首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Increasing use of N fertilizer for crop production necessitates more rapid estimates on N provided by the soil in order to prevent under‐ or overfertilization and their adverse effect on plant nutrition and environmental quality. A study was conducted to investigate the responses of arginine ammonification (AA), L‐glutaminase activity (LG), soil N–mineralization indices, corn (Zea mays L.) crop–yield estimation, and corn N uptake to application of organic amendments. The relationships between corn N uptake and the microbial and enzymatic processes which are basically related to N mineralization in soil were also studied. The soil samples were collected from 0–15 cm depth of a calcareous soil that was annually treated with 0, 25, or 100 Mg ha–1 (dry‐weight basis) of sewage sludge and cow manure for 7 consecutive years. Soil total N (TN), potentially mineralizable N (N0), and initial potential rates of N mineralization (kN0) were significantly greater in sewage sludge–treated than in cow manure–treated soils. However, the amendment type did not influence soil organic C (SOC), AA, LG, and anaerobic index of N mineralization (Nana). The application rates proportionally increased N‐availability indices in soil. Corn N concentration and uptake were correlated with indices of mineralizable N. A multiple stepwise model using AA and Nana as parameters provided the best predictor of corn N concentration (R = 0.86, p < 0.001). Another model using only LG provided the best predictor of corn N uptake (R = 0.78, p < 0.001). This results showed that sewage‐sludge and cow‐manure application is readily reflected in certain soil biological properties and that the biological tests may be useful in predicting N mineralization and availability in soil.  相似文献   

2.
Application of nitrogen (N) fertilizers without knowing the N-supplying capacity of soils may lead to low N use efficiency, uneconomical crop production, and pollution of the environment. Based on the results from pot experiments treated with soil initial nitrate leaching and native soil, long-term alternate leaching aerobic incubation was conducted to study the disturbed and undisturbed soil N-supplying capacity of surface soil samples in 11 sites with different fertilities on the Loess Plateau. The results indicated that the entire indexes and ryegrass (Lolium perenne) uptake N with soil initial nitrate leaching showed a better correlation than that without soil initial nitrate leaching. Except the correlation coefficients for soil initial nitrate (NO3 ?)-N and mineral N extracted by calcium chloride (CaCl2) before aerobic incubation with ryegrass uptake without soil initial nitrate leaching, the correlation coefficients for soil initial NO3 ?-N and mineral N extracted by CaCl2 before aerobic incubation with ryegrass uptake with soil initial nitrate leaching and those for mineralizable N extracted by aerobic incubation, soil initial mineral N and mineralizable N extracted by aerobic incubation, potentially mineralizable N (N0) and soil initial mineral N + N0 with ryegrass uptake N under the two cases in disturbed treatment were all higher than those in undisturbed treatment. We concluded that NO3 ?-N in soil extracted by CaCl2 before aerobic incubation can reflect soil N-supplying capacity but cannot reflect soil potential N-supplying capacity. Without soil initial nitrate leaching, the effect of disturbed and undisturbed soil samples incubated under laboratory conditions for estimating soil N-supplying capacity was not good; however, with soil initial nitrate leaching, this method could give better results for soil N-supplying capacity. Based on the results from pot experiments treated with soil initial nitrate leaching and native soil, the mineralization of disturbed soil samples can give provide better results for predicting soil N-supplying capacity for in situ structure soil conditions on the Loess Plateau than undisturbed soil samples.  相似文献   

3.
石灰性土壤起始NO3——N对土壤供氮能力测定方法的影响   总被引:11,自引:2,他引:11  
在陕西省的澄城、永寿、杨陵 3地区选取有机质、全N、硝态N含量差异较大的 17个石灰性土壤 ,分别在淋洗与未淋洗土壤起始NO3--N后 ,利用盆栽试验探讨土壤NO3--N淋洗前、后 ,不同方法测定的已矿化N和可矿化N与小麦吸N量之间的相关性。结果表明 ,未淋洗土壤起始NO3--N ,用KCl直接浸取、KCl煮沸法所浸取以及通气培养前CaCl2 所淋洗的起始NO3--N均与小麦吸N量密切相关 ,相关系数 (r)分别为 0.934 ,0.856和 0.862 ,均达1%显著水准。与此相反 ,通气培养、淹水培养、沸水煮沸、碱性高锰酸钾、酸性高锰酸钾及碱解扩散等方法所提取的可矿化N与小麦吸N量间无显著相关。淋洗土壤起始NO3--N后 ,用KCl直接浸取、KCl煮沸法浸取以及通气培养前CaCl2 所淋洗的起始NO3--N与小麦吸N量之间的相关系数明显降低 ,达不到 5%的显著水准。而通气培养、淹水培养、沸水煮沸、碱性高锰酸钾、酸性高锰酸钾及碱解扩散等方法所提取的可矿化N与小麦吸N量之间相关系数却明显提高 ,都达到 5%或 1%的显著水平。其中变化最明显的是淹水培养 1周矿化出的NH4+-N、通气正式培养 2周矿化出的NO3--N及碱解扩散出的NH4+-N ,其与小麦地上部吸N量之间的相关系数 (r)分别由淋洗前的0.443,0.119,0.259增加到淋洗后的 0.866 ,0.767,0.763。说明可矿化N反映土壤供N能力不佳是因为受起始NO3--N的干扰和影响,在土壤NO3--N含量较高的情况下,要正确评价可矿化N测定方法必须考虑NO3--N的作用。  相似文献   

4.
Abstract

The presidedress soil nitrate test (PSNT) and the presidedress tissue nitrogen test (PTNT) have been developed to assess residual soil nitrogen (N) sufficiency for corn (Zea mays L.) in the humid eastern U.S. We conducted field studies at 47 sites during 1990 and 1991 to evaluate the use of the PSNT and PTNT for corn in Coastal Plain, Piedmont, and Appalachian Ridge and Valley regions of Virginia. Seven rates of fertilizer N (0, 45, 90, 135, 180, 225, and 270 kg/ha) were applied at corn height of 0.40 to 0.50 m and replicated four times in a randomized complete block design. Whole corn plants and soil to a depth of 0.30 m were sampled when corn height was 0.15 to 0.30 m to estimate available soil N prior to the application of fertilizer N treatments. Corn grain yield response to fertilizer N was used to assess residual soil N availability. Nitrogen concentration of whole corn plants at 0.15 to 0.30 m height was not an accurate indicator of plant‐available soil N. Corn yields were maximized without sidedress N at the 19 sites where soil NO3‐N was at least 18 mg‐kg‐1 and at the 17 sites where soil (NO3+NH4)‐N was at least 22 mg‐kg‐1. The PSNT predicted corn N sufficiency regardless of soil physiographic region or surface texture; however, the critical values for NO3‐N and (NO3+NH4)‐N were 3 to 5 mg‐kg‐1 lower than those established in Pennsylvania and Maryland, where cooler soil temperatures may permit greater residence time of inorganic N.  相似文献   

5.
 This study was conducted to determine effects of long-term winter cover cropping with hairy vetch, cereal rye and annual ryegrass on soil N availability and corn productivity. From 1987 to 1995, with the exception of the first year of the study, the cover crops were seeded each year in late September or early October after the corn harvest and incorporated into the soil in late April or early May. Corn was seeded 10 days to 2 weeks after the cover crop residues had been incorporated, and N fertilizer was applied as a side-dressing at rates of 0, 67, 134, or 201 kg N ha–1 each year. While the average annual total N input from the above-ground biomass of the cover crops was highest for hairy vetch (72.4 kg N ha–1), the average annual total C input was highest for cereal rye (1043 kg C ha–1) compared with the other cover crops. Hairy vetch was the only cover crop that significantly increased pre-side-dressed NO3 -N (Ni) corn biomass and N uptake at 0 N. At an N fertilizer rate of 134 kg N ha–1 or higher, the cover crops had a minimal effect on corn biomass. This indicated that even after 9 years of winter cover cropping, the effect of the cover crops on corn growth resulted primarily from their influence on soil N availability. The amount of available N estimated from the cover crops (Nac) was significantly correlated with relative corn biomass production (r 2=0.707, P<0.001). The total amount of available N, comprising Nac and N added from fertilizer (Nf), was strongly correlated (r 2=0.820, P<0.001)) with relative corn biomass production. The correlation was also high for the available N comprising Ni and Nf (r 2=0.775, P<0.001). Although cereal rye and annual ryegrass did not improve corn biomass production in the short term, they benefited soil organic N accumulation and gradually improved corn biomass production compared with the control over the long term. Received: 10 August 1999  相似文献   

6.
Abstract

Understanding seasonal soil nitrogen (N) availability patterns is necessary to assess corn (Zea mays L.) N needs following winter cover cropping. Therefore, a field study was initiated to track N availability for corn in conventional and no‐till systems and to determine the accuracy of several methods for assessing and predicting N availability for corn grown in cover crop systems. The experimental design was a systematic split‐split plot with fallow, hairy vetch (Vicia villosa Roth), rye (Secale cereale L.), wheat (Triticum aestivum L.), rye+hairy vetch, and wheat+hairy vetch established as main plots and managed for conventional till and no‐till corn (split plots) to provide a range of soil N availability. The split‐split plot treatment was sidedressed with fertilizer N to give five N rates ranging from 0–300 kg N ha‐1 in 75 kg N ha‐1 increments. Soil and corn were sampled throughout the growing season in the 0 kg N ha‐1 check plots and corn grain yields were determined in all plots. Plant‐available N was greater following cover crops that contained hairy vetch, but tillage had no consistent affect on N availability. Corn grain yields were higher following hairy vetch with or without supplemental fertilizer N and averaged 11.6 Mg ha‐1 and 9.9 Mg ha‐1 following cover crops with and without hairy vetch, respectively. All cover crop by tillage treatment combinations responded to fertilizer N rate both years, but the presence of hairy vetch seldom reduced predicted fertilizer N need. Instead, hairy vetch in monoculture or biculture seemed to add to corn yield potential by an average of about 1.7 Mg ha‐1 (averaged over fertilizer N rates). Cover crop N contributions to corn varied considerably, likely due to cover crop N content and C:N ratio, residue management, climate, soil type, and the method used to assess and assign an N credit. The pre‐sidedress soil nitrate test (PSNT) accurately predicted fertilizer N responsive and N nonresponsive cover crop‐corn systems, but inorganic soil N concentrations within the PSNT critical inorganic soil N concentration range were not detected in this study.  相似文献   

7.
 Nitrogen (N) mineralization and availability from neem seed residue after oil extraction was studied in a laboratory incubation and greenhouse cropping. Several decomposition models were tested for estimating potentially mineralizable N and mineralization rates from the residue. Net N mineralization was best described by a Gompertz function and a mixed-order rate model with R 2=0.996 for each and residual mean square error (RMSE)=8.3 for the Gompertz function and 8.8 for the mixed-order rate model. A consecutive reaction model also fitted the data closely (R 2=0.983; RMSE=16.6) and is preferable to a Gompertz function or a mixed-order rate model because of its mechanistic basis. Potentially mineralizable N estimated by the decomposition models ranged from 335 to 489 mg N kg–1 representing between 32% and 43% of total N applied. Actual cumulative N mineralized in a 98-day incubation period was 339 mg N kg–1 soil. Bio-available N from neem residue and inorganic N (urea) with maize as a test crop in a greenhouse cropping gave similar biomass yield and N uptake, suggesting rapid N mineralization from neem residue to meet plant nutrition. Received: 15 July 1998  相似文献   

8.
Prediction of potentially mineralizable N as an important N pool from soil amidohydrolases was investigated. Composite soil samples were collected from plots of a field experiment in which 0, 50 and 100 Mg cow manure ha−1 year−1 had been applied for five consecutive years. The soils were treated with corn shoots or roots or remained untreated in a factorial combination with the manure treatments, with three replications. The mineralized inorganic N was measured periodically in 20-week incubations and potentially mineralizable N (N0) was calculated based on a first-order kinetic model. Urease, l-glutaminase and l-asparaginase activities were measured before and after incubation. The values of N0 ranged from 208.6 in the controls to 388.4 in soils that had received 50 Mg ha−1 year−1 of cow manure and were amended with corn shoots. Corn residue amendment in the manure treated soils, increased the values of N0 or changed the N mineralization kinetic pattern from a first-order to a zero-order model. According to a relative sensitivity index, l-asparaginase was the most sensitive enzyme to the treatments. Multiple regression analysis revealed that 92% of N0 variations can be described by the activities of urease and l-asparaginase and therefore the soil amidohydrolase activities have the potential to evaluate potentially mineralizable N.  相似文献   

9.
The turnover of native and applied C and N in undisturbed soil samples of different texture but similar mineralogical composition, origin and cropping history was evaluated at −10 kPa water potential. Cores of structurally intact soil with 108, 224 and 337 g clay kg−1 were horizontially sliced and 15N-labelled sheep faeces was placed between the two halves of the intact core. The cores together with unamended treatments were incubated in the dark at 20 °C and the evolution of CO2-C determined continuously for 177 d. Inorganic and microbial biomass N and 15N were determined periodically. Net nitrification was less in soil amended with faeces compared with unamended soil. When adjusted for the NO3-N present in soil before faeces was applied, net nitrification became negative indicating that NO3-N had been immobilized or denitrified. The soil most rich in clay nitrified least N and 15N. The amounts of N retained in the microbial biomass in unamended soils increased with clay content. A maximum of 13% of the faeces 15N was recovered in the microbial biomass in the amended soils. CO2-C evolution increased with clay content in amended and unamended soils. CO2-C evolution from the most sandy soil was reduced due to a low content of potentially mineralizable native soil C whereas the rate constant of C mineralization rate peaked in this soil. When the pool of potentially mineralizable native soil C was assumed proportional to volumetric water content, the three soils contained similar proportions of potentially mineralizable native soil C but the rate constant of C mineralization remained highest in the soil with least clay. Thus although a similar availability of water in the three soils was ensured by their identical matric potential, the actual volume of water seemed to determine the proportion of total C that was potentially mineralizable. The proportion of mineralizable C in the faeces was similar in the three soils (70% of total C), again with a higher rate constant of C mineralization in the soil with least clay. It is hypothesized that the pool of potentially mineralizable C and C rate constants fluctuate with the soil water content.  相似文献   

10.
灌溉对土壤硝态氮淋吸效应影响的研究   总被引:38,自引:3,他引:35  
在陕北米脂县无定河谷地沙壤质土壤上进行了灌水量对土壤硝态氮的淋失和作物吸收效应影响的研究( 简称淋吸效应) 。结果表明,灌水量在0~4000m3/hm2范围内,与玉米产量和玉米吸N 量之间的关系均呈线性相关。土壤剖面中NO3--N 遗留量主要集中分布在0 ~60cm土层内,出现的高峰在40cm ;在0 ~80cm 土层内的NO3--N 遗留量随灌水量的增加而降低;80 ~320cm 土层内的NO3--N 与灌水量之间无明显相关,320 ~400cm 土层内NO3--N 是随灌水量的增加而增高。不同深度的土壤剖面中NO3--N 遗留量与灌水量之间均呈双曲线相关;氮素损失率以未灌溉和灌水量4000m3/hm2处理的为最低,据此提出了土壤NO3--N 淋吸效应的概念。  相似文献   

11.
Summary Sandy soils have low reserves of mineral N in spring. Therefore organic-bound N is the most important pool available for crops. The objective of the present investigation was to study the importance of the organic-bound N extracted by electro-ultrafiltration and by a CaCl2 solution for the supply of N to rape and for N mineralization. Mitscherlich-pot experiments carried out with 12 different sandy soils (Germany) showed a highly significant correlation between the organic N extracted (two fractions) and the N uptake by the rape (electroultrafiltration extract: r=0.76***; CaCl2 extract: r=0.76***). Organic N extracted by both methods before the application of N fertilizer was also significantly correlated with N mineralization (electro-ultrafiltration extract: r=0.75***; CaCl2 extract: r=0.79***). N uptake by the rape and the mineralization of organic N increased with soil pH and decreased with an increasing C:N ratio and an increasing proportion of sand in the soils. Ninety-eight percent of the variation in N uptake by the rape was determined by the differences in net mineralization of organic N. This show that in sandy soils with low mineral N reserves (NO inf3 sup- -N, NH 4 + -N) the organic soil N extracted by electro-ultrafiltration or CaCl2 solutions indicates the variance in plant-available N. Total soil N was not related to the N uptake by plants nor to N mineralization.  相似文献   

12.
High yield agricultural systems, such as high tunnel (HT) vegetable production, require a large supply of soil nutrients, especially nitrogen (N). Compost is a common amendment used by HT growers both to supply nutrients and to improve physical and biological soil properties. We examined commercially-available composts and their effects on soil N, plant N uptake, and tomato yield in HT cultivation. In addition, a laboratory study examined N and carbon (C) mineralization from the composts, and the usefulness of compost properties as predictors of compost N mineralization was assessed under field and laboratory conditions. The field study used a randomized complete block design with four replications to compare four compost treatments (all added at the rate of 300 kg total N ha?1) with unamended soil and an inorganic N treatment (110 kg N ha?1). Tomatoes were grown in Monmouth, Maine during the summers of 2013 and 2014. Compost NO3?-N and NH4+-N application rates were significantly correlated with soil NO3?-N and NH4+-N concentrations throughout the growing season. Marketable yield was positively correlated with compost total inorganic N and NO3?-N in both years, and with NH4+-N in 2014. There were no significant differences among composts in percentage of organic N mineralized and no correlations were observed with any measured compost property. In the laboratory study, all compost-amended soils had relatively high rates of CO2 release for the initial few days and then the rates declined. The compost-amended soils mineralized 4%–6% of the compost organic N. This study suggested compost inorganic N content controls N availability to plants in the first year after compost application.  相似文献   

13.
Soil temperature is a very easily measured parameter that influences nutrient availability in vineyards. We monitored soil temperature and plant-available nitrogen (N) in a study evaluating the potential of legumes as an interrow cover crop to supply N to Concord grape (Vitis labruscana Baily). Nitrogen sources used were hairy vetch (Vicia villosa subsp. villosa L.) and yellow sweet clover [Melilotus officinalis (L.) Lam] as green manure sources and either blood meal (in a certified organic vineyard) or urea (in a conventional vineyard) as soluble sources. Plant-available N was measured both continuously using ion exchange membranes (PRSTM) and point in time by soil sampling at regular intervals; both were analyzed for nitrate (NO3) N and ammonium (NH4) N, although negligible concentrations of NH4-N were detected. PRS NO3-N concentration varied by treatments because of differences in the chemical composition of the N source. Soil NO3-N concentration reached a peak between 520 and 550 degree-days with no significant differences by treatment or site. These findings are similar to results from incubation and field mineralization studies of organic amendments and suggest that N availability from organic sources in vineyards can be predicted using a degree-day-type model.  相似文献   

14.
Zeolite minerals may improve nitrogen availability to plants in soil and reduce losses to the environment. A study was conducted to determine the influence of clinoptilolite (CL) on nitrogen (N) mineralization from solid dairy manure (224 kg N ha?1) in a sandy soil. Clinoptilolite was added to soil at six rates (0 to 44.8 Mg CL ha?1), each sampled during 11 sampling dates over a year. Over time, nitrate (NO3)-N increased, ammonium (NH4)-N decreased, but total inorganic N increased. Clinoptilolite did not influence the nitrification rates of initial manure NH4-N or mineralization of organic N (ON) over time. It is possible that adsorption of manure-derived potassium (K) outcompeted the NH4-N for CL exchange sites. The ON concentration was constant up to 84 days and then decreased by approximately 18% over the remaining time of the study across all treatments. Clinoptilolite use in this sandy soil did not alter mineralization of N from dairy manure.  相似文献   

15.
长期施肥对土壤氮矿化的影响   总被引:14,自引:1,他引:14  
Two field experiments were conducted in Jiashan and Yuhang towns of Zhejiang Province, China, to study the feasibility of predicting N status of rice using canopy spectral reflectance. The canopy spectral reflectance of rice grown with different levels of N inputs was determined at several important growth stages. Statistical analyses showed that as a result of the different levels of N supply, there were significant differences in the N concentrations of canopy leaves at different growth stages. Since spectral reflectance measurements showed that the N status of rice was related to reflectance in the visible and NIR (near-infrared) ranges, observations for rice in 1 nm bandwidths were then converted to bandwidths in the visible and NIR spectral regions with IKONOS (space imaging) bandwidths and vegetation indices being used to predict the N status of rice. The results indicated that canopy reflectance measurements converted to ratio vegetation index (RVI) and normalized difference vegetation index (NDVI) for simulated IKONOS bands provided a better prediction of rice N status than the reflectance measurements in the simulated IKONOS bands themselves. The precision of the developed regression models using RVI and NDVI proved to be very high with R2 ranging from 0.82 to 0.94, and when validated with experimental data from a different site, the results were satisfactory with R2 ranging from 0.55 to 0.70. Thus, the results showed that theoretically it should be possible to monitor N status using remotely sensed data.  相似文献   

16.
Seafood processing generates a substantial volume of wastes. This study examined the feasibility of converting the fish waste into useful fertilizer by composting. Groundfish waste and chitin sludge generated from the production of chitin were composted with red alder or a mixture of western hemlock and Douglas-fir sawdust to produce four composts: alder with groundfish waste (AGF); hemlock/fir with groundfish waste (HGF); alder with chitin sludge (ACS); and hemlock/fir with chitin sludge (HCS). The resulting AGF had a higher total N and a lower C:N ratio than the other three composts. A large portion of the total N in the AGF, HGF, and HCS composts was in inorganic forms (NH4+-N and NO3?-N), as opposed to only two percent in the ACS compost. Alder sawdust is more quickly decomposed, which favored N retention and limited nitrification during the composting period. It was less favorable than the hemlock/Douglas fir sawdust for composting with chitin sludge. Corn growth on soil amended with compost was dependent upon both compost type and rate. Nitrogen and P availabilities in all composts except the ACS were high and compost addition enhanced corn yields, tissue N and P concentrations, and N and P up-take. Neither the total N concentration nor the C:N ratio of the composts was an effective measure of compost N availability in the soil. Because soil inorganic N test levels correlated well with the corn biomass, tissue N and N uptake, they should be an effective measure of the overall compost effects on soil N availability and corn growth response. Phosphorus concentration, which increased linearly with increasing compost rates, was related to soil P availability from compost additions and correlated well with corn biomass, tissue P concentration and P uptake under uniform treatments of N and K fertilizers. Composting groundfish waste with alder or hemlock/Douglas-fir sawdust can produce composts with sufficient amounts of available N and P to promote plant growth and is considered to be a viable approach for recycling and utilizing groundfish waste.  相似文献   

17.
Swine lagoon sludge is commonly applied to soil as a source of nitrogen (N) for crop production but the fate of applied N not recovered from the soil by the receiver crop has received little attention. The objectives of this study were to (1) assess the yield and N accumulation responses of corn (Zea mays L.) and wheat (Triticum aestivum) to different levels of N applied as swine lagoon sludge, (2) quantify recovery of residual N accumulation by the second and third crops after sludge application, and (3) evaluate the effect of different sludge N rates on nitrate (NO3-N) concentrations in the soil. Sludge N trials were conducted with wheat on two swine farms and with corn on one swine farm in the coastal plain of North Carolina. Agronomic optimum N rates for wheat grown at two locations was 360 kg total sludge N ha?1 and the optimum N rate for corn at one location was 327 kg total sludge N ha?1. Residual N recovered by subsequent wheat and corn crops following the corn crop that received lagoon sludge was 3 and 12 kg N ha?1, respectively, on a whole-plant basis and 2 and 10 kg N ha?1, respectively, on a grain basis at the agronomic optimum N rate for corn (327 kg sludge N ha?1). From the 327 kg ha?1 of sludge N applied to corn, 249 kg N ha?1 were not recovered after harvest of three crops for grain. Accumulation in recalcitrant soil organic N pools, ammonia (NH3) volatilization during sludge application, return of N in stover/straw to the soil, and leaching of NO3 from the root zone probably account for much of the nonutilized N. At the agronomic sludge N rate for corn (327 kg N ha?1), downward movement of NO3-N through the soil was similar to that for the 168 kg N ha?1 urea ammonium nitrate (UAN) treatment. Thus, potential N pollution of groundwater by land application of lagoon sludge would not exceed that caused by UAN application.  相似文献   

18.
ABSTRACT

Plant nitrogen (N)-acquisition strategy affects soil N availability, community structure, and vegetation productivity. Cultivated grasslands are widely established to improve degraded pastures, but little information is available to evaluate the link between N uptake preference and forage crop biomass. Here an in-situ 15N labeling experiment was conducted in the four cultivated grasslands of Inner Mongolia, including two dicots (Medicago sativa and Brassica campestris) and two monocots (Bromus inermis and Leymus chinensis). Plant N uptake rate, shoot- and root biomass, and concentrations of soil inorganic-N and microbial biomass-N were measured. The results showed that the root/shoot ratios of the dicots were 2.6 to 16.4 fold those of the monocots. The shoot N concentrations of the dicots or legumes were 40.6% to 165% higher than those of the monocots or non-legumes. The four forage crops in the cultivated grassland preferred to uptake more NO3?-N than NH4+-N regardless of growth stages, and the NH4+/NO3? uptake ratios were significantly lower in the non-legumes than in the legumes (p < 0.05). Significant differences in the NH4+-N rather than NO3?-N uptake rate were observed among the four forages, related to plant functional types and growth stages. The NH4+ uptake rate in the perennial forages exponentially decreased with the increases in shoot-, root biomass, and root/shoot ratio. Also, the plant NH4+/NO3? uptake ratio was positively correlated with soil NH4+/NO3? ratio. Our results suggest that the major forage crops prefer to absorb soil NO3?-N, depending on soil inorganic N composition and belowground C allocation. The preferential uptake of NO3?-N by forages indicates that nitrate-N fertilizer could have a higher promotion on productivity than ammonium-N fertilizer in the semi-arid cultivated grassland.  相似文献   

19.
Rice is an important food in the world population's diet. As nitrogen (N) is the principal nutrient associated with the yield and its mineralization from the soil contribute to plant-available N, the use of biological or chemical methods are necessary for its estimation. Two paddy rice soils types of Chile were used for laboratory (anaerobic incubation) and field experiments: Quella (Vertisol) and Quilmen (Inceptisol), fertilized with three N rates - ureas of 0, 80 and 160 kg ha?1. The mineralized inorganic N was measured and potentially mineralizable N (N0) was calculated based on the first-order kinetic model. N mineralization was positively affected by N fertilization, but only affected grain yield in the Quilmen soil with a negative effect on the crop N recovery. Furthermore, crop N uptake was related with the incubation time at 14 and 21 days for the Quilmen and Quella soils respectively. Finally an N optimization model for those soils was proposed.  相似文献   

20.
A laboratory incubation experiment was carried out to investigate the effects of N fertilizer forms, NO in3 sup? ,-N vs NH in4 sup+ -N, and rates of application on C mineralization of an oily waste in a clay-loam soil. Carbon mineralization rates (CMR) were determined from CO2 (measured routinely by gas chromatography) evolved during a seven week incubation. The CMR and cumulative C mineralized (CCM) increased with increasing levels of fertilizer N added. The greatest enhancement in waste C mineralization occurred when the waste-C: fertilizer-N (WC:FN) ratio was in the range 18 to 22:1. Variabilities in estimates of the potentially mineralizable C pool sizes and specific mineralization rate constants showed that these decomposition parameters were altered by N amendment. Of the three fertilizer N sources evaluated, amendment with calcium nitrate produced the greatest enhancement in waste C mineralization, at each WC:FN ratio, followed by urea and ammonium nitrate, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号