首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
黄土高原小流域土壤有机碳空间变异性研究   总被引:12,自引:0,他引:12  
Soil organic carbon (SOC) has great impacts on global warming, land degradation and food security. Classic statistical and geostatistical methods were used to characterize and compare the spatial heterogeneity of SOC and related factors, such as topography, soil type and land use, in the Liudaogou watershed on the Loess Plateau of North China. SOC concentrations followed a log-normal distribution with an arithmetic and geometric means of 23.4 and 21.3 g kg-1, respectively, were moderately variable (CV = 75.9%), and demonstrated a moderate spatial dependence according to the nugget ratio (34.7%). The experimental variogram of SOC was best-fitted by a spherical model, after the spatial outliers had been detected and subsequently eliminated. Lower SOC concentrations were associated with higher elevations. Warp soils and farmland had the highest SOC concentrations, while aeolian sand soil and shrublands had the lowest SOC values. The geostatistical characteristics of SOC for the different soil and land use types were different. These patterns were closely related to the spatial structure of topography, and soil and land use types.  相似文献   

2.
较贫瘠的红壤中有机质的积累及其生态意义   总被引:9,自引:5,他引:4  
Field experiments on the decomposition of organic materials and the accumulation of organic carbon in infertile red soils were conducted at the Ecological Experimental Station of Red Soil, the Chinese Academy of Sciences, and the potential of CO2 sequestration by reclamation and improving the fertility of these soils was estimated. Results showed that in infertile red soils, the humification coefficients of organic materials were rather high, ranging from 0.28 to 0.63 with an average of 0.43, which was 41% higher than those in corresponding red soils with medium fertility. This was mainly attributed to the high clay content, high acidity and low native organic matter content of infertile red soils. Compared to those in corresponding normal red soils, the decomposition rates of organic materials were significantly lower in infertile red soils in the first 2 years, thereafter no significant difference was observed between those in the two kinds of soils. Depending on the kind and amount of organic manure applied, the soil properties and the rotation systems, annual application of organic manure with a rate of 4 500 to 9 000 kg ha-1 increased the organic carbon content in surface 20 cm of infertile red soils by 2.1~7.5 g kg-1 with an average of 4.7 g kg-1 within the first 5 years. The organic carbon content in infertile red soils which received organic manure annually increased linearly in the first 10 years, thereafter it slowed down, implying that the fertility of the infertile red soils could reach middle or high level in 10 years if the soil was managed properly. It was estimated that through exploitation of wastelands, re-establishment of fuel forests and improvement of soil fertility, soils in red soil region of China could sequester an extra 1.50 × 1015 g of atmospheric CO2.  相似文献   

3.
松嫩平原土壤有机碳空间分异   总被引:4,自引:0,他引:4  
Soil organic carbon (SOC) and its relationship with landscape attributes are important for evaluating current regional, continental, and global carbon stores. Data of SOC in surface soils (0–20 cm) of four main soils, Cambisol, Arenosol, Phaeozem, and Chernozem, were collected at 451 locations in Nongan County under maize monoculture in the Song-Nen Plain, Northeast China. The spatial characteristics of soil organic carbon were studied, using geographic information systems (GIS) and geostatistics. Effects of other soil physical and chemical properties, elevation, slope, and soil type on SOC were explored. SOC concentrations followed a normal distribution, with an arithmetic mean of 14.91 g kg-1 . The experimental variogram of SOC was fitted with a spherical model. There were significant correlations between soil organic carbon and bulk density (r =-0.374**), pH (r = 0.549**), total nitrogen (r = 0.781**), extractable phosphorus (r =-0.109*), exchangeable potassium (r = 0.565**), and cation exchange capacity (r = 0.313**). Generally, lower SOC concentrations were significantly associated with high elevation (r =-0.429**). Soil organic carbon was significantly negatively correlated with slope gradient (r =-0.195**). Samples of the Cambisol statistically had the highest SOC concentrations, and samples of the Arenosol had the lowest SOC value.  相似文献   

4.
The soil organic carbon (SOC) pool is the largest component of terrestrial carbon pools. With the construction of a geographically referenced database taken from the second national general soil survey materials and based on 1546 typical cropland soil profiles, the paddy field and dryland SOC storage among six regions of China were systematically quantified to characterize the spatial pattern of cropland SOC storage in China and to examine the relationship between mean annual temperature, precipitation, soil texture features and SOC content. In all regions, paddy soils had higher SOC storage than dryland soils, and cropland SOC content was the highest in Southwest China. Climate controlled the spatial distribution of SOC in both paddy and dryland soils, with SOC storage increasing with increasing precipitation and decreasing with increasing temperature.  相似文献   

5.
中国农田土壤有机碳贮存的空间特征   总被引:2,自引:0,他引:2  
The soil organic carbon (SOC) pool is the largest component of terrestrial carbon pools. With the construction of a geographically referenced database taken from the second national general soil survey materials and based on 1546 typical cropland soil profiles, the paddy field and dryland SOC storage among quantified to characterize the spatial pattern of cropland SOC storage in China regions of China were systematically to examine the relationship between mean annual temperature, precipitation, soil texture features arid SOC content. In all regions, paddy soils had higher SOC storage than dryland soils, and cropland SOC content was the highest in Southwest China. Climate controlled the spatial distribution of SOC in both paddy and dryland soils, with SOC storage increasing with increasing precipitation and decreasing with increasing temperature.  相似文献   

6.
重建生态系统有机碳贮量的时空变异   总被引:18,自引:0,他引:18  
In global change research, changes of soil organic carbon (SOC) reservoirs in tropical and subtropical regions are still unknown. The temporal-spatial variability of SOC stocks was determined in a basin of over 579 km2 in subtropical China from 1981 to 2002. ArcGIS8.l software was utilized for spatial analysis of semivariance, ordinary kriging (OK), and probability kriging (PK). Grid and hierarchical approaches were employed for the sampling scenario in 2002 with 106 Global Position System (GPS) established spots sampled. Bulk topsoil samples (0-30 cm) were collected at three random sites on each spot. The SOC content for 1981 came from the SOC map of the Second National Soil Survey. Geostatistical results of the nugget to sill ratio (0.215-0.640) in the rehabilitating ecosystem indicated a moderate spatial dependence for SOC on this large scale. The range of SOC changed from 2.04 km in 1981 to 7.15 km in 2002. The mean topsoil SOC increased by 4.6% from 10.63 g kg-1 (1981) to 11.12 g kg-1 (2002). However, during this 21-year period 25.2% of the total basin area experienced a decrease in SOC. Also, the probability kriging results showed that the geometric mean probabilities of SOC ≤ 6.0 g kg-1, ≤ 11.0 g kg-1 and > 15.0 g kg-1 were 0.188, 0.534 and 0.378, respectively in 2002, comparing to 0.234, 0.416 and 0.234 in that order in 1981, respectively. The SOC storage in the topsoil increased by 17.0% during this time with the main increase occurring in forests and cultivated land, which amounted to 82.5% and 17.0% of the total increase, respectively.  相似文献   

7.
江苏省土壤有机碳空间差异性以及影响因素研究   总被引:2,自引:0,他引:2  
Soil organic carbon (SOC) plays a key role in the global carbon cycle.In this study,we used statistical and geostatistical methods to characterize and compare the spatial heterogeneity of SOC in soils of Jiangsu Province,China,and investigate the factors that influence it,such as topography,soil type,and land use.Our study was based on 24 186 soil samples obtained from the surface soil layer (0-0.2 m) and covering the entire area of the province.Interpolated values of SOC density in the surface layer,obtained by kriging based on a spherical model,ranged between 3.25 and 32.43 kg m 3.The highest SOC densities tended to occur in the Taihu Plain,Lixia River Plain,along the Yangtze River,and in high-elevation hilly areas such as those in northern and southwest Jiangsu,while the lowest values were found in the coastal plain.Elevation,slope,soil type,and land use type significantly affected SOC densities.Steeper slope tended to result in SOC decline.Correlation between elevation and SOC densities was positive in the hill areas but negative in the low plain areas,probably due to the effect of different land cover types,temperature,and soil fertility.High SOC densities were usually found in limestone and paddy soils and low densities in coastal saline soils and alluvial soils,indicating that high clay and silt contents in the soils could lead to an increase,and high sand content to a decrease in the accumulation of SOC.SOC densities were sensitive to land use and usually increased in towns,woodland,paddy land,and shallow water areas,which were strongly affected by industrial and human activities,covered with highly productive vegetation,or subject to long-term use of organic fertilizers or flooding conditions.  相似文献   

8.
土壤矿物吸附和土壤团聚体对土壤有机碳含量的影响研究   总被引:3,自引:1,他引:2  
Soil organic carbon (SOC) can act as a sink or source of atmospheric carbon dioxide; therefore, it is important to understand the amount and composition of SOC in terrestrial ecosystems, the spatial variation in SOC, and the underlying mechanisms that stabilize SOC. In this study, density fractionation and acid hydrolysis were used to assess the spatial variation in SOC, the heavy fraction of organic carbon (HFOC), and the resistant organic carbon (ROC) in soils of the southern Hulunbeier region, northeastern China, and to identify the major factors that contribute to this variation. The results showed that as the contents of clay and silt particles (0--50 μm) increased, both methylene blue (MB) adsorption by soil minerals and microaggregate contents increased in the 0--20 and 20--40 cm soil layers (P < 0.05). Although varying with vegetation types, SOC, HFOC, and ROC contents increased significantly with the content of clay and silt particles, MB adsorption by soil minerals, and microaggregate content (P < 0.05), suggesting that soil texture, the MB adsorption by soil minerals and microaggregate abundance might be important factors influencing the spatial heterogeneity of carbon contents in soils of the southern Hulunbeier region.  相似文献   

9.
10.
Soil organic carbon(SOC) is an important component of farming systems and global carbon cycle. Accurately estimating SOC stock is of great importance for assessing soil productivity and modeling global climate change. A newly built 1:50 000 soil database of Zhejiang Province containing 2 154 geo-referenced soil profiles and a pedological professional knowledge-based(PKB) method were used to estimate SOC stock up to a depth of 100 cm for the Province. The spatial patterns of SOC stocks stratified by soil types,watershed(buffer analysis), topographical factors, and land use types were identified. Results showed that the soils in Zhejiang covered an area of 100 740 km2 with a total SOC stock of 831.49 × 106 t and a mean SOC density of 8.25 kg m-2, excluding water and urban areas. In terms of soil types, red soils had the highest SOC stock(259.10 × 106t), whereas mountain meadow soils contained the lowest(0.15 × 106t). In terms of SOC densities, the lowest value(5.11 kg m-2) was found in skel soils, whereas the highest value(45.30 kg m-2) was observed in mountain meadow soils. Yellow soils, as a dominant soil group, determined the SOC densities of different buffer zones in Qiantang River watershed because of their large area percentage and wide variation of SOC density values.The area percentages of various soil groups significantly varied with increasing elevation or slope when overlaid with digital elevation model data, thus influencing the SOC densities. The highest SOC density was observed under grassland, whereas the lowest SOC density was identified under unutilized land. The map of SOC density(0–100 cm depth) and the spatial patterns of SOC stocks in the Province would be helpful for relevant agencies and communities in Zhejiang Province, China.  相似文献   

11.
为了掌握丘陵地区农田土壤有效铁含量及其空间分布,本文以重庆市江津区永兴镇内同源成土母质的典型丘陵(2 km2)为研究区,采集309个土壤样点,利用普通克里格(Ordinary Kriging,OK)、多元线性回归(Multiple Linear Regression,MLR)、随机森林(Random Forest,RF)模型,结合高程、坡度、坡向、谷深、平面曲率、剖面曲率、汇聚指数、相对坡位指数、地形湿度指数等地形因子对土壤有效铁进行空间分布预测,并通过85个验证点评价、筛选预测模型。结果表明:1)土壤有效铁与谷深、地形湿度指数存在极显著水平正相关关系,与坡度、平面曲率、剖面曲率、汇聚指数、相对坡位指数存在极显著水平负相关关系。2)随机森林模型的预测精度明显高于多元线性回归和普通克里格插值,其平均绝对误差为22.33 mg·kg-1、均方根误差为27.98 mg·kg-1、决定系数为0.76,是研究区土壤有效铁含量空间分布的最适预测模型。3)地形湿度指数和坡度是影响该区域土壤有效铁含量空间分布的主要地形因子。土壤有效铁与坡度、谷深、平面曲率、剖面曲率、汇聚指数、相对坡位指数、地形湿度指数均达到极显著水平相关关系。4)研究区土壤有效铁含量范围为3.00~276.97 mg?kg-1,水田有效铁含量大于旱地;土壤有效铁具有较强的空间相关性,土壤有效铁含量空间变异主要受到结构性因素的影响。可见,基于地形因子的随机森林预测模型可以较好地解释丘陵区农田土壤有效铁含量的空间变异,研究结果为丘陵区土壤中、微量元素含量及空间分布预测提供方法借鉴和理论依据。  相似文献   

12.
Mountainous peatlands are one of the most important terrestrial ecosystems for carbon storage and play an important role in the global carbon cycle. An insight into the carbon cycle of peat swamps located in mountainous regions can be obtained by studying the distribution of soil organic carbon (SOC) and its relationships with environmental factors. This study focused on the development conditions of peat swamps in the Gahai wetlands, located on the Zoigê Plateau, China, with four different altitudinal gradients as experimental sample sites. The distribution of SOC and its relationship with environmental factors were analysed through vegetation surveys and a generalized additive model (GAM). The results show that with increasing altitude, soil temperature decreased while the soil pH and bulk density initially decreased then increased. On the contrary, the topographic wetness index (TWI), SOC content, above-ground biomass and litter count initially increased then decreased. The SOC content of the 0–30 cm soil layer was in the range 226–330 g·kg−1 (coefficient of variation (CV) = 21.4%), and the 30–60 cm layer was 178–257 g·kg−1 (CV = 17.5%) and was significantly correlated (p < .05) with above-ground biomass and litter count. Meanwhile, the SOC content in the 60–90 cm soil layer was in the range 132–167 g·kg−1 (CV = 9.2%) with a significant correlation (p < .05) with soil temperature, pH, bulk density and topographic moisture index. The study showed that the SOC content exhibited more pronounced spatial patterns with increasing altitude, with the peak value in the shallow soil layer appearing in lower elevation areas compared with the deep soil layer. The level of variation changed from medium to low, reflecting the stable mechanism for maintaining SOC within the heterogeneous peat swamp environment.  相似文献   

13.
周红  何欢  肖蒙  何忠俊 《土壤学报》2021,58(4):1008-1017
云南省森林生态系统在全球碳循环及平衡中具有不可替代的作用,但其森林土壤腐殖质组分特征及其影响因素尚不十分清楚。基于云南省不同林区采集的88个表层土样,通过描述性统计和回归分析量化了海拔、土壤类型、坡向和坡度、年均温和年降水量对土壤腐殖质组分分布影响的相对重要性,探讨云南省森林土壤腐殖质组分分布特征。结果表明:云南省森林土壤表层有机碳含量为8.40~199.73 g·kg~(–1),平均含量为51.37 g·kg~(–1),土壤可提取腐殖质碳含量为2.54~84.02 g·kg~(–1),平均含量为24.52 g·kg~(–1);胡富比均值小于1,土壤腐殖质聚合度较低;土壤腐殖质组分分布特征总体表现为滇西北、滇东北部较高,滇中、滇南部较低;土壤类型、海拔、年均温是影响云南省森林土壤腐殖质组分含量的主导因子,各因素的贡献程度总体呈现为土壤类型最高,其次是年均温、海拔,这说明土壤类型对森林表层土壤腐殖质的积累起重要作用。  相似文献   

14.
High heterogeneity in the spatial distribution of soil organic carbon (SOC) in grasslands causes uncertainty in estimating its content and storage. In this study, we investigated the spatial distribution of SOC content and storage in the prairies of southern Alberta, Canada, and how it is affected by land use such as irrigated cropping and other environmental conditions such as cattle grazing, slope landscape position and dominant plant species. The mean SOC content was determined to be 11.5 g kg–1 (range: 8.9 to 22.4 g kg–1) in the 0–10 cm layer and 6.8 g kg–1 (range: 4.0 to 13.3 g kg–1) in the 10–30 cm layer; mean SOC storage was 1.59 kg C m–2 (range: 1.23 to 2.78 kg C m–2) in the 0–10 cm layer and 2.07 kg C m–2 (range: 1.21 to 3.62 kg C m–2) in the 10–30 cm layer. The SOC content was significantly affected by slope position in both the 0–10 and 10–30 cm layers, in the following order: bottom >middle > top position. Moreover, SOC storage was higher in sites dominated by shrubs than graminoid/forb communities. Thus, SOC content and storage had distinctly clustered spatial patterns throughout the study area and were significant differences between the 0–10 and 10–30 cm soil layers. Prior land-use change from arid grassland to irrigated cropland increased SOC content and storage in bulk soils.  相似文献   

15.
皖北平原蒙城县农田土壤有机碳空间变异及影响因素   总被引:8,自引:0,他引:8  
以皖北平原典型农业生产大县亳州市蒙城县为代表,运用统计学、地统计学方法和GIS技术研究了其农田耕作层(0~20 cm)土壤有机碳(SOC)含量的空间分布及其影响因子。结果表明:研究区SOC含量为10.41±2.52 g kg-1,近30年来提高了55.61%,SOC变异系数为24%,属于中等变异程度。SOC含量在空间分布上表现为东北部、中部和西南部含量高,由西北向东南先逐渐增加后逐渐降低,变异程度较高。整个县域范围内SOC空间变异的主要影响因素为土壤机械组成(粉粒和砂粒含量),其次为秸秆还田。  相似文献   

16.
通过在苏北滩涂地区开展田间试验,研究了不同施肥处理(不施肥、施农家肥、商品有机肥、无机肥)对滩涂地区围垦农田土壤有机碳及团聚体有机碳的影响。结果表明,与对照相比,不同施肥处理均能明显增加0~30 cm土层土壤有机碳含量和有机碳密度,施农家肥增加幅度最高,增加值分别为0.66 g kg-1和0.07 kg m-2。试验地区水稳性团聚体以5 mm和0.25~0.5 mm为主,含量分别为37%~57%和13%~20%;随着土层深度增加,5 mm团聚体含量降低,0.25~0.5 mm团聚体则增加;农家肥能显著增加5 mm团聚体含量,同时降低0.25~5 mm团聚体含量。团聚体中有机碳含量表现为,除0.25~0.5 mm团聚体外,5 mm至0.5~1 mm团聚体之间,粒径越小,有机碳含量越高,其中0.5~1 mm团聚体有机碳含量最高,为6.83 g kg-1;与其他处理相比,农家肥的施用能明显增加各粒级团聚体中有机碳含量。试验地区土壤有机碳含量与5 mm团聚体及其有机碳含量极显著正相关(p0.01),而与0.25~5 mm团聚体负相关(p0.01或p0.05)。  相似文献   

17.
Land use change (LUC) is known to have a large impact on soil organic carbon (SOC) stocks. However, at a regional scale, our ability to explain SOC dynamics is limited due to the variability generated by inconsistent initial conditions between sample points, poor spatial information on previous land use/land management history and scarce SOC inventories. This study combines the resampling in 2003–2006 of an extensive soil survey in 1950–1960 with exhaustive historical data on LUC (1868–2006) to explain observed changes in the SOC stocks of temperate forest soils in the Belgian Ardennes. Results from resampling showed a significant loss of SOC between the two surveys, associated with a decrease in variability. The mean carbon content decreased from 40.4 to 34.5 g C kg?1 (10.6 to 9.6 kg C m?2), with a mean rate of C change (ΔSOC) of ?0.15 g C kg?1 year?1 (?0.023 kg C m?2 year?1). Soils with high SOC content tended to loose carbon while conversely soils with low SOC tended to gain carbon. Land use change history explained a significant part of past and current SOC stocks as well as ΔSOC during the last 50 years. We show that the use of spatially explicit historical data can help to quantitatively explain changes in SOC content at the regional scale.  相似文献   

18.
Some studies on the relationship between soil erosion and subsequent redeposition of eroded soils in the same field and soil quality have been conducted in croplands, yet few studies have revealed this relationship in rangelands. We selected a toposequence with a slope of 30% and a horizontal length of 342 m from the rangeland in the northern Tibet Autonomous Region, China (31°16′N, 92°09′E) to determine the relationship between soil erosion, soil organic carbon (SOC) content and available P patterns within a hillslope landscape. Soil samples for the determination of 137Cs as well as SOC, available P and particle‐size fractions were collected at 20 m intervals along a transect of this hillslope. Soil redistribution was caused primarily by wind erosion at toe‐slope positions, but primarily by water erosion at the hillslope positions above the toe‐slope. In upper‐ and mid‐slope portions (0 m to 244 m horizontal length), SOC content is closely correlated to 137Cs concentration (r = 0.74, P < 0.01, n= 15), suggesting that SOC distribution along the slope was similar to 137Cs distribution, which itself was dependent on topographic changes. However, SOC contents in toe‐slope portions are less than those above the toe‐slope (i.e. upper‐ and mid‐slope portions), and the correlation between 137Cs and SOC in the toe‐slope portion is weaker than that above the toe‐slope. A highly significant correlation (r = 0.72, P < 0.001, n= 20) between 137Cs concentration and available P was found within the whole hillslope landscape, implying the distribution pattern of available P was somewhat different from that of SOC. We suggest that the distribution of SOC within the hillslope landscape is also affected by factors such as assimilation rates due to difference in grassland productivity at different points and different biological oxidation rates of carbon related to patterns of moisture distribution.  相似文献   

19.
There is a need for determinations of soil organic carbon (SOC) and inorganic carbon (SIC) due to increasing interest in soil carbon sequestration. Two sets of soil samples were collected separately from the Yanqi Basin of northwest China to evaluate loss-on-ignition (LOI) method for estimating SOC and SIC in arid soils through determining SOC using an element analyzer, a modified Walkley-Black method and a LOI method with combustion at 375℃ for 17 h and determining SIC using a pressure calcimeter method and a LOI procedure estimated by a weight loss between 375 to 800℃. Our results indicated that the Walkley-Black method provided 99%recovery of SOC for the arid soils tested. There were strong linear relationships(r > 0.93, P < 0.001) for both SOC and SIC between the traditional method and the LOI technique. One set of soil samples was used to develop relationships between LOI and SOC(by the Walkley-Black method), and between LOI and SIC(by the pressure calcimeter method), and the other set of soil samples was used to evaluate the derived equations by comparing predicted SOC and SIC with measured values. The mean absolute errors were small for both SOC (1.7 g C kg-1) and SIC(1.22 g C kg-1), demonstrating that the LOI method was reliable and could provide accurate estimates of SOC and SIC for arid soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号