites. When compared to the weed-free controls, weed competition had a significant ( P < 0.0001) and substantial effect on E, increasing values by on average 16% (2.76 GPa vs. 2.38 GPa).The positive linear relationship between stem slenderness (determined as tree height/ground-line tree diameter) and E was by far the strongest relationship ( R2 = 0.71; P < 0.001) among the 20 variables that were significantly related to E. A multiple regression model that included stem slenderness, mean minimum air temperature in mid-autumn, Tmin, as positive linear relationships and net nitrogen (N) mineralisation in a negative linear form accounted for 86% of the variance in E. A cross-validation indicated that this model was stable and unbiased, with the validation accounting for 82% of the variance in E. The final path analysis model included Tmin, net N mineralisation, below canopy solar radiation and stem slenderness as significant ( P < 0.05) direct influences on E. Below canopy radiation, maximum air temperature during mid-summer, soil total phosphorus and carbon:nitrogen ratio were indirectly associated with E through their significant ( P < 0.05) direct relationship with stem slenderness.These results provide considerable insight into how environment regulates E of juvenile P. radiata. Low fertility sites that have warm air temperatures and either a high canopy leaf area index, or high levels of woody weed competition, are most likely to produce trees with high stem slenderness and high E. Conversely, sites that are cool over summer and autumn and high in fertility, with low levels of intra- or inter-specific competition for light are likely to produce trees with low stem slenderness and low E. 相似文献
20.
To evaluate control measures, the spread of mountain pine beetles, Dendroctonus ponderosae, in management and monitoring regions in Banff National Park was analyzed for years 1997 to 2004. The Park allowed mountain pine beetles to follow their natural course in a monitoring zone (74,041 ha), whereas in a management zone (45,997 ha) an extensive eradication program was established in 2001 which included baiting mountain pine beetles and cutting and burning all colonized trees. We used data collected from an annual aerial survey and the geo-referenced location of trees that were cut and removed to assess if the area colonized and the spatial extent of mountain pine beetles differed between the two zones. After 4 years, the control measures did not significantly affect the area colonized by mountain pine beetles, and in 2004 mountain pine beetles were still expanding in both zones, although at a slow rate (1.23 ha per year). The spatial extent and the rate at which 500 m × 500 m cells (25 ha) were colonized were much reduced in the management zone. Thus, the management program appeared to have reduced the success of long distance movement as measured by colonizing new 25 ha cells, but short distance dispersal remained successful as indicated by the continued increase in area colonized. The effectiveness of control measures was probably limited by the number of colonized trees that were missed and by survival rates determined by other untested factors. 相似文献
|