首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chickpea (Cicer arietinum L.) is known to be salt-sensitive and in many regions of the world its yields are restricted by salinity. Recent identification of large variation in chickpea yield under salinity, if genetically controlled, offers an opportunity to develop cultivars with improved salt tolerance. Two chickpea land races, ICC 6263 (salt sensitive) and ICC 1431 (salt tolerant), were inter-crossed to study gene action involved in different agronomic traits under saline and control conditions. The generation mean analysis in six populations, viz. P1, P2, F1, F2, BC1P1 and BC1P2, revealed significant gene interactions for days to flowering, days to maturity, and stem Na and K concentrations in control and saline treatments, as well as for 100-seed weight under salinity. Seed yield, pods per plant, seeds per plant, and stem Cl concentration were controlled by additive effects under saline conditions. Broad-sense heritability values (>0.5) for most traits were generally higher in saline than in control conditions, whereas the narrow-sense heritability values for yield traits, and stem Na and K concentrations, were lower in saline than control conditions. The influence of the sensitive parent was higher on the expression of different traits; the additive and dominant genes acted in opposite directions which led to lower heritability estimates in early generations. These results indicate that selection for yield under salinity would be more effective in later filial generations after gene fixation.  相似文献   

2.
Genetic basis of variation for salt tolerance in maize ( Zea mays L).   总被引:2,自引:0,他引:2  
The genetic basis of salt tolerance was examined in selected salt tolerant and sensitive material from a sample of accessions previously assessed for variability in salinity tolerance. The North Carolina Model 2 Design and analysis was followed, tolerance being assessed in 10-day-old seedlings grown in salinized solution culture at control (0 mM), 60 mM and 80 mM NaCl concentrations). Salinity tolerance was shown to be under the control of genes with additive and non-additive effects, with broad and narrow sense heritability estimates being approximately 0.7 and 0.4 over all treatments. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
曹Yang  严建民 《作物学报》1997,23(1):102-106
用^14C同位素示踪法研究了6个小麦品种叶片的RuBP羧化酶活性对孕穗期湿害逆境的响应能力及其产量性状表现;用完全双列杂交法测定了9个小麦亲本耐湿性的配合力。结果表明:在孕穗期湿害逆境下,不同品种间的RuBP羧化酶活性下降程度存在明显差异,这种差异与主茎绿色叶片数和产量性状的变化相一致,配合力分析结果表明,亲本之间一般配合力差异达极显著水平,组合间特殊配合力效应存在显著差异,说明小麦品种的耐湿性受  相似文献   

4.
Forty-five accessions of sunflower collected from different countries were screened for salinity tolerance after 2 weeks growth in sand culture salinized with 150 meq l?1 of NaCl2+ CaCl2 (1:1 ratio equivalent wt. basis) in half strength Hoagland's nutrient solution. The results for plant biomass of 45 accessions show that there was considerable variation in salinity tolerance. In a further greenhouse experiment, the salinity tolerance of three tolerant (HO-1, Predovik, Euroflor) and two sensitive (SMH-24, 9UO-985) lines (selected on the basis of their performance in the seedling experiment) was assessed at the adult stage to evaluate the consistency of salinity tolerance at different growth stages. All three salt tolerant accessions produced significantly greater plant biomass, seed yield and seed oil content than the salt sensitive accessions. The tolerant accessions accumulated less Cl? and more K+ in the leaves under saline conditions compared with the salt sensitive accessions. The salt tolerant accessions also maintained relatively high leaf K:Na ratio and K+ versus Na+ selectivity. Although statistically nonsignificant, all three tolerant accessions had greater soluble carbohydrates, soluble proteins, total free amino acids and proline in the leaves than the sensitive accessions. A field trial conducted in a salt-affected field confirmed the greenhouse results of the selected accessions. This study shows that salinity tolerance of sunflower does not vary with stage of plant cycle, so selection for increased salt tolerance can be carried out at the initial growth stage. Secondly, it is found that there is great variation of salt tolerance in sunflower. Low uptake of Cl?, high uptake of K+, and maintenance of high K:Na ratios and K+ versus Na+ selectivity in the leaves and possibly the accumulation of organic osmotica such as soluble carbohydrates, soluble proteins, proline and free amino acids seem to be the important components of salt tolerance in sunflower.  相似文献   

5.
Developing more stress‐tolerant crops will require greater knowledge of the physiological basis of stress tolerance. Here, we explore how biomass declines in response to salinity relate to leaf traits across 20 genotypes of cultivated sunflower (Helianthus annuus). Plant growth, leaf physiological traits and leaf elemental composition were assessed after 21 days of salinity treatments (0, 50, 100, 150 or 200 mM NaCl) in a greenhouse study. There was a trade‐off in performance such that vigorous genotypes, those with higher biomass at 0 mM NaCl, had both a larger absolute decrease and proportional decrease in biomass due to increased salinity. More vigorous genotypes at control were less tolerant to salinity. Contrary to expectation, genotypes with a low increase in leaf Na and decrease in K:Na were not better at maintaining biomass with increasing salinity. Rather, genotypes with a greater reduction in leaf S and K content were better at maintaining biomass at increased salinity. While we found an overall trade‐off between sunflower vigour and salt tolerance, some genotypes were more tolerant than expected. Further analysis of the traits and mechanisms underlying this trade‐off may allow us to breed these into high‐vigour genotypes in order to increase their salt tolerance.  相似文献   

6.
Salinity tolerance in rice varies with the state of growth, with the seedling and reproductive stages being the most sensitive. However, association between tolerances at the two stages is poor, suggesting that they are regulated by different processes and genes. Tolerance at the reproductive stage is the most crucial as it determines grain yield. An F2 mapping population was developed from two rice genotypes contrasting in tolerance: Cheriviruppu and Pusa Basmati 1 (PB1). Cheriviruppu is highly tolerant at the reproductive stage, while PB1 is highly sensitive at both seedling and reproductive stages. One hundred and thirty‐one microsatellite markers polymorphic between the parents were used to construct a linkage map of 1458.5 cM (Kosambi), with a mean intermarker distance of 11.1 cM. Sixteen QTLs with LOD values ranging from 3.2 to 22.3 were identified on chromosomes 1, 7, 8 and 10, explaining 4–47 % of the phenotypic variation. The maximum number of QTL clusters for different component traits was colocalized on the long arm of chromosome 1 and chromosome 7. We identified several significant epistatic interactions, including three inter‐QTL interactions, using MapManager. The results suggest that pollen fertility, Na+ concentration and Na/K ratio in the flag leaf are the most important mechanisms controlling salt tolerance at the reproductive stage in rice. The study reports the construction of a genetic map for reproductive‐stage salt tolerance in rice and demonstrates its utility for molecular mapping of QTLs controlling salinity tolerance‐related traits, which will be useful in marker‐assisted selection in the future.  相似文献   

7.
Growth, photosynthesis and mineral ions accumulation of aromatic small grain, local coarse grain and HYV types of rice were evaluated under saline conditions. Three cultivars from each type were subjected to 0, 50, 100, 150 and 200 mvi NaCl concentrations. After three weeks of 200 mvi NaCl application only Pokkali and Kalobail, both belonging to the local coarse grain type and IPK 37011 of the HYV type were able to survive. Plant height, green leaf area, leaf weight, shoot and root growth were seriously decreased by salinity. However, leaf area was decreased more than other growth parameters. In general aromatic small grain type showed higher salt-sensitiveness in relation to growth than other types of rice. Photosynthesis (Pn) was decreased by salinity and apparently stomatal resistance was partially responsible for the decreased Pn. Kalijira, an aromatic small grain eultivar, showed serious reduction in Pn, especially at the 150mM NaCl level. Na accumulation was increased while K accumulation was decreased by salinity in all types. Salt tolerant eultivars in all types of rice accumulated less Na and more K than susceptible ones. The K/Na ratio was also higher in tolerant eulti-vars. Ca and Mg eoncentrations were decreased by salinity although not all the eultivars showed clear accumulation patterns as observed for Na and K. As HYV and local coarse grain types of rice in general showed high salt tolerance, a comprehensive breeding programme should be of value for the improvement of salt tolerance of aromatic small grain rice which has a high demand in rice importing countries.  相似文献   

8.
Expression and inheritance of tolerance to waterlogging stress in wheat   总被引:7,自引:0,他引:7  
Approximately 10 million hectares of wheat (Triticum aestivum L.) globally experience medium toserious waterlogging. The inheritance of waterloggingtolerance was determined in reciprocal crosses ofthree tolerant (Prl/Sara, Ducula and Vee/Myna), andtwo sensitive (Seri-82 and Kite/Glen) spring breadwheat lines. Parents, F1, F2, F3, and backcrossgenerations were studied under field conditions in Cd.Obregon, State of Sonora, Mexico. Flooding was appliedwhen plants were at the three-leaf and first-internodestages. Basins were drained after 40 days of flooding.Leaf chlorosis was used as a measure of waterloggingtolerance. The sensitive by sensitive cross, Seri-82 × Kite/Glen, showed the highest mean values forpercentage leaf chlorosis and area under chlorosisprogress curve (AUCPC), and the lowest mean values forplant height, biomass, grain yield, and kernel weight.The F3 of the cross between the two tolerant parentsDucula and Vee/Myna had the lowest mean values forpercentage leaf chlorosis and AUCPC, and the highestmean values for plant height, biomass, and grainyield. The expression of waterlogging tolerance wasnot influenced by a maternal effect. The F1 hybridswere intermediate for leaf chlorosis, indicating thattolerance was additive. Quantitative analysis alsoindicated that additive gene effects mainly controlledwaterlogging tolerance in these crosses. Segregationratios of F3 lines indicated that up to four genescontrolled waterlogging tolerance in these crosses,with two genes adequate to provide significanttolerance. Early-generation selection for tolerancewould be effective in these populations.  相似文献   

9.
本文研究了马铃薯对卷叶和花叶病毒抗性的遗传及与产量性状的关系.结果表明,抗病性与群体产量没有显著的遗传相关性,抗病性主要通过保证马铃薯植株的正常生长发育而间接保持群体的高产稳产性能.马铃薯对卷叶病毒抗性、株高、茎粗、有效株率和主要产量性状的遗传主要由亲本的累加基因效应决定,且同一亲本在不同性状上的一般配合力效应差异较大.因此,抗病高产育种中各目标性状的协调选择是十分重要的.群体有效株率和茎粗的选择可使抗病性和丰产性同步提高.马铃薯对花叶病毒的抗性、加性和非加性作用同时存在.群体抗病性、有效株率和产量的遗传进度高,选择潜力大.  相似文献   

10.
11.
棉花耐盐性的SSR鉴定研究   总被引:2,自引:0,他引:2  
土壤盐碱化现已成为危害农业发展和生态环境的全球性问题,培育和鉴选棉花耐盐品种是合理开发利用盐碱地的有效途径。本研究选用25份耐盐(包括耐和抗)和23份盐敏感棉花种质为实验材料,采用SSR技术,展开了棉花耐盐性鉴定技术的有关研究。从DNA快速提取到PCR扩增和产物检测以及多标记组合鉴定等环节进行分析探讨,初步制定了一套适于棉花耐盐性分子鉴定的方法,即多标记组合鉴定法。并用11份材料对该方法进行了验证,结果表明和0.4%盐量胁迫法的鉴定结果的相符率达90.91%。初步研究结果表明多标记组合鉴定法可用于棉花耐盐分子标记辅助鉴定。  相似文献   

12.
甘薯苗期耐盐性鉴定及其指标筛选   总被引:2,自引:0,他引:2  
以18个甘薯品种(系)为试验材料, 设置对照和200 mmol L -1 NaCl浓度处理, 通过苗期盐土栽培胁迫方式, 对各处理下各品种(系)的茎叶鲜重、根系鲜重、茎叶干重、根系干重、叶片相对电导率、Fv/Fm、SPAD值、SOD酶活性、MDA含量、脯氨酸含量、根系活力、根系Na +和K +含量、Na +/K +比值等14个生理指标进行测定, 通过对各单项指标的耐盐系数进行相关分析、主成分分析、聚类分析和逐步回归等方法对品种(系)耐盐性进行综合评价。通过主成分分析, 将盐胁迫处理下甘薯苗期的14个单项指标转换成5个彼此独立的综合指标; 通过隶属函数分析, 得到不同品种(系)苗期耐盐性综合评价值(D值), 并通过聚类分析, 将18个甘薯品种(系)划分为4种耐盐类型, 其中盐敏感型4个、弱耐盐型3个、中度耐盐型7个和高度耐盐型4个。在此基础上, 利用逐步回归方法建立了可用于甘薯苗期耐盐性评价的回归方程, 同时筛选出茎叶鲜重、根系鲜重、茎叶干重、叶片SPAD值、SOD酶活性、MDA含量、脯氨酸含量、根系Na +/K +比值等8个可用于甘薯苗期耐盐性评价的生理指标。本研究可为甘薯耐盐新品种选育提供种质并为甘薯苗期耐盐性评价及耐盐机制研究提供理论依据。  相似文献   

13.
水稻茎叶形态性状的简化三重测交分析   总被引:4,自引:0,他引:4  
徐云碧  申宗坦 《作物学报》1992,18(5):344-351
以H1459和乐一为测验系L_1和L_2,分别与泸红早等22个早籼品种进行简化三重测交(sTTC),考查了12个茎叶形态性状。其中,剑叶宽、倒2叶宽、倒3叶宽,倒2节间长和基部节间粗在两个测验系中表现为极端类型,倒3叶长和剑叶夹角在两个测验系间可能存在由于同效基因分散分布引起的真实遗传差异。对上述7个性状的遗传分析表明,基部节间粗  相似文献   

14.
The degree of salt tolerance of two newly developed genotypes of spring wheat, S24 and S36 was assessed with respect to their parents, LU26S (from Pakistan) and Kharchia (from India). These four lines along with a salt-tolerant genotype SARC-1 and two salt-sensitive cvs Potohar and Yecora Rojo were subjected to salinized sand culture containing 0, 125 or 250 mol m?3 NaCl in full strength Hoagland's nutrient solution. S24 produced significantly greater grain yield and had greater 1000 seed weight and number of tillers per plant than those of the other cultivars /lines. S36 was not significantly different from its parents in seed yield and yield components. SARC-1 was the second highest in grain yield of all cultivars/lines, but it did not differ significantly from LU26S and Kharchia in 1000 seed weight and number of tillers per plant. The greater degree of salt tolerance of S24 could be related to its lower accumulation of Na+ in the leaves and maintenance of higher leaf K/Na ratios and K versus Na selectivity as compared to its parents. S36, which was as good as its parents in growth, also had lower Na+ and higher K/Na ratios and K versus Na selectivity in the leaves at the highest salt level than those in its parents. SARC-1 did not differ from LU26S and Kharchia in ionic content or K/Na ratios and K versus Na selectivities of both leaves and roots. Both the salt-sensitive cultivars, Potohar and Yecora Rojo, had significantly greater leaf Na+ and Cl? concentrations and lower leaf K/Na ratios and K versus Na selectivities than all the salt-tolerant lines examined in this study. From this study it is evident that improvement in salt tolerance of spring wheat is possible through selection and breeding, and pattern of ion accumulation is not consistent among the salt-tolerant genotypes in relation to their degree of salt tolerance.  相似文献   

15.
Maize hybrids that are tolerant to drought at the seedling stage are needed to boost productivity in the rainforest agro-ecology of West Africa. Genetics of tolerance of maize seedling to drought stress is not well understood and is poorly documented. The objectives of this study were to screen early-maturing maize lines for seedling drought tolerance, determine the inheritance and the combining ability of selected inbred lines, and evaluate the performance of seedling drought-tolerant hybrids under field conditions. Forty-nine early maize lines were screened for drought tolerance at the seedling stage. Ten drought-tolerant and two susceptible inbred lines were selected and used in diallel crosses to generate 66 hybrids. The twelve inbred lines and their hybrids were evaluated under induced drought at seedling stage in the screen house and under marginal growing conditions on the field for two seasons. Data collected were subjected to analysis of variance using the DIALLEL-SAS program. Mean squares for both GCA and SCA were significant for most traits in all research environments, indicating that additive and non-additive gene actions are controlling seedling traits under stress conditions. However, for most traits, SCA was preponderant over GCA in all environments, indicating overdominating effect of non-additive gene action. Which in turn implied that the best improvement method for the traits is hybridization. Inbred TZEI 7 had the best GCA effect for seedling traits under screenhouse conditions and for grain yield and other agronomic traits under drought conditions in the field. Hybrids TZEI 357?×?TZEI 411 and TZEI 380?×?TZEI 410 showed superior SCA effects under screen house conditions. In conclusion, the study established wide genetic variability for drought tolerance at seedling stage among tropical early-maturing maize germplasm however, the non-additive gene action was more important for most seedling traits.  相似文献   

16.
通过对4个杂交组合417株实生苗的分析,研究了3个经济性状的遗传特点.结果表明:坚果单粒重、刺苞大小和出实率的遗传均符合数量性状连续变异的遗传特点.单粒重和刺苞大小表现同样的遗传趋势,遗传中非加性效应占有很大比重,杂交后代由于非加性效应解体,单粒重量和刺苞大小有变小的倾向.出实率的遗传以加性效应控制为主,杂交后代由于非加性效应累加,出实率有提高的倾向.  相似文献   

17.
Summary Crosses were made between the highly susceptible Little Club and the partially resistant cultivars Westphal 12A, Akabozu and BH 1146 to obtain F1, F2 and backcross generations. Latency period (LP) was determined in plants inoculated at the young flag leaf stage with a monospore culture of race Flamingo of wheat leaf rust. Broad sense heritability of LP in the F2 averaged 0.8. The genes showed partial to almost complete recessive inheritance. Scaling tests indicated that additive gene action was the most important factor in the inheritance of partial resistance. The tests showed that there were no indications for additive x additive, additive x dominance or dominance x dominance interactions. The number of effective factors was estimated as one or two for Akabozu, three or more for Westphal 12A, and two or three for BH 1146. BH 1146 also possessed a (semi-)dominant gene for a lower infection type which was temperature sensitive in its expression. The genes of the various parents had unequal effect on LP.  相似文献   

18.
以耐盐碱郑58和盐碱敏感昌7-2为亲本,构建包含151份F2:5重组自交系(RILs)群体。基于3K芯片对郑58、昌7-2及其F2:5家系进行基因型分析,构建了包含1407个SNP分子标记的高密度遗传连锁图谱。该图谱的各染色体标记数在84~191之间,标记间的平均距离为0.81 cM。胁迫液为200 mmol L–1 NaCl和100 mmol L–1 Na2CO3,对照液为蒸馏水或霍格兰营养液,对盐、碱胁迫和自然条件下玉米的发芽率(GP)、株高(PH)、植株干、鲜重(FW、DW)、幼苗组织含水量(TWS)、植株地上部分钠含量(SNC)、钾含量(SKC)、钠/钾含量比(NKR)、苗期耐盐率(STR)、耐碱率(ATR)10项指标,采用3种不同的作图方法同时定位研究,对加性QTL定位采用复合区间作图法(CIM)和完备区间作图法(ICIM),对加性QTL与环境互作联合分析采用混合线性模型的复合区间作图法(MCIM)。结果表明,(1)与对照条件下各性状表型值相比,耐碱相关性状的降低较耐盐相关性状明显,说明玉米对碱胁迫更加敏感和碱胁迫对玉米的伤害更严重。碱与盐胁迫下SKC相当而SNC差异较大,表明Na+、K+的吸收和运输是相互独立的两个过程,玉米盐、碱胁迫可能是两种性质不同的胁迫。(2)在自然、盐和碱胁迫条件下,运用CIM分别检测到27、28、40个加性QTL;运用ICIM分别检测到28、23、17个加性QTL;运用MCIM共检测到11个耐盐加性QTL、4个环境互作QTL以及11个耐碱加性QTL、3个环境互作QTL。(3)盐胁迫条件下的qPH-9、qSTR-8、qNKR-6、qNKR-7和碱胁迫条件下的qPH-9、qATR-3能被3种作图方法重复检测到。与前人结果比较, qPH-9、qSTR-8、qNKR-6、q-ATR-3定位在相同或邻近区域,qNKR-7尚未见报道。本研究结果为精细定位玉米耐盐碱主效基因、挖掘候选基因和开发用于标记辅助选择的实用功能标记奠定基础。  相似文献   

19.
棉花耐盐机理与盐害控制研究进展   总被引:18,自引:10,他引:18  
综述了棉花耐盐机理、耐盐性鉴定方法和盐害控制技术的研究进展。棉花耐盐机理与一般植物存在着较大的差异,对盐分胁迫下的植株体内离子分布、细胞膜结构和稳定性以及渗透压调节作用等方面进行了探讨,总结了运用传统育种和现代生物技术改良和提高棉花耐盐性方面取得的进展。此外,提出了从棉花品种、栽培技术、种子引发技术和土壤改良等方面盐碱地植棉的综合技术体系。  相似文献   

20.
Subhadra Singh  M. Singh 《Euphytica》2000,115(3):209-214
Wheat genotypes HD 2009, WH 157 and Kh 375 and their six F1 crosses were evaluated for grain yield, biological yield and 1,000 grain weight under four levels of salinity (ECe 2.1, 6.2, 8.5 and 10.6 dS m-1) in lysimeter type microplots. Parents Kh 375, WH 157 and HD 2009 were tolerant, moderately tolerant and sensitive to salinity, respectively. Reciprocal differences for salinity tolerance occurred for grain yield and 1,000 grain weight. The sensitive parent response was partially dominant whereas the salinity tolerant parent showed partial dominance for yield potential. Salinity tolerance and yield potential appeared to be controlled by different gene complexes. The cross Kh 375 × HD 2009 should provide transgressive segregants combining high yield potential with high salt tolerance. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号